高中数学-数列总复习教案
- 格式:doc
- 大小:1.66 MB
- 文档页数:17
数列综合问题高中数学教案
知识点:数列的综合
教学目标:通过本节课的学习,学生能够掌握数列的综合方法,解决相关数学问题。
教学重点:数列的综合求解方法。
教学难点:在实际问题中运用数列的综合方法解决问题。
教学过程:
一、导入新知识(5分钟)
教师向学生介绍本节课的学习内容,引导学生了解数列的综合概念。
并通过一个简单的例子引出数列综合问题。
二、讲解与实践(15分钟)
1. 讲解数列的综合方法,说明综合的含义及求解步骤。
2. 通过几个示例讲解综合求解数列问题的步骤,引导学生掌握方法。
3. 学生进行练习,巩固数列综合的求解方法。
三、拓展应用(10分钟)
1. 给学生提供一些实际问题,让学生尝试用数列综合方法解决问题。
2. 学生结合实际问题进行讨论,分享不同解题思路。
四、作业布置(5分钟)
布置练习题作业,相关综合数列问题的练习。
五、课堂小结(5分钟)
总结本节课的重点内容,强调数列综合方法的重要性,并提醒学生作业要认真完成。
教学反思:本节课通过讲解数列的综合方法,让学生了解了数列的综合应用,实际问题中的数列综合求解方法。
通过多种实例的讲解和练习,学生对数列综合方法有了更深入的理解和掌握。
在今后的教学过程中,可以结合更多实际问题,让学生更好地运用数列综合方法解决各种数学问题。
高中数学数列优秀教案一、教学目标1. 知识与技能:掌握数列的概念及相关性质,能够求解数列的通项公式和前n项和。
2. 过程与方法:培养学生分析问题和解决问题的能力,培养学生的逻辑思维能力和抽象思维能力。
3. 情感态度价值观:培养学生对数列的兴趣,增强学生的数学学习动力,激发学生对数学的热爱。
二、教学重难点1. 重点:数列的概念、等差数列和等比数列的性质、求解数列的通项公式和前n项和。
2. 难点:分析问题并找出解决问题的方法,形成自己的解题思路。
三、教学过程1. 导入(激活学生对数列的认知,引发学生的学习兴趣)教师通过提出一个简单的问题让学生思考:1, 3, 5, 7, …… 这组数字有什么规律?这组数字又是什么?引导学生进入数列的概念。
2. 学习(理解数列的概念及性质)教师讲解数列的概念和等差数列、等比数列的性质,引导学生理解数列通项公式和前n项和的概念。
3. 练习(掌握数列的求解方法)教师让学生进行一些练习,巩固数列的求解方法,并引导学生分析问题,找出解决问题的方法。
4. 深化(拓展数列的应用)教师通过举一些实际问题引导学生拓展数列的应用,如数列在日常生活中的运用等。
5. 归纳总结(总结数列的相关知识点)教师对本节课的内容进行总结,强调数列的重要性及应用。
四、作业布置1. 完成相关练习题,巩固数列的相关知识点。
2. 思考数列在日常生活中的应用,并写出一些例子。
五、教学反思本节课通过引导学生分析问题、解决问题,培养学生的逻辑思维能力和抽象思维能力,激发学生对数学的兴趣,取得了良好的教学效果。
在后续的教学中,需要加强数列的应用,让学生更加深入地理解数列,并应用于实际生活中。
数列复习课教案(一)民立中学夏芝晨(区学科带头人)数列是一类特殊的函数,它的定义域是自然数集N或N的有限子集,通项公式就是这一函数的解析表达式。
等差数列和等比数列是两种最基本、最常见的数列。
它们各有五个基本量:首项、公差或公比、项数、通项、前项和;两个基本公式——通项公式和前项和公式,将这五个基本量连接起来,应用函数与方程的思想方法,认识这些基本量的相互联系,由已知推求未知,构成了数列理论的基本框架,成为贯穿始终的主线。
第一课时复习课题:数列、等差数列、等比数列。
复习目标:理解数列的概念,掌握等差数列、等比数列的概念。
复习重点:掌握等差数列、等比数列的概念。
复习难点:用函数的观点来研究数列。
教学过程:知识要点:(1)数列可看作定义域为自然数集N或其子集的函数。
数列的各项即是自变量(项数)从1开始自小到大依次取自然数时对应的一系列函数值。
数列的一般形式:简记为数列。
项数有限的数列叫有穷数列,项数无限的数列叫无穷数列。
(2)表示函数的常用方法有列表法、解析法和图象法三种。
相应地,表示数列也可用上述三种方法。
如果能用解析法表示数列,那么这种解析式就称为数列的通项公式。
数列的图象法表示与函数的图象法表示有区别,前者只是一些孤立的点,后者一般是一段或若干条曲线。
(3)数列中,若(常数),对都成立,则数列叫等差数列,常数叫数列的公差。
数列中,若(常数),,对都成立,则数列叫等比数列,常数叫数列的公比。
(4)三数成等差,即是的等差中项;三数成等比,即是的等比中项。
例一:根据下列数列的前项的值,写出满足反映给出规律的一个通项公式。
(1)3,5,9,17,33,……(2)0,3,8,15,24,……(3)(4)0,1,0,1,0,1,……解:分析与项数之间的对应关系:(1)联想数列2,4,8,16,32,……即数列,可知。
(2)联想1,4,9,16,25,……即数列,可知。
(3)这是一个分数数列,分子为偶数数列,分母为,是两个连续奇数的积,所求的通项公式是。
