高中数学必修四总复习练习题及答案教案资料
- 格式:doc
- 大小:345.50 KB
- 文档页数:5
高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x 轴上的角的集合. 答案:S={α|α=k ·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k ·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k ·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k ·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k ·360°,k ∈Z },-245°,115°; (5){β|β=90°+k ·360°,k ∈Z },-270°,90°; (6){β|β=270°+k ·360°,k ∈Z },-90°,270°; (7){β|β=180°+k ·360°,k ∈Z },-180°,180°; (8){β|β=k ·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k ·360°<β<90°+k ·360°,k ∈Z } {|22,}2k k k πβπβπ<<+∈Z二 {β|90°+k ·360°<β<180°+k ·360°,k ∈Z }{|22,}2k k k πβπβππ+<<+∈Z三 {β|180°+k ·360°<β<270°+k ·360°,k ∈Z }3{|22,}2k k k πβππβπ+<<+∈Z 四{β|270°+k ·360°<β<360°+k ·360°,k ∈Z }3{|222,}2k k k πβπβππ+<<+∈Z 说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k ·360°<α<90°+k ·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角.6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念.7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =.用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n ≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a ≠0,求sin α,cos α,tan α的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-. 说明:根据定义求三角函数值.3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin2446663ππππππ-+-++; (4)2423sin cos tan 323πππ+-.答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题.6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号.7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号.8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值.9、求证:(1)角θ为第二或第三象限角当且仅当sin θ·tan θ<0; (2)角θ为第三或第四象限角当且仅当cos θ·tan θ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34x x==-.说明:要分别对x是第三象限角和第四象限角进行讨论.12、已知3tan 3,2απαπ=<<,求cos α-sin α的值. 答案:1(31)2- 说明:角α是特殊角.13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cos β-1)2+sin 2β=2-2cos β;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cos β+cos 2β+sin 2β=2-2cos β;(4)左边=(sin 2x +cos 2x )2-2sin 2x ·cos 2x=1-2sin 2x ·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角.答案:-2tan α说明:先变形,再根据同角三角函数的基本关系进行化简.3、已知tan α=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式.4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x ·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________;(4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π; (4)sin3π;(5)2cos9π-; (6)-cos75°34′; (7)-tan87°36′; (8)tan6π-.说明:利用诱导公式转化为锐角三角函数.2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′;(6)26sin()3π-.答案:(1)22;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)32 -说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32;使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2k π],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2k π,(2k +1)π],k ∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性.6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期.答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解.8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°;(3)93tan 6tan(5)1111ππ-与; (4)7tan tan 86ππ与.答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tan tan 86ππ<.说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx ≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.10、设函数f (x )(x ∈R )是以 2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题.11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(k π,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=k π,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z .说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题:(1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2)(3)(4)说明:研究了参数A、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48x y π=-,x ∈[0,+∞); (2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-. 先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g ≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式.t 0 t 0 2t 0 3t 04t 05t 0 6t 0 7t 0 8t 0 9t 010t 0 11t 0 12t 0s-20.0-17.8-10.10.110.317.720.017.710.30.1 -10.1-17.8-20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos2A=-;(3)tanA=1;(4)3 tan3A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论.P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π;(4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ; (2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ;(4){β|β=2k π,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解.3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sin φ,tan φ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sin φ的值,再求tan φ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==;当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cos α表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形.7、求证:(1)2(1-sin α)(1+cos α)=(1-sin α+cos α)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sin α+2cos α-2sin αcos α=1+sin 2α+cos 2α-2sin α+2cos α-2sin αcos α =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形.8、已知tan α=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sin αcos α;(3)(sin α+cos α)2. 答案:(1)57;(2)310;(3)85. 说明:第(2)题可由222sin tan 9cos ααα==,得21c o s 10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号.10、已知1sin()2πα+=-,计算:(1)cos(2π-α);(2)tan(α-7π).答案:(1)当α为第一象限角时,3 cos(2)2πα-=,当α为第二象限角时,3 cos(2)2πα-=-;(2)当α为第一象限角时,3 tan(7)3απ-=,当α为第二象限角时,3 tan(7)3απ-=-.说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算.11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°;(2)sin(-879°),313t a n(),c o s()810ππ--;(3)sin3,cos(sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216;(2)sin(-879°)=-0.358,3313tan()0.414,cos()0.588 810ππ-=--=-;(3)sin3=0.141,cos(sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证.12、设π<x<2π,填表:x 76π74πsinx -1cosx22-32tanx 3答案:x 76π54π43π32π74π116πsinx12-22-32--122-12-cosx32-22-12- 02232tanx3313不存在-133-说明:熟悉各特殊角的三角函数值.13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z }; 最小值为1,此时x 的集合为{x|x=2k π,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x ≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证.17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.17 0.34 0.50 0.64 0.77 0.87 0.94 0.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.。
