含混合阳离子的Sn基极性金属间化合物的研究进展
- 格式:pdf
- 大小:275.43 KB
- 文档页数:4
一、选择题1.(0分)[ID:139821]下列叙述中,不正确的是()A.微粒半径由小到大顺序是H+<Li+<H-B.杂化轨道只用于形成σ键或用于容纳未参与成键的孤对电子C.[Cu(NH3)4]2+中H提供接受孤对电子的空轨道D.分子中中心原子通过sp3杂化轨道成键时,该分子不一定为四面体结构2.(0分)[ID:139816]下列说法正确的是A.NaH与KCl均含离子键B.NH4Cl含N-H共价键,是共价化合物C.HCl在水中可电离出H+和Cl-,是离子化合物D.工业合成氨反应中有非极性键的断裂和生成3.(0分)[ID:139811]C60分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯,如图所示,在C60分子中每个碳原子均与周围相邻的其他3个碳原子相连,60个碳原子组成若干个正六边形和正五边形,碳均为+4价。
则下列有关说法中不正确的是A.C60的熔点比石墨的熔点低B.C60分子中碳原子的杂化方式与甲烷中碳原子的不同C.C60分子中含有80个σ键、30个π键D.影响足球烯的熔沸点的是分子间作用力4.(0分)[ID:139893]X、Y、Z是原子序数依次增大的短周期元素,可“组合”成一种具有高效催化性能的超分子,其结构如图(注:实线代表共价键,其他Y原子之间的重复单元中的W、X未展开标注),W、X、Z分别位于不同周期,Z是同周期中金属性最强的元素。
下列说法不正确的是A.Y位于第二周期第VIA 族B.XY2形成的晶体中一个微粒周围紧邻的微粒数为12个C.X单质存在能导电的混合型晶体D.Y与Z可组成阴阳离子数之比为1:1的离子晶体5.(0分)[ID:139888]下列关于晶体的说法正确的是A.能导电的固体一定是金属晶体B .判断某固体是否是晶体的直接方法是X-射线衍射实验C .分子晶体中分子间作用力越强,分子越稳定D .石墨晶体中没有大π键6.(0分)[ID :139886]如图为冰晶体的结构模型,大球代表O ,小球代表H 。
2015年3月第23卷第3期 工业催化INDUSTRIALCATALYSIS Mar.2015Vol.23 No.3综述与展望收稿日期:2014-09-30;修回日期:2014-11-25 基金项目:内蒙古自治区高等学校科学研究项目(NJZY11034);内蒙古自治区重大基础研究开放课题(20130902)作者简介:郭晓燕,1989年生,在读硕士研究生,研究方向为多相催化。
通讯联系人:徐爱菊,教授,硕士研究生导师。
Ullmann偶联反应催化剂研究进展郭晓燕,徐爱菊 ,王 奖,贾美林,照日格图(内蒙古师范大学化学与环境科学学院,内蒙古自治区绿色催化重点实验室,内蒙古呼和浩特010022)摘 要:Ullmann偶联反应是典型的碳碳键偶联反应,反应合成的联苯类化合物是重要有机化工原料,应用前景广阔。
初期采用均相Pd催化剂,不能重复利用,工业化生产受到限制。
改用多相Pd催化剂催化反应,需要添加剂导致产物分离困难。
多相Au催化剂适用性受到限制,反应底物局限于碘代芳烃,双金属催化剂在催化活性与选择性方面均有较好的优势。
综述Ullmann-type偶联反应中均相Pd催化体系、多相Pd催化体系、多相Au催化体系以及多相双金属催化体系催化剂的研究进展,阐述反应机理,并对Ullmann偶联反应研究进行展望。
关键词:催化化学;Ullmann偶联反应;Pd催化剂;Au催化剂;双金属催化剂doi:10.3969/j.issn.1008 1143.2015.03.002中图分类号:O643.36;TQ426.8 文献标识码:A 文章编号:1008 1143(2015)03 0172 06ResearchadvancesinthecatalystsforUllmannCouplingReactionsGuoXiaoyan,XuAiju,WangJiang,JiaMeilin,BaoZhaorigetu(CollegeofChemistryandEnvironmentalScience,InnerMongoliaNormalUniversity,InnerMongoliaKeyLaboratoryofGreenCatalysis,Hohhot010022,InnerMongolia,China)Abstract:Ullmanncouplingreaction,asanefficientmethodofC—Cbondcoupling,isusedtosynthesizethebiaryls.Beingcrucialorganicchemicalrawmaterials,thesecompoundshavebroadapplicationpros