高中数学数列概念优秀教案教学目标:1. 掌握数列的基本概念,能够区分等差数列和等比数列。
2. 熟练运用数列的通项公式求解各种问题。
3. 培养学生的逻辑思维能力和数学推理能力。
教学重点:1. 掌握数列的定义和分类。
2. 掌握等差数列和等比数列的性质及通项公式。
3. 运用数列的知识解决实际问题。
教学难点:1. 等比数列的通项公式推导。
2. 如何运用数列的知识解决实际问题。
教学过程:一、导入(5分钟)教师引入数列的概念,并举一些实际例子来说明数列在生活中的应用,如等差数列可以表示每天存钱增加的数量,等比数列可以表示细菌繁殖的数量等。
二、概念讲解(15分钟)1. 数列的定义和分类。
2. 等差数列的性质及通项公式。
3. 等比数列的性质及通项公式。
三、例题讲解(20分钟)1. 讲解一些常见的数列题目,如求等差数列和等比数列的前n项和、求某一项的值等。
2. 引导学生运用数列的知识解决实际问题,如经济学中的收入增长问题、物理学中的运动问题等。
四、练习与讨论(15分钟)教师布置一些练习题让学生自行解答,并对学生的答案进行讨论和纠正。
同时,鼓励学生提出自己的解题思路,培养他们的数学思维能力。
五、作业布置(5分钟)布置相关作业,巩固学生的学习成果。
六、总结(5分钟)教师对本节课的重点内容进行总结,激励学生对数列的学习做进一步的思考和总结。
教学反思:通过本节课的教学,学生应该能够掌握数列的基本概念及相关性质,并能够熟练运用数列的通项公式解决各种问题。
同时,教师应该注重引导学生提高数学思维能力,培养他们的逻辑推理能力。
重点、难点是:如何解数列的解答题;通过知识的归类总结,构建数学知识的体系。
5. 学习评价设计通过课堂强化训练进行评价,通过学生的行为表现判断学习目标的达成度。
题组强化:(课件投影)基础练习,温故知新:1.各项为正数的等比数列中,a 1=3,前三项和为21,则a 3+a 4+a 5= ( ) A. 33 B. 72 C. 84 D. 189 2. 记等差数列{a n }的前n 项和为S n ,若a 1=21,S 4=20,则S 6=( ) A . 16 B. 24 C. 36 D. 48 3. 设等比数列{a n }的公比q=2,前n 项和为S n ,则24S a =( ) A. 2 B. 4 C.215 D. 217 4. 将全体正整数排成一个三角形数阵: 1 2 34 5 67 8 9 10 11 12 13 14 15 ……………据此规律,数阵中第n(n ≥3)行的从左至右的第3个数是_____6.学习活动设计 教师活动 学生活动环节一:激活思维1.记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .﹣12B .﹣10C .10D .122.已知等比数列{a n }的前n 项和为S n ,S 4=1,S 8=3,则a 9+a 10+a 11+a 12=( ) A .8 B .6 C .4D .23.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=,且a 2+a 4=,则等于( )A .4n ﹣1B .4n ﹣1C .2n ﹣1D .2n ﹣14.已知数列{an}为等差数列,Sn是它的前n项和,若S4=20,a4=8,则S8=()A.52 B.72 C.56 D.645.已知等差数列{an}的前n项和为Sn,S10=﹣10,a5=a3+4,则S30=()A.10 B.180 C.570 D.178教师活动11.已知等比数列{an}公比为q,其前n项和为Sn,若S3、S9、S6成等差数列,则q3等于()A.﹣B.1 C.﹣或1 D.﹣1或2.已知等差数列{an}的前n项和为Sn,若2a11=a9+7,则S25=()A.B.145 C.D.1758.记Sn为数列{an}的前n项和.若Sn=2an+1,则S6= .3.等比数列{an}的各项均为实数,其前n项和为Sn,已知S3=,S6=,则a8= .学生活动1学生完成练习,发现问题。
第三讲:数列【知识梳理】知识点一、数列的相关概念数列概念:按照一定顺序排列着的一列数称为数列.要点诠释:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.数列的项:数列中的每一个数叫做这个数列的项.各项依次叫做这个数列的第1项,第2项,…;排在第n位的数称为这个数列的第n项.其中数列的第1项也叫作首项.要点诠释:数列的项与项数是两个不同的概念。
数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号.类比集合中元素的三要素,数列中的项也有相应的三个性质:(1)确定性:一个数是否数列中的项是确定的;(2)可重复性:数列中的数可以重复;(3)有序性:数列中的数的排列是有次序的.数列的一般形式:数列的一般形式可以写成:,,,,,321naaaa,或简记为{}na.其中na是数列的第n项.要点诠释:{}na与na的含义完全不同,{}na表示一个数列,na表示数列的第n项.要点二、数列的分类根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列无穷数列:项数无限的数列.例如数列1,2,3,4,5,6,…是无穷数列根据数列项的大小分:递增数列:从第2项起,每一项都大于它的前一项的数列。