高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角. 2、写出终边在x 轴上的角的集合. 答案:S={α|α=k·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k·360°,k ∈Z },-245°,115°; (5){β|β=90°+k·360°,k ∈Z },-270°,90°; (6){β|β=270°+k·360°,k ∈Z },-90°,270°; (7){β|β=180°+k·360°,k ∈Z },-180°,180°; (8){β|β=k·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k ·360°<β<90°+k·360°,k ∈Z } 二 {β|90°+k·360°<β<180°+k·360°,k ∈Z }三 {β|180°+k·360°<β<270°+k·360°,k ∈Z }四{β|270°+k·360°<β<360°+k·360°,k ∈Z }说明:用角度制和弧度制写出各象限角的集合. 5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2是( )、A .第一象限角B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k·360°<α<90°+k·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角. 6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念. 7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值;(2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理. 2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =.用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20 习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值: (1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a≠0,求sinα,cosα,tanα的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-. 说明:根据定义求三角函数值. 3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin 2446663ππππππ-+-++;(4)2423sincos tan 323πππ+-. 答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简: (1)asin0°+bcos90°+ctan180°; (2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简. 5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题. 6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号. 7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号. 8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值. 9、求证:(1)角θ为第二或第三象限角当且仅当sinθ·tanθ<0;(2)角θ为第三或第四象限角当且仅当cosθ·tanθ<0;(3)角θ为第一或第四象限角当且仅当sin0 tanθθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34 x x==-.说明:要分别对x 是第三象限角和第四象限角进行讨论. 12、已知3tan 3,2απαπ=<<,求cosα-sinα的值. 答案:1(31)2- 说明:角α是特殊角. 13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α; (3)(cosβ-1)2+sin 2β=2-2cosβ; (4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cosβ+cos 2β+sin 2β=2-2cosβ;(4)左边=(sin 2x +cos 2x )2-2sin 2x·cos 2x=1-2sin 2x·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角.答案:-2tanα说明:先变形,再根据同角三角函数的基本关系进行化简. 3、已知tanα=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式. 4、从本节的例7可以看出,cos 1sin 1sin cos x xx x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29 习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________; (4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π; (4)sin3π;(5)2cos9π-; (6)-cos75°34′; (7)-tan87°36′; (8)tan6π-.说明:利用诱导公式转化为锐角三角函数. 2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′; (6)26sin()3π-. 答案:(1)22; (2)-0.7193; (3)-0.0151; (4)0.6639;(5)-0.9964; (6)32-说明:先利用诱导公式转化为锐角三角函数,再求值. 3、化简:(1)sin (-1071°)·sin99°+sin (-171°)·sin (-261°); (2)1+sin (α-2π)·sin (π+α)-2cos 2(-α). 答案:(1)0;(2)-cos 2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简. 4、求证:(1)sin (360°-α)=-sinα; (2)cos (360°-α)=cosα; (3)tan (360°-α)=-tanα. 答案:(1)sin (360°-α)=sin (-α)=-sinα; (2)略; (3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B 组1、计算: (1)sin420°·cos750°+sin (-330°)·cos (-660°); (2)tan675°+tan765°-tan (-330°)+tan (-690°);(3)252525sincos tan()634πππ++-. 答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值. 2、已知1sin()2πα+=-,计算: (1)sin (5π-α); (2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46 习题1.4A 组1、画出下列函数的简图: (1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1) (2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32;使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究. 5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2kπ],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2kπ,(2k +1)π],k ∈Z 时,y=-cosx 是增函数.说明:利用正弦、余弦函数的单调性研究所给函数的单调性. 6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法. 7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期. 答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解. 8、利用正切函数的单调性比较下列各组中两个函数值的大小:(1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°;(3)93tan 6tan(5)1111ππ-与; (4)7tan tan 86ππ与.答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tan tan 86ππ<.说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式. 10、设函数f (x )(x ∈R )是以?2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是: f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题. 11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(kπ,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=kπ,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z .