pects.Intheearlydays,thehomogeneousPdcatalystscouldnotbeusedrepeatedlyandtheircommercialapplicationwasrestricted.Heterogeneouspalladiumcatalystscatalyzedthereactionresultindifficultsepa rationoftheproductsbecauseoftheadditionofadditives.Theapplicabilityofheterogeneousgoldcatalystsisrestrictedandthereactionsubstratesareconfinedtoaryliodides.Nevertheless,bimetalliccatalystshaveadvantagesintermsofthecatalyticactivityandselectivity.TheresearchprogressincatalystsystemsforUllmanncouplingreactions,suchashomogeneouspalladium,heterogeneouspalladium,heterogeneousgoldandbimetalliccatalystsandpossiblecatalyticpathwayswerereviewed.TheprospectsofUllmanncouplingreactionsareoutlined.Keywords:catalyticchemistry;Ullmanncouplingreaction;palladiumcatalyst;goldcatalyst;bimetalliccatalystdoi:10.3969/j.issn.1008 1143.2015.03.002CLCnumber:O643.36;TQ426.8 Documentcode:A ArticleID:1008 1143(2015)03 0172 06 1901年,UllmannF等[1]发现两分子卤代芳烃发生碳碳键偶联生成联苯类化合物,之后该反应被Copyright ©博看网. All Rights Reserved. 2015年第3期 郭晓燕等:Ullmann偶联反应催化剂研究进展 173 命名为经典Ullmann偶联反应。
科学研究创Nb3Sn金属间化合物材料的制备技术及其研究发展现状和发展趋势江涛(西安石油大学材料科学与工程学院陕西西安710065)摘 要:N b3Sn金属间化合物材料具有很多优秀的性能,如较高的熔点、较高的密度、较高的力学性能,以及良好的耐磨损性能、良好的抗高温氧化性能、良好的耐腐蚀性能等。
此外,Nb3Sn金属间化合物材料还是具有超导性能的超导材料。
本文主要叙述了Nb3Sn金属间化合物材料的研究发展现状,并对Nb3Sn金属间化合物材料的未来研究发展趋势和发展方向进行分析和预测。
关键词:N b3Sn金属间化合物制备技术研究发展现状发展趋势中图分类号:T G146.15文献标识码:A文章编号:1674-098X(2022)09(c)-0005-07 Preparation Technology, Research Status and DevelopmentTrend of Nb3Sn Intermetallic Compound MaterialsJIANG Tao(School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, Shaanxi Province,710065 China)Abstract:Nb3Sn intermetallic compound materials exhibit many excellent properties, such as high melting point, high density, high