递减数列:从第2项起,每一项都小于它的前一项的数列。
常数数列:各项相等的数列。
摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.要点三、数列的通项公式与前n 项和 数列的通项公式如果数列{}n a 的第n 项n a与n 之间的关系可以用一个公式()n a f n =来表示,那么这个公式就叫做这个数列的通项公式.如数列:0,1,2,3,...的通项公式为1n a n =-(*n N ∈);1,1,1,1,...的通项公式为1n a =(*n N ∈);1111,,,,...234的通项公式为1n a n =(*n N ∈); 要点诠释:⑴并不是所有数列都能写出其通项公式; ⑵一个数列的通项公式有时是不唯一的。
高中数学数列单元整理教案一、教学目标:1. 掌握常用数列的定义和性质;2. 理解数列的递推关系;3. 掌握求解数列的通项公式和前n项和的方法;4. 能够应用数列解决实际问题。
二、教学重点:1. 了解等差数列和等比数列的定义和性质;2. 掌握等差数列和等比数列的通项公式;3. 能够求解数列的前n项和。
三、教学内容与方法:1. 等差数列的定义和性质:定义:如果一个数列中,任意两个相邻的数之差都相等,则这个数列称为等差数列。
通项公式:an = a1 + (n-1)d前n项和公式:Sn = n/2 * (a1 + an)2. 等比数列的定义和性质:定义:如果一个数列中,任意两个相邻的数之比都相等,则这个数列称为等比数列。
通项公式:an = a1 * r^(n-1)前n项和公式:Sn = a1 * (1 - r^n) / (1 - r)3. 教学方法:通过讲解理论知识,举例说明等差数列和等比数列的特点以及求解方法,然后让学生进行实际操作,并解答相关问题。
四、教学活动:1. 课堂讲解:介绍等差数列和等比数列的定义、性质、通项公式和前n项和公式。
2. 示例演练:以具体例子演示如何求解等差数列和等比数列的通项公式和前n项和。
3. 练习与提问:让学生进行练习,并提出问题引导学生思考、讨论和解决。
4. 课后作业:布置相关练习题,巩固学生的知识和技能。
五、教学评估:1. 平时表现:课堂积极性、作业完成情况等。
2. 考试成绩:定期进行测试,检查学生的学习情况。
3. 课外拓展:鼓励学生积极参加数学竞赛和活动,提高数学能力。
六、教学反思:1. 及时总结学生的学习情况,发现问题及时纠正;2. 鼓励学生积极参与课堂互动,培养学生的数学思维和创造力;3. 多种教学方法结合,灵活运用以提高教学效果。
以上是高中数学数列单元整理教案范本,希會对您有所帮助。
高中数学数列整章教案一、教学目标:1. 知识与技能:掌握等差数列、等比数列的概念、性质和常用公式,能够求解数列的通项公式和前n项和。
2. 过程与方法:培养学生分析问题、解决问题的能力,培养学生良好的思维习惯和解题方法。
3. 情感态度价值观:培养学生对数列的兴趣和好奇心,激发学生的数学学习兴趣。
二、教学重点与难点:重点:掌握等差数列、等比数列的性质和常用公式。
难点:能够灵活运用等差数列、等比数列的性质和公式解决问题。
三、教学内容:1. 等差数列的概念与性质2. 等差数列的通项公式和前n项和公式3. 等比数列的概念与性质4. 等比数列的通项公式和前n项和公式四、教学过程:1. 引入:通过举例引出等差数列和等比数列的概念和性质。
2. 学习与探究:分别介绍等差数列和等比数列的概念、性质和常用公式,让学生通过实例理解数列的特点。
3. 拓展与应用:通过练习加深学生对等差数列和等比数列的理解,培养学生解决实际问题的能力。
4. 总结与反思:总结本节课的内容,强调等差数列和等比数列在数学中的重要性和应用价值。
五、课堂练习:1. 已知等差数列前3项分别为2,5,8,求通项公式及第n项。
2. 某等比数列的前4项分别为1,2,4,8,求通项公式及第n项。
六、教学反馈:通过课堂练习,检查学生对等差数列和等比数列的掌握程度,及时纠正和辅导学生的错误,引导学生加强巩固。
七、作业布置:1. 完成课堂练习题目。
2. 练习册中相关练习题目。
八、教学反思:通过教学过程的反思,总结本节课的教学亮点和不足之处,及时调整教学方法,提高教学质量。
高中数学-数列总复习教案下册第五章数列【知识图解】【方法点拨】1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证.2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等.5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.第1课 数列的概念 【考点导读】1.了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数; 2.理解数列的通项公式的意义和一些基本量之间的关系; 3.能通过一些基本的转化解决数列的通项公式和前n 项和的问题。