说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题: (1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗? 答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57 习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2) (3) (4)说明:研究了参数A 、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48x y π=-,x ∈[0,+∞); (2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-. 先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式. t 0t 02t 03t 0 4t 05t 06t 07t 08t 09t 0 10t 011t 012t 0s-20.0 -17.8 -10.10.110.3 17.7 20.0 17.7 10.30.1-10.1 -17.8 -20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P 的纵坐标关于时间t 的函数关系式为y=rsin (ωt +φ),t ∈[0,+∞);点P 的运动周期和频率分别为2πω和2ωπ. 说明:应用函数模型y=rsin (ωt +φ)解决实际问题. P65 习题1.61、根据下列条件,求△ABC 的内角A :(1)1sin 2A =;(2)2cos 2A =-; (3)tanA=1;(4)3tan 3A =-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论. P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π; (4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ; (2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ;(4){β|β=2kπ,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解. 3、确定下列三角函数值的符号: (1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sinφ,tanφ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sinφ的值,再求tanφ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==; 当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cosα表示sin 4α-sin 2α+cos 2α. 答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形. 7、求证:(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2; (2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sinα+2cosα-2sinαcosα=1+sin 2α+cos 2α-2sinα+2c osα-2sinαcosα =右边.(2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形. 8、已知tanα=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sinαcosα; (3)(sinα+cosα)2. 答案:(1)57;(2)310;(3)85.说明:第(2)题可由222sin tan 9cos ααα==,得21c o s 10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号. 10、已知1sin()2πα+=-,计算: (1)cos (2π-α);(2)tan (α-7π).答案:(1)当α为第一象限角时,3cos(2)2πα-=, 当α为第二象限角时,3cos(2)2πα-=-; (2)当α为第一象限角时,3tan(7)3απ-=,当α为第二象限角时,3tan(7)3απ-=-. 说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算. 11、先比较大小,再用计算器求值: (1)sin378°21′,tan1111°,cos642.5°; (2)sin (-879°),313ta n (),c o s ()810ππ--;(3)sin3,cos (sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216; (2)sin (-879°)=-0.358,3313tan()0.414,cos()0.588810ππ-=--=-; (3)sin3=0.141,cos (sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证. 12、设π<x <2π,填表:x sinx -1cosx tanx答案:x sinx -1 cosx 0 tanx1不存在-1说明:熟悉各特殊角的三角函数值. 13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z };最小值为1,此时x 的集合为{x|x=2kπ,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤.说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1) (2) (3) (4)说明:可要求学生在作出图象后,用计算机或计算器验证. 17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 sinx0.170.340.500.640.770.870.940.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.B 组1、已知α为第四象限角,确定下列各角的终边所在的位置:(1)2α; (2)3α; (3)2α. 答案:(1)3(1)42k k παππ+<<+,所以2α的终边在第二或第四象限;(2)9012030901203k k α︒+︒<<︒+︒+︒,所以3α的终边在第二、第三或第四象限;(3)(4k +3)π<2α<(4k +4)π,所以2α的终边在第三或第四象限,也可在y 轴的负半轴上.说明:不要求探索α分别为各象限角时,nα和nα的终边所在位置的规律. 2、一个扇形的弧长与面积的数值都是5,求这个扇形中心角的度数. 答案:约143°说明:先用弧度制下的扇形面积公式求出半径,再求出中心角的弧度数,然后将弧度数化为角度数.。
P xyAOM T 高中数学 必修4知识点第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα=. 6、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈⎪⎝⎭. 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、角三角函数的基本关系:()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭..(3) 倒数关系:tan cot 1αα=12、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限.13、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. ②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 14、函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.15、正弦函数、余弦函数和正切函数的图象与性质: sin y x = cos y x = tan y x =y=cotx图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值既无最大值也无最小值周期性 2π2πππ奇偶性奇函数偶函数奇函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ 在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函y=cotx3π2ππ22π-π-π2oyx函数 性 质()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数. ()k ∈Z 上是减函数.数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
北师大版高一数学必修四复习测试全套及答案北师大版高一数学必修四复习测试全套及答案第一章章末分层突破[自我校对]①弧度制②负角③零角④y=cos x⑤y=tan x三角函数的定义及三角函数函数值,利用三角函数线判断三角函数的符号,借助三角函数线求三角函数的定义域.(1)点P 从点(2,0)出发,沿圆x 2+y 2=4逆时针方向运动π3弧长到达Q 点,则Q 点的坐标为;(2)函数y =lg(2sin x -1)+1-2cos x 的定义域为.【精彩点拨】(1)先求∠POQ ,再利用三角函数定义求出Q 点坐标;(2)先列出三角函数的不等式组,再利用三角函数线求解.【规范解答】 (1)设∠POQ =θ,则θ=π32=π6,设Q (x ,y ),根据三角函数的定义,有x =2cos π6=3,y =2sin π6=1,即Q 点的坐标为(3,1).(2)要使函数有意义,必须有 ??2sin x -1>0,1-2c os x ≥0,即sin x >12,cos x ≤12,解得π6+2k π<5<="" p="">6π+2k π(k ∈Z ),π3+2k π≤x ≤53π+2k π(k ∈Z ),∴π3+2k π≤x <5π6+2k π(k ∈Z ).故所求函数的定义域为π3+2k π,5π6+2k π(k ∈Z ).【答案】 (1)(3,1) (2)π3+2k π,5π6+2k π(k ∈Z )[再练一题]1.求函数f (x )=-sin x +tan x -1的定义域.【解】函数f (x )有意义,则-sin x ≥0,tan x -1≥0,即sin x ≤0,tan x ≥1. 如图所示,结合三角函数线知2k π+π≤x ≤2k π+2π(k ∈Z ),k π+π4≤x <="" p="" π+π2(k="" ∈z="">∴2k π+5π4≤x <2k π+3π2(k ∈Z ).故f (x )的定义域为2k π+5π4,2k π+3π2(k ∈Z ).用诱导公式可以把任意角的三角函数转化为锐角三角函数,也可以实现正弦与余弦、正切与余切之间函数名称的变换.2k π+α,π±α,-α,2π±α,π2±α的诱导公式可归纳为:k ×π2+α(k ∈Z )的三角函数值.当k 为偶数时,得α的同名三角函数值;当k 为奇数时,得α的余名三角函数值,然后在前面加上一个把α看成锐角时原函数值的符号,概括为“奇变偶不变,符号看象限”,这里的奇偶指整数k 的奇偶.已知f (α)=sin ? ????-α+π2cos ? ??3π2-αtan (α+5π)tan (-α-π)sin (α-3π),(1)化简f (α);(2)若α=-25π3,求f (α)的值.【精彩点拨】直接应用诱导公式求解.【规范解答】(1)f (α)=cos α·(-sin α)·tan α(-tan α)·sin (π+α)=cos α·sin α·sin αcos α-sin αcos α·sin α=-cos α.