mechanical property and excellent wear resistance, excellent high temperature oxidation resistanceand excellent corrosion resistance. In addition, Nb3Sn intermetallic compounds are superconducting materials withsuperconducting properties. This paper mainly describes the research and development status of Nb3Sn intermetalliccompound materials, and analyzes and forecasts the future research and development trend of Nb3Sn intermetallic compound materials.Key Words: Nb3Sn intermetallic compounds; Preparation technology; Research and development status; Develop-ment trendNb3Sn金属间化合物材料具有很多优秀的性能,如较高的力学性能和良好的耐磨损性能、良好的抗高温氧化性能和良好的耐腐蚀性能及良好的超导性能等。
2023年宜荆荆随恩高三12月联考高三化学试卷试卷满分:100分注意事项:1. 答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答;用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
可能用到的相对原子质量:H-1 B-11 O-16 F-19 Na-23 S-32 Xe-131.3 Pd -106.5一、选择题:本题共15小题,每小题3分,共45分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. “化学,让生活更美好”,下列不涉及化学变化的是A.涂抹肥皂水缓解蜜蜂蛰伤痛B.太阳能发电让能源更清洁C.利用生石灰等制作松花皮蛋D.豆科植物根瘤菌自然固氮2.下列有关化学用语表示正确的是S O的VSEPR模型:A.2-3B. (HF)3的链状结构:C. H2O2的空间填充模型:D. CaCl2的电子式:3.阿莫西林的结构简式如图所示,下列关于阿莫西林的说法错误的是A.存在手性异构体B. S原子核外电子有9种空间运动状态C.可形成分子内氢键和分子间氢键D.1mol 该物质最多可与2molNaOH 反应4.根据下列装 置和物质,能达到相应实验目的的是A.实验室随开随用制Cl 2B.制备溴苯并验证有HBr 生成C.验证浓硫酸的吸水性D.制Fe(OH)3胶体5.一水硫酸四氨 合铜【【Cu(NH 3)4】SO 4·H 2O 】是一种易溶于水的晶体,可作高效安全的广谱杀菌剂,实验室制备流程如图:下列说法错误的是A.[Cu(NH 3)4]SO 4·H 2O 含化学键有:离子键、共价键、配位键、氢键B.过程①的离子反应方程式表示为:2Cu+O 2+4H +=2Cu 2++2H 2OC.过程③的现象是:难溶物溶解,得到深蓝色的透明溶液D.过程④中加入的“溶剂X ”可以是乙醇,玻璃棒摩擦的目的是加快结晶速率6. 设N A 为阿伏加德罗常数的值。
山东科学SHANDONGSCIENCE第37卷第1期2024年2月出版Vol.37No.1Feb.2024收稿日期:2023 ̄04 ̄14作者简介:潘翔宇(1998 )ꎬ男ꎬ硕士研究生ꎬ研究方向为功能化色谱填料的研究ꎮE ̄mail:1342478509@qq.com∗通信作者ꎬ靳钊ꎬ男ꎬ高级工程师ꎬ研究方向为功能材料的制备ꎮE ̄mail:jinzhao@qust.edu.cn乙二胺 ̄N ̄丙基改性硅胶的可控键合制备及其在银杏酸脱除中的应用研究潘翔宇ꎬ靳钊∗ꎬ关彤ꎬ陈贝怡(青岛科技大学高分子科学与工程学院ꎬ山东青岛266045)摘要:优化了乙二胺 ̄N ̄丙基键合硅胶(PSA)键合量可控的制备工艺ꎬ考察了PSA制备的批次重复性ꎬ并进行PSA制备的中试放大实验ꎮ采用红外光谱㊁元素分析及电位滴定法对所制备的PSA进行性能评价ꎬ结果表明:在3460cm-1处出现了N