【基础练习】1.已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =3-。
分析:由a 1=0,)(1331++∈+-=N n a a a n n n 得⋅⋅⋅⋅⋅⋅==-=,0,3,3432a a a 由此可知:数列}{n a 是周期变化的,且三个一循环,所以可得: .3220-==a a2.在数列{}n a 中,若11a =,12(1)n n a a n +=+≥,则该数列的通项n a = 2n-1 。
3.设数列{}n a 的前n 项和为n S ,*1(31)()2n n a S n N -=∈ ,且454a =,则1a =____2__.4.已知数列{}n a 的前n 项和(51)2n n n S +=-,则其通项n a = 52n -+. 【范例导析】例1.设数列{}n a 的通项公式是285n a n n =-+,则 (1)70是这个数列中的项吗?如果是,是第几项? (2)写出这个数列的前5项,并作出前5项的图象; (3)这个数列所有项中有没有最小的项?如果有,是第几项?分析:70是否是数列的项,只要通过解方程27085n n =-+就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。
解:(1)由27085n n =-+得:13n =或5n =-所以70是这个数列中的项,是第13项。
(2)这个数列的前5项是2,7,10,11,10-----;(图象略)(3)由函数2()85f x x x =-+的单调性:(,4)-∞是减区间,(4,)+∞是增区间, 所以当4n =时,n a 最小,即4a 最小。
点评:该题考察数列通项的定义,会判断数列项的归属,要注重函数与数列之间的联系,用函数的观点解决数列的问题有时非常方便。
例2.设数列{}n a 的前n 项和为n S ,点(,)()nS n n N n*∈均在函数y =3x -2的图像上,求数列{}n a 的通项公式。
分析:根据题目的条件利用n S 与n a 的关系: n a =1(1)(2)n S n S n =⎧⎨≥⎩当时当时,(要特别注意讨论n=1的情况)求出数列{}n a 的通项。
解:依题意得,32,n n nS =-即232n n n S =-。
当n ≥2时,()22(32)312(1)651n a n n n n n n n S S ⎡⎤==-----=--⎣⎦-;当n=1时,111a S == 所以*65()n a n n N =-∈。
例3.已知数列{a n }满足11=a ,)(12*1N n a a n n ∈+=+ (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足12111*44...4(1).()n n b b b b n a n N ---=+∈,证明:{}n b 是等差数列;分析:本题第1问采用构造等比数列来求通项问题,第2问依然是构造问题。
解:(I )*121(),n n a a n N +=+∈112(1),n n a a +∴+=+ {}1n a ∴+是以112a +=为首项,2为公比的等比数列。
12.n n a ∴+= 即 *21().n n a n N =-∈(II )1211144...4(1).n n b b b b n a ---=+12(...)42.n n b b b n nb +++-∴= 122[(...)],n n b b b n nb ∴+++-= ①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ②;②-①,得112(1)(1),n n n b n b nb ++-=+- 即1(1)20,n n n b nb +--+=③ ∴21(1)20.n n nb n b ++-++= ④③-④,得 2120,n n n nb nb nb ++-+= 即2120,n n n b b b ++-+=*211(),n n n n b b b b n N +++∴-=-∈{}n b ∴是等差数列。
点评:本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力。
【反馈演练】1.若数列{}n a 前8项的值各异,且8n n a a +=对任意n ∈N *都成立,则下列数列中可取遍{}n a 前8项值的数列为 (2) 。
(1){}21k a + (2){}31k a + (3){}41k a + (4){}61k a +2.设S n 是数列{}n a 的前n 项和,且S n =n 2,则{}n a 是 等差数列,但不是等比数列 。
3.设f (n )=nn n n 21312111+---++++++(n ∈N ),那么f (n +1)-f (n )等于221121+-+n n 。