(2)f ? ????-25π3=-cos ? ????-25π3=-cos ? ?8π+π3 =-cos π3=-12. [再练一题]2.若sin ? ????3π2+θ=14,求cos (π+θ)cos θ[cos (π+θ)-1]+cos (θ-2π)cos (θ+2π)cos (θ+π)+cos (-θ).【解】因为sin ? ????3π2+θ=14,所以cos θ=-14.所以cos (π+θ)cos θ[cos (π+θ)-1]+cos (θ-2π)cos (θ+2π)cos (θ+π)+cos (-θ)=-cos θcos θ(-cos θ-1)+cos θcos θ(-cos θ)+cos θ=cos θcos θ(cos θ+1)-cos θcos θ(cos θ-1)=1cos θ+1-1cos θ-1=1-14+1-1-14-1=3215.考查中,主要体现在三角函数图像的变换和解析式的确定,以及通过对图像的描绘、观察来讨论函数的有关性质.如图1-1是函数y =A sin(ωx +φ)+kA >0,ω>0,φ<π2的一段图像.图1-1(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的.【精彩点拨】(1)先确定A ,k ,再根据周期求ω,最后确定φ.(2)可先平移再伸缩,也可先伸缩再平移.【规范解答】(1)由图像知,A =-12-? ???-322=12,k =-12+? ???-322=-1,T =2×? ????2π3-π6=π,∴ω=2πT =2,∴y =12sin(2x +φ)-1.当x =π6时,2×π6+φ=π2,∴φ=π6. ∴所求函数解析式为y =12sin ? ??2x +π6-1. (2)把y =sin x 向左平移π6个单位得到y =sin ? ????x +π6,然后纵坐标保持不变,横坐标缩短为原来的12,得到y =sin ? ?2x +π6,再横坐标保持不变,纵坐标变为原来的12,得到y =12sin ? ????2x +π6,最后把函数y =12sin ? ????2x +π6的图像向下平移1个单位,得到y =12sin ? ?2x +π6-1的图像.[再练一题]3.若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为3,求函数f (x )的解析式,并说明怎样变换f (x )的图像能得到g (x )=3sin ? ?2x -π6的图像.【解】因为函数f (x )最大值为3,所以A =3,又当x =π6时函数f (x )取得最大值,所以sin ? ??π3+φ=1.因为0<φ<π,故φ=π6,故函数f (x )的解析式为f (x )=3sin ? ?2x +π6,将f (x )的图像向右移π6个单位,即得g (x )=3sin2?x -π6+π6=3sin ? ????2x -π6的图像.奇偶性、对称性等有关性质,特别是复合函数的周期性、单调性和最值(值域),应引起重视.已知函数f (x )=2sin ? ?2x +π6+a +1(其中a 为常数).(1)求f (x )的单调区间;(2)若x ∈0,π2时,f (x )的最大值为4,求a 的值;(3)求f (x )取最大值时,x 的取值集合.【精彩点拨】 (1)将2x +π6看成一个整体,利用y =sin x 的单调区间求解.(2)先求x ∈0,π2时,2x +π6的范围,再根据最值求a 的值. (3)先求f (x )取最大值时2x +π6的值,再求x 的值.【规范解答】 (1)由-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),解得-π3+k π≤x ≤π6+k π(k ∈Z ),∴函数f (x )的单调增区间为-π3+k π,π6+k π(k ∈Z ),由π2+2k π≤2x +π6≤3π2+2k π(k ∈Z ),解得π6+k π≤x ≤2π3+k π(k ∈Z ),∴函数f (x )的单调减区间为π6+k π,2π3+k π(k ∈Z ).(2)∵0≤x ≤π2,∴π6≤2x +π6≤7π6,∴-12≤sin ? ??2x +π6≤1,∴f (x )的最大值为2+a +1=4,∴a =1. (3)当f (x )取最大值时,2x +π6=π2+2k π(k ∈Z ).∴2x =π3+2k π,∴x =π6+k π(k ∈Z ).∴当f (x )取最大值时, x的取值集合是x ?x =π6+k π,k ∈Z . [再练一题]4.已知函数f (x )=2sin ? ?2x -π4,(x ∈R ) (1)求函数f (x )的最小正周期;(2)求函数f (x )在区间π8,34π上的最大值和最小值.【解】(1)∵f (x )=2sin ? ?2x -π4,∴T =2πω=2π2=π,故f (x )的最小正周期为π.(2)f (x )=2sin ? ????2x -π4在区间π8,3π8上是增函数,在区间3π8,3π4上是减函数,∴函数f (x )在x =3π8处取得最大值,在两端点之一处取得最小值.又f ? ????π8=0,f ? ??3π8= 2.F ? ????34π=2sin ? ??3π2-π4=-2cos π4=-1. 故函数f (x )在区间π8,3π4上的最大值为2,最小值为-1.问题转化为数量关系去求解,体现了数与形的联系.在三角函数中可以利用单位圆中的三角函数线或三角函数图像研究三角函数的求值、大小比较、最值、解三角不等式、单调区间、对称性等问题,其特点是直观形象.若集合M =?θsin θ≥12,0≤θ≤π,N =?θcos θ≤12,0≤θ≤π,求M ∩N .【精彩点拨】本题主要考查已知三角函数值范围求角,可以根据正弦函数图像和余弦函数图像,作出集合M 和N ,然后求M ∩N ,或利用单位圆中三角函数线确定集合M ,N .【规范解答】法一:首先作出正弦函数与余弦函数的图像以及直线y =12,如图:结合图像得集合M ,N 分别为M =?θ π6≤θ≤5π6,N =θπ3≤θ≤π,得M ∩N =θπ3≤θ≤56π. 法二:作出单位圆的正弦线和余弦线.如图:由单位圆三角函数线知:M =?θ π6≤θ≤5π6,N =θπ3≤θ≤π,得M ∩N =θπ3≤θ≤56π. [再练一题]5.(1)求满足不等式cos x <-12的角x 的集合; (2)求y =2sin x ? ??-π3≤x ≤2π3的值域.【解】 (1)作出函数y =cos x 在[0,2π]上的图像,如图所示:由于cos 2π3=cos 4π3=-12,故当2π3<-1<="" p="" x="">2.由于y =cos x 的周期为2π,∴适合cos x <-12的角x 的集合为x2π3+2k π<="" =sin="">由图像可知,当-π3≤x ≤2π3时,-32≤sin x ≤1,∴-3≤2sin x ≤2,因此函数y =2sin x ? ??-π3≤x ≤2π3的值域为[-3,2].1.要得到函数y =sin ? 4x -π3的图像,只需将函数y =sin 4x 的图像( ) A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位【解析】由y =sin ? ????4x -π3=sin 4? ?x -π12得,只需将y =sin 4x 的图像向右平移π12个单位即可,故选B.【答案】 B2.函数f (x )=cos(ωx +φ)的部分图像如图1-2所示,则f (x )的单调递减区间为( )A .? ?k π-14,k π+34,k ∈ZB.? ?2k π-14,2k π+34,k ∈Z C .? ????k -14,k +34,k ∈ZD.? ?2k -14,2k +34,k ∈Z 【解析】由图像知,周期T =2? ????54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ? ?πx +π4.由2k π<πx +π4<2k π+π,得2k -14<="">4,k ∈Z ,∴f (x )的单调递减区间为? ?2k -14,2k +34,k ∈Z .故选D.【答案】 D3.如图1-3,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ? ????π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )图1-3A .5B .6D .10【解析】根据图像得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8. 【答案】 C4.已知函数f (x )=sin(ωx +φ)? ?ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图像的对称轴,且f (x )在? ??π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5【解析】因为f (x )=sin(ωx +φ)的一个零点为x =-π4,x =π4为y =f (x )图像的对称轴,所以T 4·k =π2(k 为奇数).又T =2πω,所以ω=k (k 为奇数).又函数f (x )在? ????π18,5π36上单调,所以π12≤12×2πω,即ω≤12.若ω=11,又|φ|≤π2,则φ=-π4,此时,f (x )=sin ? ????11x -π4,f (x )在? ????π18,3π44上单调递增,在? ??3π44,5π36上单调递减,不满足条件.若ω=9,又|φ|≤π2,则φ=π4,此时,f (x )=sin ? ????9x +π4,满足f (x )在? ????π18,5π36上单调的条件.故选B.【答案】 B5.某同学用“五点法”画函数f (x )=A sin(ωx +φ)? ?ω>0,|φ|<π2在某一个周期内的图像时,列表并填入了部分数据,如下表:(1)...........)的解析式; (2)将y =f (x )图像上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图像.若y =g (x )图像的一个对称中心为? ??5π12,0,求θ的最小值.【解】 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ? ???2x -6.(2)由(1)知f (x )=5sin ? ?2x -π6,则g (x )=5sin ? ?2x +2θ-π6.因为函数y =sin x 图像的对称中心为(k π,0),k ∈Z ,令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z . 由于函数y =g (x )的图像关于点? ????5π12,0成中心对称,所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.第二章章末分层突破[自我校对]①单位向量②坐标表示③数乘向量④坐标⑤夹角公式。
练习(第5页》1. 锐角是第一象限你第•象限你不一定是锐角;直角不膩于任何一个象限•不属于任何•个象限的角不一・定丛亢如:饨介迢第二象Wfft.第二绘限角不一定址钝介.说阴认识•说升广、-直角”•“mr和係限角”的区别埒联系.2•三•三• it.说明本題的II的足将终边相同的仰的符',;哦示应川到找他周期件何題匕题||联系实臥把教科筋中的除数360换戍毎个凡期的夭数7.利川了-M余”(这里余数是3)來确定7怡无氐7 k JjiU 也祁見川期•.这样的练习不难.町以II答.3•⑴第一魏探伽(2)第阿糾W伽(3)第二録限角$⑷第三簽限如.说明能作出结定的仰.并判定是第儿feRlfft・用略.4. ⑴305°・挖・第冋象Oh <2) 35鴛・第一象限伽⑶24『30'・第垛限处•说明能住给定范鬧内找出勺指定的角终边相同的角•并判定圧笫儿象瞅也・5. (1) «0|0 1303m 360°. AW引.-496*42\ —136°42‘・ 223。