4.根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足S n =90n(21n -n 2-5)(n =1,2,……,12).按此预测,在本年度内,需求量超过1.5万件的月份是 7月、8月 。
5.在数列{}n a 中,12341,23,456,78910,a a a a ==+=++=+++则10a = 505 。
6.数列{}n a 中,已知21()3n n n a n N ++-=∈, (1)写出10a ,1n a +,2n a ; (2)2793是否是数列中的项?若是,是第几项?解:(1)∵21()3n n n a n N ++-=∈,∴10a 21010110933+-==, 1n a +()()221113133n n nn +++-++==,2n a ()222421133n n n n +-+-==; (2)令2793213n n +-=,解方程得15,16n n ==-或,∵n N +∈,∴15n =, 即2793为该数列的第15项。
第2课 等差、等比数列 【考点导读】1.掌握等差、等比数列的通项公式、前n 项和公式,能运用公式解决一些简单的问题;2.理解等差、等比数列的性质,了解等差、等比数列与函数之间的关系; 3.注意函数与方程思想方法的运用。
【基础练习】1.在等差数列{a n }中,已知a 5=10,a 12=31,首项a 1= -2 ,公差d = 3 。
2.一个等比数列的第3项与第4项分别是12与18,则它的第1项是163,第2项是 8 。
3.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=105。
4.公差不为0的等差数列{a n }中,a 2,a 3,a 6依次成等比数列,则公比等于 3 。
【范例导析】例1.(1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有 13 项。
(2)设数列{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 2 。
解:(1)答案:13 法1:设这个数列有n 项∵⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=-='⋅+=-dn n n a S d nd a S S S d a S n n n 2)1(6332233113313∴⎪⎪⎩⎪⎪⎨⎧=-+=-+=+3902)1(146)2(3334)(3111d n n n a n d a d a ∴n =13法2:设这个数列有n 项∵1231234,146n n n a a a a a a --++=++=∴121321()()()3()34146180n n n n a a a a a a a a --+++++=+=+= ∴160n a a += 又1()3902n n a a += ∴n =13 (2)答案:2 因为前三项和为12,∴a 1+a 2+a 3=12,∴a 2=33S =4 又a 1·a 2·a 3=48, ∵a 2=4,∴a 1·a 3=12,a 1+a 3=8, 把a 1,a 3作为方程的两根且a 1<a 3,∴x 2-8x +12=0,x 1=6,x 2=2,∴a 1=2,a 3=6,∴选B.点评:本题考查了等差数列的通项公式及前n 项和公式的运用和学生分析问题、解决问题的能力。
例2.(1)已知数列))}1({log *2N n a n ∈-为等差数列,且.9,331==a a (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)证明.111112312<-+---+-+-+nn a a a a a a分析:(1)借助.9,331==a a 通过等差数列的定义求出数列))}1({log *2N n a n ∈-的公差,再求出数列}{n a 的通项公式,(2)求和还是要先求出数列}1{1nn a a -+的通项公式,再利用通项公式进行求和。
解:(1)设等差数列)}1({log 2-n a 的公差为d ,由,8log 2log )2(log 2:9,322231+=+==d a a 得 即d =1。
所以,1)1(1)1(log 2n n a n =⨯-+=-即.12+=n n a (II )证明:因为nn n n n a a 21221111=-=-++, 所以n n n a a a a a a 2121212111132112312++++=-+---+-+-+L.1211211212121<-=-⨯-=n n 点评:该题通过求通项公式,最终通过通项公式解释复杂的不等问题,属于综合性的题目,解题过程中注意观察规律。
例3.已知数列{}n a 的首项121a a =+(a 是常数,且1a ≠-),24221+-+=-n n a a n n (2n ≥),数列{}n b 的首项1b a =,2n a b n n +=(2n ≥)。