叭(2) 〃|0= 225°M • 360°. W \、585°. - 225\ 135:说明用集合花示法和符号指定和终边柜同的介的集令•并在给定范田内找;l「j描定的角终边HI同的介. 练习C第9页)1. (1)令. (2)孕⑶攀说明能进行度U加度的换贰2. (!) 15°;<2) 210°€Ci) 54°.说明能进行瓶度9度的换◎・3. (I) {a | o= kK. it^Z}: (Z) ”!a=专十阪点€紂・说明川弧废;《丧示终边分别轴和y轴I:的"啲集舍.4. (I) cos 0. 75°・cos (L 75; (Z) tan L 2°"<^nni L 2$说明体会1诃数値不同的位的角对应的三角函数値町能不同•并进-步认识两种尬位制.注盘先用计算器求Jh函数血之前.耍先对il•算器中和的模式进行设證.如求cox«.75^i%•變将仰模人设比为"EG(用处制);求CON O.75之|條賞将巾校成设汽为RAIN丸懐制).r w5盲机说明通过分别込川佝加制和软度制下的孤氏公儿体会引人毎度制的必茨性・6. 如度数为1.2.说明进•少认沢弧直数的绝对備公式.匀題I. 1 (第9贡》A俎1. (I)95\第二彖服(2) «0\第一彖服(3) 236W.第三象Rh ⑷:iOO\第四象限.说明能任给定范附内找出习指定的角终边相同的角,并判定是第儿彖限角.2. S I cr A • |&)°・ itez}.说明将终边相I同的仰用集介表斥.3. ( I) {fl\p 60° + k - 360'• k^Z}.— 30O\ 60°;⑵ SI" -75+. 360°. «eZh 一75°. 285•:(3) SI” 一82十3()+・36(汽JtGZ). — 1(M'3()\ 255°30气⑷{p\p 475+• 3$(几翳幼-215% 115^⑸ }屮=90°+£・ 360°. &WZ). - 270°, 90°;<«)270° + 女• :<6(代JteZ}. - 90\ 270%(7){P\P IKO Q I - 360°, XZ}・ 1«0\ 18(f|(«)出|陰*任(几圧2}・-360°. 0°.说明川集伶衣〃湫和符号诸护孑出与能定角终边郴何的角的集合•并住绻定范IR内找出号指崔的角终边柏胡的角.5. (1> (:.说明14 为 <^< aV9O°・所以0°V 2a< 180\(2> I).说明冈为◎ • 360°0<90°十& • 360\ Jt€Z.所以k• 180'V号<45°十点• 1«()\ k"、半k为奇数时•;址第垛限伽臥为偶数时.号是第一象限角.6. 不等『1知址这是因为等于半轻长的弧所对的阀心角为】孤度•而零干半径氏的弦所对的弧比半径长.说明了解瓠度的槪念.说明能逬行麼吋加度的换算.& (1)— 210°; (2)600°;(3) 80.21\ (4) 3& 2°.说明能进行加度勺度的换算.9. 61°.说明町以先运用麵度制下的如氏公式求岀関心介的弧度数•卩術弧度换算为度・也町以K接运川血度制下的就尺公式.10. 11 CDL说明町以先将度换笫为匏度•再运川弧度制下的如氏公式•也可以M接运川角皮制卜的颅辰公式.1. <1)〈略)<2)设m子的阀心巾为0•山-7—52--------- =0.618.討(2兀一4〉0=0・ 618(2 穴一0).说明水題址一个数学实嘶动.Mil对“芙观的阳子"并没右给出标准.II的址止学生先占体验.然麻评运川所学知讲发现.大寥数血子之所以“芙观”是冈为射都満足舟Q・GI8(黄金分割比)的逍理.2. ⑴时针转了120\等于一竽弧喪)分针转了一14彳0°・筹于一&瓠度.(2)设经过八nin分针就9时针改合.川为两针31合的次数.因为分针旋转的如速朋为时什施转的如速度为矗5=盏(rad/min>-(計—希)用计算机或计算需作出函效戶誥的图象(如下页图)或汲格.从屮吋淸楚地介列时什'j分针每次1R 合所尙的吋间.因为HHI&E 转一夭所需的时何为24X60=1 440(min).所以等曲440. 川W22・故时fl 七分针一天内只会磴合22次.说明 通过时什与分针的旋转问題进…步地认识弧度的概念•并将何題引向深入•用南数思想进行 分析.在研究时针与分针一犬的亟合次数时.可利用计算器或计算机•从模拟的图形、衣格中的数 据.换数的解析式或图象等角度.不堆得到正确的结论.3・ 864\ 警• 15l ・27rna说明 通过W 轮的转动何题进一步地认识弧度的概念和弧长公式•当大垢轮转动•周时•小片轮转 动的加处器 X 360。
数学必修四复习题二答案数学必修四复习题二答案在学习数学必修四的过程中,复习题是非常重要的一环。
通过做复习题,我们可以检验自己对知识点的掌握程度,找出自己的薄弱环节,并加以强化。
本文将给出数学必修四复习题二的详细答案,希望能对大家的学习有所帮助。
1. 已知函数 f(x) = 2x^3 - 3x^2 + 4x - 1,求 f(2) 的值。
解:将 x = 2 代入函数 f(x) 中,得到 f(2) = 2(2)^3 - 3(2)^2 + 4(2) - 1 = 16 - 12 + 8 - 1 = 11。
2. 已知函数 f(x) = 3x^2 - 4x + 2,求 f(-1) 的值。
解:将 x = -1 代入函数 f(x) 中,得到 f(-1) = 3(-1)^2 - 4(-1) + 2 = 3 + 4 + 2 = 9。
3. 若函数 f(x) = ax^2 + bx + c 的图像与 x 轴交于两个不同的点,且a ≠ 0,证明函数的判别式 D = b^2 - 4ac 大于零。
解:由已知,函数 f(x) 与 x 轴交于两个不同的点,即存在两个不同的实数 x1 和x2,使得 f(x1) = f(x2) = 0。
根据函数的定义,我们有:f(x1) = ax1^2 + bx1 + c = 0f(x2) = ax2^2 + bx2 + c = 0将上述两个等式相减,得到:ax1^2 + bx1 + c - (ax2^2 + bx2 + c) = 0a(x1^2 - x2^2) + b(x1 - x2) = 0a(x1 - x2)(x1 + x2) + b(x1 - x2) = 0(x1 - x2)(ax1 + ax2 + b) = 0由于 x1 和 x2 是不同的实数,所以 x1 - x2 ≠ 0。
因此,我们可以将上式除以(x1 - x2),得到:ax1 + ax2 + b = 0进一步整理,得到:2ax1 = -b - 2ax2将上述等式代入函数 f(x) 的定义中,得到:f(x1) = ax1^2 + bx1 + c = ax1^2 + 2ax1x2 + c = 0根据上述等式,我们可以得到:D = b^2 - 4ac = (-b - 2ax2)^2 - 4a(ax1^2 + 2ax1x2 + c)= b^2 + 4abx2 + 4a^2x2^2 - 4a^2x1^2 - 8a^2x1x2 - 4ac= 4a^2(x2^2 - x1^2) - 8a^2x1x2 + b^2 - 4ac= 4a^2(x2 - x1)(x2 + x1) - 8a^2x1x2 + b^2 - 4ac= 4a^2(x2 - x1)(ax1 + ax2 + b) - 8a^2x1x2 + b^2 - 4ac= 4a^2(x2 - x1)(-2ax2) - 8a^2x1x2 + b^2 - 4ac= -8a^3x2(x2 - x1) - 8a^2x1x2 + b^2 - 4ac= -8a^2x2(x2 - x1) + b^2 - 4ac由于 x1 和 x2 是不同的实数,所以 x2 - x1 ≠ 0。
人教B高中数学必修第四册全册各章知识点汇总第九章解三角形.................................................................................................................... - 1 - 第十章复数 ......................................................................................................................... - 12 - 第十一章立体几何初步...................................................................................................... - 19 -第九章解三角形知识体系题型探究利用正弦、余弦定理解三角形【例1】如图,在平面四边形ABCD中,AB=2,BD=5,AB⊥BC,∠BCD=2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.[思路探究] (1)由面积公式求出sin ∠ABD ,进而得cos ∠ABD 的值,利用余弦定理可解;(2)由AB ⊥BC 可以求出sin ∠CBD 的大小,再由二倍角公式求出sin ∠BCD ,可判断△CBD 为等腰三角形,利用正弦定理求出CD 的大小,最后利用面积公式求解.[解] (1)由S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠ABD ∈⎝ ⎛⎭⎪⎫0,π2,所以cos ∠ABD =55. 在△ABD 中,由AD 2=AB 2+BD 2-2·AB ·BD ·cos ∠ABD , 可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2, 所以sin ∠CBD =cos ∠ABD =55.又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·cos ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝ ⎛⎭⎪⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD ,所以△CBD 为等腰三角形,即CB =CD . 在△CBD 中,由正弦定理知,BD sin ∠BCD =CDsin ∠CBD,得CD =BD ·sin ∠CBD sin ∠BCD=5×5545=54,所以S △CBD =12×54×54×45=58.利用正、余弦定理解三角形要注意以下几个方面(1)画图,把相关数据标注在三角形中,便于确定已知和所求. (2)明确解题过程中所使用的定理,有些题目两个定理都适用.(3)注意对三角形内角和定理、大边对大角的应用,避免出现增解或漏解的错误.(4)多边形中的边角计算问题通常化归到三角形中利用正、余弦定理求解.[跟进训练]1.如图所示,在△ABC 中,B =π3,AB =8,点D 在BC 边上,CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长. [解] (1)在△ADC 中, 因为cos ∠ADC =17,所以sin ∠ADC =437, 所以sin ∠BAD =sin(∠ADC -B ) =sin ∠ADC cos B -cos ∠ADC sin B =437×12-17×32=3314.(2)在△ABD 中,由正弦定理,得BD =AB sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ×BC ×cos B =82+52-2×8×5×12=49, 所以AC =7.三角变换与解三角形的综合问题【例2】 在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), ∴b 2[sin(A +B )+sin(A -B )] =a 2[sin(A +B )-sin(A -B )], ∴2b 2sin A cos B =2a 2cos A sin B , 即a 2cos A sin B =b 2sin A cos B .法一:由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .在△ABC 中,0<2A <2π,0<2B <2π, ∴2A =2B 或2A =π-2B , ∴A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 法二:由正弦定理、余弦定理,得a 2b ×b 2+c 2-a 22bc =b 2a ×a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰三角形或直角三角形.判定三角形形状的三个注意点(1)“角化边”后要注意用因式分解、配方等方法得出边的关系.(2)“边化角”后要注意用三角恒等变换、三角形内角和定理及诱导公式推出角的关系.(3)要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.[跟进训练]2.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状. [解] 法一:∵2b =a +c ,由正弦定理, 得2sin B =sin A +sin C . ∵B =60°,∴A +C =120°. ∴2sin 60°=sin(120°-C )+sin C . 展开整理得32sin C +12cos C =1. ∴sin(C +30°)=1. ∵0°<C <120°, ∴C +30°=90°. ∴C =60°,则A =60°. ∴△ABC 为等边三角形.法二:由余弦定理,得b 2=a 2+c 2-2ac cos B . ∵B =60°,b =a +c 2,∴⎝ ⎛⎭⎪⎫a +c 22=a 2+c 2-2ac cos 60°, 化简得(a -c )2=0. ∴a =c .又B =60°, ∴a =b =c .∴△ABC 为等边三角形.角度2 三角形边、角、面积的求解【例3】 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 的面积的最大值.[解] (1)由已知,根据正弦定理得sin A =sin B cos C +sin C sin B . 又A =π-(B +C ),∴sin[π-(B +C )]=sin(B +C ) =sin B cos C +sin C cos B , 即sin B cos C +cos B sin C =sin B cos C +sin C sin B , ∴cos B sin C =sin C sin B , ∵sin C ≠0,∴cos B =sin B 且B 为三角形内角, ∴B =π4.(2)S △ABC =12ac sin B =24ac , 由正弦定理知a =b sin A sin B =222×sin A =22sin A ,同理,c =22sin C ,∴S △ABC =24×22sin A ×22sin C =22sin A sin C =22sin A sin ⎝ ⎛⎭⎪⎫3π4-A=22sin A ⎝ ⎛⎭⎪⎫sin 3π4cos A -cos 3π4sin A=2(sin A cos A +sin 2A ) =sin 2A +1-cos 2A =2sin ⎝ ⎛⎭⎪⎫2A -π4+1,∴当2A -π4=π2,即A =3π8时,S △ABC 有最大值2+1.求解三角形中的边、角、面积的解题策略该类问题以三角形为载体,在已知条件中涉及了三角形的一些边角关系,由于正弦定理和余弦定理都是关于三角形的边角关系的等式,通过定理的运用能够实现边角互化,在边角互化时,经常用到三角函数中两角和与差的公式及倍角公式等.[跟进训练]3.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .[解] 因为cos B =2cos 2B 2-1=35, 故B 为锐角,所以sin B =45, 所以sin A =sin (π-B -C ) =sin ⎝ ⎛⎭⎪⎫B +π4=sin B cos π4+cos B sin π4 =7210. 由正弦定理, 得c =a sin C sin A =107,所以S △ABC =12ac sin B =12×2×107×45=87.正弦、余弦定理在实际中的应用【例4A 处发现在北偏东45°方向,相距12海里的B 处水面上,有蓝方一艘小艇正以每小时10海里的速度沿南偏东75°方向前进,若红方侦察艇以每小时14海里的速度,沿北偏东45°+α方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.[思路探究] 假设经过x 小时后在C 处追上蓝方的小艇,作出示意图,把实际数据转化到三角形中,利用正、余弦定理求解.[解] 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x 海里,BC =10x 海里,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2⎝ ⎛⎭⎪⎫x =-34舍去.故AC =28海里,BC =20海里. 根据正弦定理得BC sin α=ACsin 120°, 解得sin α=20sin 120°28=5314.故红方侦察艇所需的时间为2小时,角α的正弦值为5314.应用解三角形知识解决实际问题四步曲(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语.(2)根据题意画出示意图,并将已知条件在图形中标出.(3)将所求问题归结到一个或几个三角形中,通过合理运用正弦、余弦定理等有关知识正确求解.(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.[跟进训练]4.甲船在A 处,乙船在甲船正南方向距甲船20海里的B 处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A 处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?[解] 设甲、乙两船经t 小时后相距最近且分别到达P ,Q 两处,因乙船到达A 处需2小时.①当0≤t <2时,如图①,在△APQ 中,AP =8t ,AQ =20-10t , 所以PQ =AQ 2+AP 2-2AQ ×AP ×cos 120° =(20-10t )2+(8t )2-2×(20-10t )×8t ×⎝ ⎛⎭⎪⎫-12=84t 2-240t +400 =221t 2-60t +100; ②当t =2时,PQ =8×2=16; ③当t >2时,如图②,在△APQ中,AP=8t,AQ=10t-20,∴PQ=AQ2+AP2-2AQ×AP×cos 60°=221t2-60t+100.综合①②③知,PQ=221t2-60t+100(t≥0).当且仅当t=3021=107时,PQ最小.所以甲、乙两船行驶107小时后,相距最近.[培优层·素养升华]【例题】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin B sin C.(1)求A;(2)若2a+b=2c,求sin C.[思路探究](1)利用正弦定理结合余弦定理求解角A的大小;(2)根据(1)中的结论结合正弦定理化简题中的等量关系,利用两角差的正弦公式求解sin C.[解](1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc.由余弦定理得cos A=b2+c2-a22bc=12.因为0°<A<180°,所以A=60°.(2)由(1)知B=120°-C,由题设及正弦定理得2sin A+sin(120°-C)=2sin C,即62+32cos C+12sin C=2sin C,整理得cos(C+60°)=-2 2.因为0°<C<120°,所以sin(C+60°)=2 2,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=6+2 4.本题考查正弦定理、余弦定理、两角和的余弦公式、两角差的正弦公式,综合性较强.综合应用正、余弦定理解三角形一直是高考的热点内容之一,着重考查直观想象、数学运算等学科素养.[素养提升练]△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-14,则bc=()A.6 B.5 C.4 D.3A[∵a sin A-b sin B=4c sin C,∴由正弦定理得a2-b2=4c2,即a2=4c2+b2.由余弦定理得cos A=b2+c2-a22bc=b2+c2-(4c2+b2)2bc=-3c22bc=-14,∴bc=6.]第十章 复数知识体系·题型探究复数的概念【例1】 32 (1)z ∈R ;(2)z 为虚数.[思路探究] 根据复数的分类列不等式组求解. [解] (1)因为一个复数是实数的充要条件是虚部为0,所以⎩⎨⎧x 2-3x -3>0,①log 2(x -3)=0, ②x -3>0,③由②得x =4,经验证满足①③式.所以当x =4时,z ∈R .(2)因为一个复数是虚数的充要条件是虚部不为0,所以⎩⎨⎧x 2-3x -3>0,①log 2(x -3)≠0, ②x -3>0,③由①得x >3+212或x <3-212. 由②得x ≠4,由③得x >3. 所以当x >3+212且x ≠4时,z 为虚数.1.正确确定复数的实、虚部是准确理解复数的有关概念(如实数、虚数、纯虚数、相等复数、共轭复数、复数的模)的前提.2.两复数相等的充要条件是复数问题转化为实数问题的依据. 3.求字母的范围时一定要关注实部与虚部自身有意义.[跟进训练]1.(1)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4 D .45(2)设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则复数z 的实部是__________.(1)D (2)1 [(1)∵(3-4i)z =|4+3i|,∴z =|4+3i|3-4i =42+323-4i =5(3+4i )25=35+45i ,∴z 的虚部为45.故选D .(2)法一:设z =a +b i(a ,b ∈R ),则i(z +1)=i(a +b i +1)=-b +(a +1)i =-3+2i. 由复数相等的充要条件,得⎩⎨⎧ -b =-3,a +1=2,解得⎩⎨⎧a =1,b =3.故复数z 的实部是1.法二:由i(z +1)=-3+2i ,得z +1=-3+2ii =2+3i ,故z =1+3i ,即复数z 的实部是1.]复数的四则运算【例2】 (1)设i 是虚数单位,z -表示复数z 的共轭复数.若z =1+i ,则z i +i·z-=( )A .-2B .-2iC .2D .2i(2)设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2i D .3-2i[思路探究] (1)先求出z 及zi ,结合复数运算法则求解. (2)利用方程思想求解并化简.(1)C (2)A [(1)∵z =1+i ,∴z -=1-i ,z i =1+i i =-i 2+i i =1-i ,∴z i +i·z -=1-i +i(1-i)=2.故选C .(2)由(z -2i)(2-i)=5,得z =2i +52-i =2i +5(2+i )(2-i )(2+i )=2i +2+i =2+3i.]复数加减乘运算可类比多项式的加减乘运算,注意把i 看作一个字母(i 2=-1),除法运算注意应用共轭的性质z 为实数.[跟进训练]2.(1)复数2+i1-2i 的共轭复数是( )A .-35iB .35i C .-i D .i(2)已知复数z 1=⎝ ⎛⎭⎪⎫12-32i (1+i)(i 为虚数单位),复数z 2的虚部为2,且z 1·z 2是实数,则z 2=________.(1)C (2)4+2i [(1)依题意知,2+i 1-2i =(2+i )(1+2i )(1-2i )(1+2i )=5i5=i ,∴其共轭复数为-i. (2)z 1=⎝ ⎛⎭⎪⎫12-32i (1+i)=2-i.设z 2=a +2i ,a ∈R , 则z 1·z 2=(2-i)·(a +2i) =(2a +2)+(4-a )i ,因为z 1·z 2∈R , 所以a =4. 所以z 2=4+2i.]复数的几何意义【例3】 (1)在复平面内,复数i1-i对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 (2)在复平面内,复数1-2i2+i对应的点的坐标为( ) A .(0,-1) B .(0,1) C .⎝ ⎛⎭⎪⎫45,-35D .⎝ ⎛⎭⎪⎫45,35[思路探究] 先把复数z 化为复数的标准形式,再写出其对应坐标. (1)B (2)A [(1)复数i 1-i =i (1+i )(1-i )(1+i )=-1+i 2=-12+12i. ∴复数对应点的坐标是⎝ ⎛⎭⎪⎫-12,12.∴复数i1-i在复平面内对应的点位于第二象限.故选B . (2)∵1-2i 2+i =(1-2i )(2-i )(2+i )(2-i )=-5i5=-i ,其对应的点为(0,-1),故选A .]1.复数的几何表示法复数z =a +b i(a ,b ∈R )可以用复平面内的点Z (a ,b )来表示.此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.2.复数的向量表示以原点为起点的向量表示的复数等于它的终点对应的复数;向量平移后,此向量表示的复数不变,但平移前后起点、终点对应的复数要改变.3.复数的加减法的几何意义实质上是平行四边形法则和三角形法则.由减法的几何意义知|z -z 1|表示复平面上两点Z 与Z 1之间的距离.4.复数形式的基本轨迹(1)|z -z 1|=r 表示复数对应的点的轨迹是以z 1对应的点为圆心,半径为r 的圆.(2)|z -z 1|=|z -z 2|表示以复数z 1,z 2的对应点为端点的线段的垂直平分线.[跟进训练]3.(1)已知复数z 对应的向量如图所示,则复数z +1所对应的向量正确的是( )(2)若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z1+i的点是( )A .EB .FC .GD .H(1)A (2)D [(1)由题图知,z =-2+i ,∴z +1=-2+i +1=-1+i ,故z +1对应的向量应为选项A .(2)由题图可得z =3+i ,所以z 1+i =3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i ,则其在复平面上对应的点为H (2,-1).]函数与方程思想【例4】 已知f (z )=|1+z |-z ,且f (-z )=10+3i ,求复数z .[思路探究] 设z =a +b i(a ,b ∈R ),则z -=a -b i ,由复数相等列方程组求解即可.[解] ∵f (z )=|1+z |-z -,∴f (-z )=|1-z |+z -. 设z =a +b i(a ,b ∈R ),则z -=a -b i.由f (-z )=10+3i ,得|1-(a +b i)|+a -b i =10+3i ,∴⎩⎨⎧(1-a )2+b 2+a =10,-b =3, 解方程组得⎩⎨⎧a =5,b =-3,∴复数z =5-3i.一般设出复数z 的代数形式,即z =x +y i(x ,y ∈R ),则涉及复数的分类、几何意义、模的运算、四则运算、共轭复数等问题,都可以转化为实数x ,y 应满足的方程(组),即复数问题实数化的思想是本章的主要思想方法.[跟进训练]4.满足z +5z 是实数,且z +3的实部与虚部是相反数的虚数z 是否存在?若存在,求出虚数z ;若不存在,请说明理由.[解] 设虚数z =x +y i(x ,y ∈R ,且y ≠0),则z +5z =x +y i +5x +y i =x +5x x 2+y 2+⎝ ⎛⎭⎪⎫y -5y x 2+y 2i ,z +3=(x +3)+y i.由已知,得⎩⎪⎨⎪⎧y -5y x 2+y2=0,x +3=-y ,因为y ≠0,所以⎩⎨⎧ x 2+y 2=5,x +y =-3,解得⎩⎨⎧ x =-1,y =-2或⎩⎨⎧x =-2,y =-1.所以存在虚数z =-1-2i 或z =-2-i 满足题设条件.[培优层·素养升华]【例1】 设z =i(2+i),则z =( ) A .1+2i B .-1+2i C .1-2iD .-1-2iD [∵z =i(2+i)=-1+2i ,∴z =-1-2i.] 【例2】 设有下面四个命题 p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4B [设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b i a 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0. 当a =0,b ≠0时,z =a +b i =b i ∉R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0Da 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.]高考对复数的考查较为基础,通常以选择题的形式考查复数的概念与四则运算,属容易题,重点体现数学运算、逻辑推理、直观想象等学科素养.[素养提升练] 1.设z =3-i1+2i,则|z |=( ) A .2 B . 3 C . 2 D .1C [∵z =3-i 1+2i =(3-i )(1-2i )(1+2i )(1-2i )=1-7i5,∴|z |=⎝ ⎛⎭⎪⎫152+⎝ ⎛⎭⎪⎫-752= 2.] 2.i 是虚数单位,则⎪⎪⎪⎪⎪⎪5-i 1+i 的值为________.13 [∵5-i 1+i =(5-i )(1-i )(1+i )(1-i )=2-3i ,∴⎪⎪⎪⎪⎪⎪5-i 1+i =|2-3i|=13.]第十一章 立体几何初步知识体系[提升层·题型探究]空间几何体的表面积与体积【例们将体积公式“V =kD 3”中的常数k 称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D 为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式V =kD 3,其中,在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长.假设运用此“会玉术”求得的球、等边圆柱、正方体的“玉积率”分别为k 1,k 2,k 3,那么,k 1∶k 2∶k 3=( )A .π4∶π6∶1B .π6∶π4∶2C .1∶3∶12πD .1∶32∶6πD [球中,V =43πR 3=43π⎝ ⎛⎭⎪⎫D 23=π6D 3=k 1D 3,所以k 1=π6;等边圆柱中,V =π⎝ ⎛⎭⎪⎫D 22·D =π4D 3=k 2D 3,所以k 2=π4;正方体中,V =D 3=k 3D 3,所以k 3=1, 所以k 1∶k 2∶k 3=π6∶π4∶1=1∶32∶6π.]记牢常见几何体的表面积、体积公式是解决此类问题的关键.涉及古代文化背景的题目,首先读懂题意,再按题意与所学的知识联系起来,将问题转化为我们熟悉的问题后再解决.[跟进训练]1.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长、宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上的条件不变,则这个四棱锥的外接球的表面积为( )A .142π平方尺B .140π平方尺C .138π平方尺D .128π平方尺C [可以把该四棱锥补成一个长方体,长、宽分别为7尺和5尺,高为8尺,四棱锥的外接球就是长方体的外接球,其直径为72+52+82=138尺,所以表面积为4π×⎝⎛⎭⎪⎫13822=138π平方尺.] 与球有关的切、接问题【例2 [思路探究] 正四面体的内切球、外接球、棱切球的球心与正四面体的中心O 重合,则内切球的半径为点O 到各面的距离,外接球的半径为点O 到各顶点的距离,棱切球的半径为点O 到各棱的距离.[解] 由正四面体的对称性与球的对称性知正四面体的外接球、内切球、棱切球的球心都与正四面体的中心重合.如图所示,设正四面体A -BCD 的高为AG ,O 为正四面体的中心,连接CG 并延长交BD 于点E ,连接OC ,OE ,则外接球的半径R =OA =OC .由题意可得CE =3a 2,则CG =23CE =3a 3,EG =13CE =3a 6,所以AG =AC 2-CG 2=6a 3.所以OG =6a 3-R .在Rt △OCG 中,OC 2=OG 2+CG 2,即R 2=⎝ ⎛⎭⎪⎫6a 3-R 2+a 23,解得R =6a 4. 所以内切球的半径r =OG =6a 3-6a 4=6a 12.棱切球的半径为OE =EG 2+OG 2=a 212+a 224=2a 4.常见的几何体与球的切、接问题的解决方案如下:[跟进训练]2.(1)已知正方体的外接球的体积是32π3,那么正方体的棱长是( )A .2 2B .233C .423D .433(2)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A.12 3 B.18 3 C.24 3 D.543(1)D(2)B[(1)根据球的体积,求得其半径r=2,再由r=3a2可得棱长a为43 3.(2)设等边△ABC的边长为x,则12x2sin 60°=93,解得x=6.设△ABC的外接圆半径为r,则r=23,所以球心到△ABC所在平面的距离d=42-(23)2=2,则点D到平面ABC的最大距离d1=d+4=6,所以三棱锥D-ABC体积的最大值V max=13S△ABC×6=13×93×6=18 3.]空间中的平行关系【例3】如图所示,四边形ABCD是平行四边形,PB⊥平面ABCD,MA∥PB,PB=2MA.在线段PB上是否存在一点F,使平面AFC∥平面PMD?若存在,请确定点F的位置;若不存在,请说明理由.[思路探究]假设存在满足条件的点F,由于平面AFC∥平面PMD,且平面AFPM与平面AFC、平面PMD分别交于直线AF,PM,则必有AF∥PM,又PB =2MA,则点F是PB的中点.[解]当点F是PB的中点时,平面AFC∥平面PMD,证明如下:如图,连接AC和BD交于点O,连接FO,那么PF=12PB.∵四边形ABCD是平行四边形,∴O是BD的中点.∴OF∥PD.又OF⊄平面PMD,PD⊂平面PMD,∴OF∥平面PMD.又MA 12PB,∴PF MA.∴四边形AFPM是平行四边形.∴AF∥PM.又AF⊄平面PMD,PM⊂平面PMD,∴AF∥平面PMD.又AF∩OF=F,AF⊂平面AFC,OF⊂平面AFC.∴平面AFC∥平面PMD.空间中的平行关系主要是指空间中线与线、线与面及面与面的平行,其中三种关系相互渗透.在解决线面、面面平行问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而利用性质定理时,其顺序相反,且“高维”的性质定理就是“低维”的判定定理.特别注意,转化的方法由具体题目的条件决定,不能过于呆板僵化,要遵循规律而不局限于规律.3.如图,已知四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.[证明]连接AC交BD于O,连接MO,因为四边形ABCD为平行四边形,所以O为AC的中点,又因为M为PC的中点,所以MO∥AP,又因为MO⊂平面BDM,P A⊄平面BDM,所以P A∥平面BDM,又因为P A⊂平面P AHG,平面P AHG∩平面BDM=GH,所以P A∥GH.空间中的垂直关系【例4】如图所示,在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.(1)若D是BC的中点,求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于点M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C.[解](1)证明:因为AB=AC,D是BC的中点,所以AD⊥BC.因为底面ABC⊥侧面BB1C1C,底面ABC∩侧面BB1C1C=BC,所以AD⊥侧面BB1C1C.所以AD⊥CC1.(2)延长B1A1与BM的延长线交于点N,连接C1N.因为AM=MA1,所以NA1=A1B1.因为A1C1=A1N=A1B1,所以C1N⊥B1C1,所以C1N⊥侧面BB1C1C.因为C1N⊂截面MBC1,所以截面MBC 1⊥侧面BB 1C 1C .空间中的垂直关系包括线与线的垂直、线与面的垂直及面与面的垂直,三种垂直关系是本章学习的核心,学习时要突出三者间的互化意识.如在证明两平面垂直时一般从现有直线中寻找平面的垂线,若这样的垂线不存在,则可通过作辅助线来解决.如有面面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,进一步转化为线线垂直.[跟进训练]4.如图,ABCD 是正方形,点P 在以BC 为直径的半圆弧上(P 不与B ,C 重合),E 为线段BC 的中点,现将正方形ABCD 沿BC 折起,使得平面ABCD ⊥平面BCP .(1)证明:BP ⊥平面DCP ;(2)若BC =2,当三棱锥D -BPC 的体积最大时,求E 到平面BDP 的距离.[解] (1)证明:因为平面ABCD ⊥平面BPC ,ABCD 是正方形,平面ABCD ∩平面BPC =BC ,所以DC ⊥平面BPC .因为BP ⊂平面BPC ,所以BP ⊥DC .因为点P 在以BC 为直径的半圆弧上,所以BP ⊥PC .又DC ∩PC =C ,所以BP ⊥平面DCP .(2)当点P 位于BC ︵的中点时,△BCP 的面积最大,三棱锥D -BPC 的体积也最大.因为BC =2,所以PE =1,所以△BEP 的面积为12×1×1=12,所以三棱锥D -BEP 的体积为13×12×2=13.因为BP ⊥平面DCP ,所以BP ⊥DP ,DP=(22)2-(2)2=6,△BDP的面积为12×2×6= 3.设E到平面BDP的距离为d,由于V D-BEP=V E-BDP,则13×3×d=13,得d=33,即E到平面BDP的距离为33.空间中的角的求解【例5】如图,在三棱锥S-ABC中,SA=SB=AC=BC=2,AB=23,SC =1.(1)画出二面角S-AB-C的平面角,并求它的度数;(2)求三棱锥S-ABC的体积.[解](1)取AB中点D,连接SD,CD,因为SA=SB=2,AC=BC=2,所以SD⊥AB,CD⊥AB,且SD⊂平面SAB,CD⊂平面CAB,所以∠SDC是二面角S-AB-C的平面角.在直角三角形SDA中,SD=SA2-AD2=22-(3)2=1,在直角三角形CDA中,CD =CA 2-AD 2=22-(3)2=1,所以SD =CD =SC =1,所以△SDC 是等边三角形,所以∠SDC =60°.(2)法一:因为SD ⊥AB ,CD ⊥AB ,SD ∩CD =D ,所以AB ⊥平面SDC ,又AB ⊂平面ABC ,所以平面ABC ⊥平面SDC ,且平面ABC ∩平面SDC =CD ,在平面SDC 内作SO ⊥DC 于O ,则SO ⊥平面ABC ,即SO 是三棱锥S -ABC 的高.在等边△SDC 中,SO =32,所以三棱锥S -ABC 的体积V S -ABC =13S △ABC ·SO =13×12×23×1×32=12.法二:因为SD ⊥AB ,CD ⊥AB ,SD ∩CD =D ,所以AB ⊥平面SDC .在等边△SDC 中,S △SDC =34SD 2=34,所以三棱锥S -ABC 的体积V S -ABC =V A -SDC +V B -SDC =13S △SDC ·AB =13×34×23=12.1.两条异面直线所成的角(1)一般通过平移(在所给图形内平移一条直线或平移两条直线)或补形(补形的目的仍是平移),把异面直线所成角转化为共面直线所成角来计算.(2)平移时经常利用某些特殊点(如中点)或中位线、成比例线段来实现,补形时经常把空间图形补成熟悉的或完整的几何体(如正方体、长方体、平行六面体等).2.直线和平面所成的角当直线为平面的斜线时,它是斜线与斜线在平面内的射影所成的角,通常在斜线上取一特殊点向平面作垂线找到这个锐角,然后通过解直角三角形加以求出.3.求解二面角的平面角的步骤一找(寻找现成的二面角的平面角);二作(若没有找到现成的,需要引出辅助线作出二面角的平面角);三求(有了二面角的平面角后,在三角形中求出该角相应的三角函数值).[跟进训练]5.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为( )A .12B .-12C .32D .-32A [如图,分别取BC ,CD ,AD ,BD 的中点M ,N ,P ,Q ,连接MN ,NP ,MP ,PQ ,MQ ,则MN ∥BD ,NP ∥AC ,所以∠PNM 即为异面直线AC 和BD 所成的角(或其补角).又由题意得PQ ⊥MQ ,PQ =12AB ,MQ =12CD .设AB =BC =CD =2,则PM = 2.又MN =12BD =2,NP =12AC =2,所以△PNM 为等边三角形,所以∠PNM =60°,所以异面直线AC 与BD 所成角为60°,其余弦值为12.][培优层·素养升华]【例题】 如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.[思路探究](1)连接B1C,ME,可得四边形MNDE为平行四边形,进而得出MN∥DE,可证MN∥平面C1DE.(2)由已知可证DE⊥平面C1CE,过点C作CH⊥C1E于点H,则DE⊥CH,进而可证CH⊥平面C1DE,计算可得CH的长,从而得所求距离.[解](1)证明:如图所示,连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1DC,可得B1C A1D,故ME ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,所以MN∥平面C1DE.(2)如图所示,过点C作C1E的垂线,垂足为H.由已知可得DE⊥BC,DE⊥C1C,所以DE⊥平面C1CE,故DE⊥CH.从而CH⊥平面C1DE,故CH的长即为点C到平面C1DE的距离.由已知可得CE=1,C1C=4,所以C1E=17,故CH=417 17.从而点C到平面C1DE的距离为417 17.本题属中档题,难度不大,考查了线面平行的证明及点面距离的计算,充分体现了直观想象、逻辑推理、数学运算等核心素养.[素养提升练]如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面P AB⊥平面PCD;(3)求证:EF∥平面PCD.[证明](1)因为P A=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD,所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,所以AB⊥平面P AD,所以AB⊥PD.又因为P A⊥PD,P A∩AB=A,所以PD⊥平面P AB.所以平面P AB⊥平面PCD.(3)如图,取PC的中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FG∥BC,FG=12BC.因为四边形ABCD为矩形,且E为AD的中点,所以DE∥BC,DE=12BC.所以DE∥FG,DE=FG.所以四边形DEFG为平行四边形,所以EF∥DG.又因为EF⊄平面PCD,DG⊂平面PCD,所以EF∥平面PCD.。
高中数学必修四总复习练习题及答案
第1题.已知函数sin()y A x ωϕ=+,在一个周期内当π
12
x =
时,有最大值2,当7π
12
x =
时,有最小值2-,那么( ) A.1πsin 223y x ⎛⎫=+ ⎪⎝⎭ B.1πsin 226y x ⎛⎫
=+ ⎪⎝⎭ C.π2sin 26y x ⎛⎫=+ ⎪⎝
⎭
D.π2sin 23y x ⎛⎫
=+ ⎪⎝
⎭
第2题.直线y a =(a 为常数)与正切曲线tan y x ω=(ω为常数,且0ω>)相交的两相邻点间的距离为( )
A.π B.
2π
ω C.
π
ω
D.与a 值有关
第3题.在ABC △中,若()()0CA CB CA CB +-=u u u r u u u r u u u r u u u r
·
,则ABC △为( ) A.正三角形 B.直角三角形 C.等腰三角形
D.无法确定
第4题.函数()sin cos =+f x x x 的最小正周期是( ) A.π
4
B.π2
C.π
D.2π
第5题.如果2
π
1tan()tan 544αββ⎛⎫+=-= ⎪⎝
⎭
,,那么πtan 4
α⎛⎫
+= ⎪⎝
⎭
( ) A.24
7
B.
322
C.
1322
D.16
第6题.设sin π0()(1)10x x f x f x x <⎧=⎨-+⎩, ,,,≥1cos π2()1(1)12
x x g x g x x ⎧
<⎪⎪=⎨⎪-+⎪⎩≥, ,,,
求11534364g f g f ⎛⎫⎛⎫⎛⎫
⎛⎫
+++
⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
的值. 第7题.已知向量m (cos sin )θθ=,,
n sin cos )(π2π)θθθ=∈,
,,
,且m n +=
, 求πcos 28θ⎛⎫
+ ⎪⎝⎭.
第8题.已知向量a 33cos sin 22x x
⎛⎫
= ⎪⎝
⎭,
,b cos sin 22x x ⎛⎫=- ⎪⎝⎭,,且π02x ⎡⎤
∈⎢⎥⎣⎦
,,则+a b
等于 .
第9题.关于函数π()4sin 2()3⎛⎫
=+∈ ⎪⎝
⎭
R f x x x ,有下列命题:①()f x 的表达式可以
改写成π()4cos 26f x x ⎛⎫=- ⎪⎝
⎭
;②()f x 是以2π为最小正周期的周期函数;③()f x 的
图象关于点π
06
⎛⎫- ⎪⎝⎭,
对称;④()f x 的图象关于直线π6
x =-对称. 其中正确命题的序号是 .
第10题.定义运算x y *为:x y *x x y y x y ⎧=⎨<⎩
,,
,,≥则函数()sin cos f x x x =*的值域
为 .
第11题.若+=-a b a b ,则a b ,的关系是 .
第12题.已知πsin 4α⎛⎫-= ⎪⎝
⎭
,7
cos225α=,求sin α及πtan 3α⎛⎫+ ⎪⎝
⎭
.
第13题.下列四个命题中可能成立的一个是( ) A.1
sin 2
α=,且1cos 2
α= B.sin 0α=,且cos 1α=- C.tan 1α=,且cos 1α=-
D.α是第二象限角时,sin tan cos α
αα
=-
第14题.下列命题正确的是( ) A.向量AB u u u r 的长度与向量BA u u u r
的长度相等
B.两个有共同起点且相等的向量,其终点可能不同
C.若非零向量AB u u u r
与CD u u u r 是共线向量,则A B C D ,,,四点共线
D.若a 平行b ,且b 平行c ,则a 平行c
第15题.已知3
sin 5
α=,α是第二象限的角,且tan()1αβ+=,则tan β的值为( )
A.7- B.7 C.34
-
D.34
第16题.若a (2)λ=,,b (35)=-,,且a 与b 的夹角为钝角,则λ的取值范围是( )
A.10
3
⎡⎫+⎪⎢
⎣⎭
,∞ B.103⎛⎫
- ⎪⎝
⎭
,∞
C.103⎛⎤- ⎥⎝
⎦,∞
D.10
3
⎛⎫+ ⎪⎝⎭
,
∞ 第17题.已知函数π()3sin
(0)x
f x R R
=>图象上相邻的一个最大值点与一个最小值点恰好在222x y R +=上,则()f x 的最小正周期是( ) A.1
B.2
C.3
D.4
第18题.设函数3()()=∈R f x x x ,若π02
θ≤≤时,(sin )(1)0f m f m θ+->·恒成立,则实数m 的取值范围是( ) A.(01),
B.(0)-,∞ C.(1)-,∞
D.1
2⎛⎫
- ⎪⎝
⎭
,∞
第19题.化简2cos()cos()sin αβαββ+-+.
第20题.已知函数()sin()(00)f x A x A x ωϕω=+>>∈R ,,在一个周期内的图象如图2所示,求直线3y =与函数()f x 图象的所有交点的坐标.
第21题.(1)已知4a =,3b =,(23)(2)61a b a b -+=·,求a 与b 的夹角θ;
(2)设(25)(31)(63)OA OB OC ===u u u r u u u r u u u r ,,
,,,,在OC u u u r 上是否存在点M ,使MA MB ⊥u u u r u u u r
,若存在,求出点M 的坐标;若不存在,请说明理由.。