H伸缩振动峰ꎬ在2960cm-1和2860cm-1处出现了 CH的不对称和对称伸缩振动峰ꎬ708cm-1处出现了 NH2的变形振动吸收峰ꎬ表明乙二胺 ̄N ̄丙基成功接枝到硅胶表面ꎻ随着制备体系中硅烷化试剂比例的增加ꎬ碳㊁氮和氢元素的含量以及电位滴定法得到的离子交换容量均呈现上升趋势ꎬ说明乙二胺 ̄N ̄丙基官能团的键合量逐渐增加ꎮ将制备的PSA填充成分离纯化小柱ꎬ考察了不同键合量PSA对银杏叶提取物中银杏酸的脱除效率ꎬ结果表明:PSA对银杏酸有强吸附能力ꎬ可应用于银杏叶提取物中银杏酸的脱除ꎬ2#㊁3#㊁4#和5#PSA分离纯化柱的最大上样体积分别为21㊁22㊁23㊁24mLꎬ且脱除效率随乙二胺 ̄N ̄丙基键合量的增加而升高ꎮ关键词:乙二胺 ̄N ̄丙基改性硅胶ꎻ键合量ꎻ银杏酸脱除中图分类号:O658㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1002 ̄4026(2024)01 ̄0051 ̄08开放科学(资源服务)标志码(OSID):Controllablebondingpreparationofethylenediamine ̄N ̄propylmodifiedsilicagelanditsapplicationinginkgolicacidremovalPANXiangyuꎬJINZhao∗ꎬGUANTongꎬCHENBeiyi(SchoolofPolymerScienceandEngineeringꎬQingdaoUniversityofScienceandTechnologyꎬQingdao266045ꎬChina)AbstractʒInthispaperꎬthepreparationprocessofN ̄propylethylenediaminebondedsilicagel(PSA)withcontrollablebondingamountwasoptimizedꎻthebatchrepeatabilityofPSApreparationwasexaminedꎻandthepilotscale ̄upexperimentofPSApreparationwasconducted.ThepropertiesofthePSAwereinvestigatedbyinfraredspectroscopyꎬelementalanalysisꎬandpotentiometrictitration.TheresultsshowedthatN Hstretchingvibrationpeaksappearedat3460cm-1ꎬasymmetricandsymmetricstretchingvibrationpeaksof CHappearedat2960cm-1and2860cm-1ꎬanddeformationvibrationabsorptionpeaksof NH2appearedat708cm-1ꎬindicatingthatN ̄propylethylenediaminewassuccessfullygraftedontothesurfaceofsilicagel.Furthermoreꎬwiththeincreasingproportionofsilanereagentinthepreparationsystemꎬthecontentofcarbonꎬnitrogenꎬandhydrogenelementsandtheionexchangecapacityobtainedbypotentiometrictitrationshowedanupwardtrendꎬindicatingthatthebondingamountofethylenediamine ̄N ̄propylfunctionalgroupgraduallyincreased.MoreoverꎬthepreparedPSApackingcomponentwasseparatedfromthepurificationcolumnꎬandtheremovalefficiencyofginkgolicacidfromtheextractofginkgobilobaleavesusingPSAwithdifferentbondingamountswasinvestigated.TheresultsshowedthatPSAhadastrongadsorptioncapacityforginkgolicacidandcouldbeusedtoremoveginkgolicacidfromtheextractofginkgobilobaleavesꎬthemaximumsampleloadingvolumesforPSAseparationandpurificationcolumns2#ꎬ3#ꎬ4#ꎬand5#are21ꎬ22ꎬ23ꎬ24mLꎬrespectively.Inadditionꎬtheremovalefficiencywasfoundtoincreasewiththeincreasingamountofethylenediamine ̄N ̄propylbonding.Keywordsʒethylenediamine ̄N ̄propylmodifiedsilicagelꎻbondingquantityꎻginkgoacidremoval㊀㊀胺类硅胶材料由于强吸附性能已经成为人们研究的热门课题[1 ̄4]ꎬ乙二胺 ̄N ̄丙基键合硅胶(PSA)是目前被广泛应用的一种胺基键合硅胶ꎬ因PSA具有两个胺基且存在仲胺ꎬ通过弱阴离子交换和正相保留作用ꎬ其具有较大的离子交换容量[5]ꎮ李来明等[6]采用非均相氨化法合成硅胶微球ꎬ制备了氨丙基和乙二胺 ̄N ̄丙基两种胺基键合硅胶并评价了其对甲苯磺酸吸附的吸附量ꎮAguado等[7]制备了氨丙基㊁乙二胺 ̄N ̄丙基㊁二乙烯三胺基丙基功能化介孔硅胶SBA ̄15材料ꎬ可用于污水中重金属Cu2+等重金属离子的吸附ꎮ王军等[8]以PSA和十八烷基键合硅胶为净化材料去除样品中的干扰物质ꎬ建立了一种QuEChERS-气相色谱-质谱法检测酥油中的8种有机磷农药残留ꎮ蒋明明等[9]建立了一种基于PSA和多壁碳纳米管通过超高效液相色谱-质谱法测定普洱茶中3种手性杀菌剂农药残留的分析方法ꎮMa等[10]通过PSA去除番茄㊁甜椒和甜食中的有机酸㊁一些糖类和极性色素ꎮ然而ꎬ目前同一厂家的商品化PSA离子交换容量通常为固定值ꎬ针对不同有害物质的脱除需要不同离子交换容量的PSA来实现ꎬ对PSA的应用效果及应用领域产生了一定的限制作用ꎮ目前PSA生产处于实验室阶段ꎬ中试批量生产PSA难度大ꎬ无法满足PSA的实际应用需求ꎮ因此ꎬ开发乙二胺 ̄N ̄丙基键合量可控的PSA制备工艺ꎬ并进行中试放大实验生产批次稳定性高㊁离子交换容量可选的PSA具有重要的应用价值ꎮ银杏叶提取物中含有银杏黄酮和银杏内酯等药用活性成分[11]ꎬ但其中也含有具有较强毒副作用[12 ̄15]的银杏酸[16 ̄17]ꎮ«中国药典»[18]中规定银杏叶提取物中银杏酸的质量分数不得超过5mg/kgꎬ其中白果新酸为银杏酸中的主要成分ꎬ白果新酸具有抗氧化㊁抗血小板聚集及改善记忆㊁提高机体免疫功能等药理作用ꎬ可用于防治农业病虫害㊁抑制痤疮致病菌等ꎮ目前通常使用大孔树脂脱除银杏酸ꎬ辛云海[19]用D918阴离子交换树脂对银杏提取物中银杏酸进行脱除ꎬ但大孔树脂存在处理步骤繁琐㊁成本较高且会出现破碎的问题ꎮ硅胶作为一种稳定的无机材料具有高机械稳定性ꎬ乙二胺 ̄N ̄丙基官能团具有双氨基结构ꎬ与银杏酸间可产生强吸附作用力ꎬ因此PSA在银杏酸脱除中具有理想的应用前景ꎮ本文探讨了PSA制备工艺中乙二胺 ̄N ̄丙基硅烷化试剂和三甲基氯硅烷两个关键参数的用量与PSA键合量的关系ꎬ实现PSA离子交换容量可调控的制备工艺要求ꎬ并对优化的制备工艺进行中试放大实验ꎬ通过离子交换容量㊁红外光谱和元素分析结果对制备重复性进行表征ꎬ保证制备工艺的批次稳定性ꎮ将制备的PSA填充成分离纯化小柱ꎬ应用于银杏叶提取物中有害物质银杏酸的脱除ꎮ采用«中国药典»中规定的高效液相色谱法对银杏酸含量进行定量分析ꎬ考察了不同离子交换容量的PSA对银杏酸的脱除效率ꎬ评价PSA在银杏酸脱除方面的应用前景ꎮ1㊀实验部分1.1㊀试剂与仪器硅胶(230~400目)ꎬ青岛美高集团有限公司ꎻ乙二胺 ̄N ̄丙基三甲氧基硅烷(纯度ȡ95%)ꎬ上海吉至生化科技有限公司ꎻ三甲基氯硅烷(纯度ȡ99.99%)ꎬ上海阿拉丁生化科技股份有限公司ꎻ白果新酸(标准品ꎬ纯度ȡ98%)ꎬ四川维克奇生物科技有限公司ꎻ浓盐酸㊁甲苯㊁4A型分子筛㊁二氯甲烷㊁三氟乙酸㊁磷酸㊁乙醇和甲醇ꎬARꎬ国药集团化学试剂有限公司ꎻ甲醇ꎬ色谱纯ꎬ德国默克股份公司ꎻ乙腈ꎬ色谱纯ꎬ天津康科德科技有限公司ꎮWaters2695高效液相色谱仪配置Waters2487双波长检测器ꎬ美国Waters公司ꎻVarioELⅢ型元素分析仪ꎬ德国Elementar公司ꎻNicolet6700FTIRSpectormeter型傅里叶变换红外分析光谱仪ꎬ美国Thermo公司ꎻR ̄1001VN型旋转蒸发仪ꎬ郑州长城科工贸有限公司ꎻ高精度电位滴定仪ꎬ北京海光仪器有限公司ꎻ马弗炉ꎬ济南精锐分析仪器有限公司ꎻ反应釜ꎬ南京科尔仪器设备有限公司ꎻ电热鼓风烘箱ꎬ上海精宏实验设备有限公司ꎻ真空干燥箱ꎬ上海一恒科学仪器有限公司ꎮ1.2㊀PSA的制备1.2.1㊀PSA制备工艺优化将硅胶置于450ħ马弗炉中活化6hꎬ得到活化硅胶ꎮ取活化硅胶置于质量分数20%盐酸中ꎬ于25ħ机械搅拌10hꎬ待反应结束后ꎬ用超纯水多次洗涤至中性ꎬ于65ħ鼓风烘箱干燥3hꎬ65ħ真空烘箱干燥10hꎬ得酸化硅胶ꎮ称取20g酸化硅胶ꎬ置于150mL三口圆底烧瓶中ꎬ加入100mL除水甲苯ꎬ分别加入不同体积乙二胺 ̄N ̄丙基三甲氧基硅烷(3.4㊁4.1㊁4.8㊁5.5㊁6.8㊁8.2mLꎬPSA编号分别为1#㊁2#㊁3#㊁4#㊁5#和6#)ꎬ通N2作为保护气ꎬ机械搅拌下于50ħ冷凝回流反应24hꎬ待反应完成后ꎬ冷却过滤ꎬ依次采用50mL甲苯㊁3次50mL甲醇洗涤ꎬ于80ħ鼓风烘箱预烘ꎬ80ħ真空烘箱干燥过夜得不同键合量的PSAꎬ其反应式如图1所示ꎮ图1㊀乙二胺 ̄N ̄丙基键合硅胶(PSA)的键合反应式Fig.1㊀BondingprocessofN ̄propylethylenediaminesilicagel(PSA)1.2.2㊀PSA中试放大实验中试放大实验在10L带机械搅拌控温反应釜中进行ꎬ加入2kg酸化硅胶㊁550mL乙二胺 ̄N ̄丙基三甲氧基硅烷和7L除水甲苯ꎬ通N2作为保护气ꎬ机械搅拌下于50ħ冷凝回流反应24hꎬ待反应完成后ꎬ冷却过滤ꎬ依次采用甲苯和甲醇进行洗涤ꎬ于80ħ鼓风烘箱预烘ꎬ80ħ真空烘箱干燥过夜得中试键合PSAꎮ1.3㊀PSA离子交换容量的测定PSA上键合的乙二胺 ̄N ̄丙基官能团上的两个胺基可以与H+发生酸碱中和反应ꎬ因此通过电位滴定仪和pH电极可以测定PSA的离子交换容量:称取0.2gPSA于锥形瓶中ꎬ加入120mL浓度为0.01mol/L的HCl水溶液ꎬ超声10minꎬ静置1~2hꎬ使填料上的胺基和溶液中的H+充分反应ꎬ用移液管移取上清液50mL于锥形瓶中ꎬ确保没过pH电极ꎬ加入1~2滴酚酞指示剂ꎬ用0.01mol/LNaOH标准溶液滴定剩余的HClꎬ滴定终点时ꎬ记录消耗NaOH水溶液的体积ꎬ同时做空白ꎬ通过式(1)计算ꎬ可以得到离子交换容量(IEC)ꎬ平行3次取平均值ꎮIEC=c1V1-c2V2/V3/V1()[]mꎬ(1)式中ꎬc1为HCl溶液浓度ꎬmol/LꎻV1为HCl溶液体积ꎬmLꎻc2为NaOH溶液浓度ꎬmol/LꎻV2为NaOH溶液体积ꎬmLꎻV3为移取上清液体积ꎬmLꎻm为PSA质量ꎬgꎮ1.4㊀PSA脱除银杏酸1.4.1㊀银杏酸含量检测方法参考中国药典 银杏叶提取物 中银杏酸高效液相色谱检测(HPLC)方法ꎬ色谱柱为C18柱(4.6mmˑ150mmꎬ5μm)ꎬ流动相(A)为体积分数0.1%三氟乙酸的乙腈ꎬ流动相(B)为体积分数0.1%三氟乙酸的水ꎮ紫外检测波长为310nmꎬ流速为1.0mL/minꎬ柱温为35ħꎬ进样量为10μLꎮ流动相梯度:0~30minꎬ流动相A从75%升到90%ꎬ保持5minꎬ35~36minꎬ流动相A从90%降至75%ꎬ保持9minꎮ以白果新酸为对照品ꎬ采用外标法进行定量ꎮ称取10mg白果新酸标准品于10mL容量瓶中ꎬ甲醇溶解定容ꎬ配制成质量浓度1000μg/mL的母液ꎮ用甲醇将母液稀释成质量浓度分别为0.1㊁0.25㊁0.5㊁1㊁5㊁10㊁25μg/mL的标准工作液ꎬ采用HPLC进行检测绘制标准曲线ꎮ1.4.2㊀银杏叶提取物的制备取30g银杏叶粉末于500mL蓝盖瓶中ꎬ加入300mL的乙醇ꎬ摇匀ꎬ超声1hꎬ抽滤并收集滤液ꎻ剩余滤渣再用300mL的乙醇超声提取1hꎬ抽滤后合并滤液得到银杏叶提取液ꎮ取50mL银杏液提取液进行旋转蒸发ꎬ将溶剂蒸干后得到0.33g银杏叶提取物ꎮ1.4.3㊀分离纯化柱的装填在低压分离纯化柱管底部放入筛板ꎬ将柱管连接至真空抽滤瓶ꎮ取5gPSA填料用乙醇-水(体积比4ʒ1)25mL分散ꎬ超声1~2min后用移液枪沿着管壁旋转加入到吸附柱中ꎬ抽干溶剂后将柱管顶部放入筛板压实ꎬ拧紧顶部盖子后完成装填ꎮ2㊀结果与讨论2.1㊀PSA的制备PSA硅胶上乙二胺 ̄N ̄丙基的键合量与其离子交换容量成正比关系ꎬ因此本文通过检测离子交换容量来反映乙二胺 ̄N ̄丙基键合量的变化趋势ꎮ图2㊀硅烷化试剂用量与离子交换容量关系图Fig.2㊀Relationshipbetweenvolumeofsilanereagentandionexchangecapacity2.1.1㊀PSA制备工艺优化以20g酸化硅胶为原料ꎬ进行PSA键合反应小试制备工艺优化ꎮ首先优化反应体系中乙二胺 ̄N ̄丙基三甲氧基硅烷用量对离子交换容量的影响ꎮ构建6种键合反应体系ꎬ分别得到1#~6#键合PSAꎬ每种反应体系重复3次考察键合反应的批次重复性ꎬ1#~6#键合PSA的离子交换容量相对标准偏差值范围为0.7%~5.9%ꎬ批次重复性良好ꎮ以PSA离子交换容量平均值为纵坐标㊁乙二胺 ̄N ̄丙基三甲氧基硅烷体积为横坐标作图(图2)ꎬ考察PSA键合量与硅烷化试剂用量间的关系ꎮ结果表明:当体系中乙二胺 ̄N ̄丙基三甲氧基硅烷少于5.5mL时ꎬ离子交换容量随硅烷化试剂用量增加而快速升高ꎬ而体系中乙二胺 ̄N ̄丙基三甲氧基硅烷体积达到5.5mL之后ꎬ离子交换容量增加趋势变平缓ꎮ原因是当硅胶表面硅羟基趋于键合饱和时ꎬ由于反应活性位点减少导致继续增加硅烷化试剂的量其键合量增加不明显ꎮ同时ꎬ体系中过剩的未反应硅烷化试剂可发生自交联反应ꎬ造成硅胶孔结构的堵塞ꎬ硅胶表面积降低ꎮ因此ꎬ对于PSA小试制备工艺体系ꎬ选择加入的乙二胺 ̄N ̄丙基三甲氧基硅烷体积为5.5mLꎮ2.1.2㊀PSA的中试放大实验为了验证PSA制备小试优化的工艺可以成功应用于中试放大实验ꎬ按照小试工艺优化的物料比ꎬ酸化硅胶和乙二胺 ̄N ̄丙基三甲氧基硅烷的量分别放大100倍ꎬ即2kg酸化硅胶和550mL乙二胺 ̄N ̄丙基三甲氧基硅烷ꎬ溶剂除水甲苯的量放大70倍ꎬ即7Lꎬ在10L带机械搅拌机控温反应釜中进行中试放大实验ꎮ若完全按照小试优化工艺全部放大100倍ꎬ体积超出10L反应釜的承载范围ꎬ因此对溶剂除水甲苯的放大倍数较少为70倍ꎬ经实验表明物料的分散和搅拌均满足实验要求ꎮ键合反应的键合温度㊁键合时间以及清洗步骤均参照小试工艺进行ꎮ键合反应重复3次ꎬ采用PSA的离子交换容量重复性评价中试放大实验的批次稳定性ꎬ结果列于表1ꎬ结果表明:采用最佳工艺中试放大实验离子交换容量重复性良好ꎬ三批次重复性相对标准偏差仅为0.7%ꎮ中试放大实验的离子交换容量与小试相比略有提升ꎬ原因可能为中试放大实验中溶剂除水甲苯的用量相对减少30%ꎬ因此单位溶剂中硅烷化试剂的浓度提升ꎬ从而导致键合量略有提升ꎮ与商品化PSA相比ꎬ最佳工艺中试放大实验制备的PSA可达到甚至优于商品化PSA的离子交换容量ꎬ说明中试放大合成工艺的可行性ꎮ表1㊀最佳工艺中试放大三批次PSA离子交换容量及其相对标准偏差Table1㊀Theionexchangecapacityanditsrelativestandarddeviationof批次12.310.7批次22.29批次32.34商品化1.942.2㊀PSA的表征2.2.1㊀红外光谱对裸硅胶和PSA进行傅里叶红外光谱(FTIR)表征ꎬ图3为两者的IR谱图ꎮ裸硅胶谱图中1100cm-1处的吸收峰为硅胶上Si O键的弯曲振动峰ꎬ3460cm-1和1640cm-1处的吸收峰分别为硅胶表面残留硅羟基O H键的伸缩振动和弯曲振动峰ꎮ与裸硅胶相比ꎬPSA谱图中在3460cm-1处出现了更为明显N H键的伸缩振动峰[20]ꎬ在708cm-1处出现了 NH2的变形振动吸收峰ꎬ在2960cm-1和2860cm-1处出现了 CH的不对称和对称伸缩振动峰ꎬ表明乙二胺 ̄N ̄丙基基团被成功键合到硅胶上ꎮ图3㊀裸硅胶和PSA傅里叶红外光谱图Fig.3㊀InfraredspectrumofbaresilicagelandPSA2.2.2㊀元素分析将小试工艺优化构建的6种反应体系所得PSA进行元素分析测试ꎮ如图4所示ꎬPSA的碳㊁氮和氢元素质量分数随着键合反应体系中乙二胺 ̄N ̄丙基三甲氧基硅烷用量的增加而快速上升ꎬ当乙二胺 ̄N ̄丙基三甲氧基硅烷用量达到小试最优工艺5.5mL时ꎬ所得PSA的碳㊁氮和氢元素质量分数分别为6.39%㊁2.86%和2.03%ꎬ然而硅烷化试剂用量继续增加时ꎬ碳㊁氮和氢元素质量分数增加趋势变平缓ꎮ结果表明:PSA的碳㊁氮和氢元素质量分数与硅胶上键合的乙二胺 ̄N ̄丙基的量成正比ꎬ其变化趋势与离子交换容量的变化趋势相符合ꎬ因此小试制备工艺中乙二胺 ̄N ̄丙基三甲氧基硅烷用量为5.5mL时ꎬ键合量开始趋于饱和ꎮ图4㊀小试制备工艺优化中6种PSA元素分析结果Fig.4㊀Analysisresultsof6kindsPSAelementsintheoptimizationofthesmall ̄scalepreparationprocess㊀㊀表2为最佳工艺中试放大实验所得3批次PSA的元素分析结果ꎬ与小试最佳工艺相比略有微ꎬ与离子交换容量的结果相符ꎮ与商品化PSA的元素分析结果相比ꎬ碳㊁氮和氢元素含量可达到甚至优于商品化PSAꎮ表2㊀最佳工艺中试放大实验及商品化PSA元素分析Table2㊀PSA批次22.796.371.71批次33.317.462.03安捷伦2.736.471.772.3㊀PSA对银杏酸的吸附研究将中试放大制备的PSA填装成分离纯化小柱ꎬ用于银杏叶提取物中银杏酸的脱除ꎮ在真空作用下使银杏叶提取物通过小柱ꎬ收集净化液进行高效液相色谱分析ꎬ定量检测净化液中白果新酸含量ꎮ2.3.1㊀白果新酸标准曲线的建立将质量浓度分别为0.10㊁0.25㊁0.50㊁1.00㊁5.00㊁10.00㊁25.00μg/mL的白果新酸标准工作液进行高效液相色谱分析ꎬ绘制标准工作曲线ꎮ所得标准工作曲线的线性回归方程为y=6636.1xꎬ相关系数r2=0.9933ꎮ图5为白果新酸标准品液相色谱图(质量浓度为25μg/mL)ꎮ图5㊀白果新酸标准品高效液相色谱图Fig.5㊀Highperformanceliquidchromatographyofginkgonewacidstandard图6㊀银杏叶提取物上样体积与净化液中白果新酸浓度关系图Fig.6㊀Relationshipbetweensampleloadingvolumeofginkgobilobaextractandconcentrationofginkgobilobanewacidinpurificationsolution2.3.2㊀PSA离子交换容量对银杏酸脱除效率的影响PSA键合的乙二胺 ̄N ̄丙基官能团含有一个伯胺基团和一个仲胺基团ꎬ其与银杏酸含有的羧基以及酚羟基之间存在酸碱作用力ꎬ因此PSA对银杏酸具有强吸附作用ꎮ当银杏叶提取物通过PSA分离纯化柱时ꎬ银杏酸被吸附到填料上ꎬ从而达到银杏酸脱除的目的ꎮ为了考察PSA离子交换容量对银杏酸脱除效率的影响ꎬ选取2#㊁3#㊁4#㊁5#PSA进行脱酸实验ꎮ每支PSA分离纯化柱总上样体积为25mL银杏叶提取物ꎬ前10mL上样体积间隔为2mLꎬ之后上样体积间隔改为1mLꎬ收集净化液定量分析白果新酸含量ꎮ银杏叶提取物的上样体积与净化液中白果新酸含量的关系图如图6所示:(1)2#㊁3#㊁4#和5#PSA分离纯化柱对白果新酸的突破体积(脱除效率为100%)ꎬ分别为15㊁16㊁17㊁18mLꎬ结果表明随着离子交换容量的增加ꎬ突破体积增大ꎬ当上样体积大于18mL时ꎬ所有PSA柱的净化液中均检出白果新酸ꎮ(2)«中国药典»中规定银杏叶提取物中银杏酸质量分数不得超过5mg/kgꎬ因此本文将净化液中白果新酸含量不高于5mg/kg的上样体积作为最大上样体积ꎬ2#㊁3#㊁4#和5#PSA分离纯化柱的最大上样体积分别为21㊁22㊁23和24mLꎮ因此ꎬPSA离子交换容量越高ꎬ对银杏酸的吸附效率越高ꎬPSA的离子交换容量与银杏酸脱除效率成正相关关系ꎮ图7为4#键合PSA分离净化柱上样体积分别为17mL和23mL所得净化液以及原始银杏叶提取物的HPLC色谱图ꎮ原始银杏叶提取物中白果新酸质量分数为6682mg/kgꎬ4#PSA分离净化柱上样体积分别为17mL和23mL所得净化液中白果新酸质量分数分别为0和4.1mg/kgꎮ图7㊀4#键合PSA分离净化柱上样体积分别为17mL和23mL所得净化液以及原始银杏叶提取物的HPLC色谱图Fig.7㊀HPLCChromatogramofpurifiedsolutionandoriginalGinkgoBilobaextractwithsamplevolumesof17mLand23mLon4#bondedPSAseparationandpurificationcolumn3㊀结论本文通过考察PSA小试制备工艺中硅烷化试剂与离子交换容量的变化关系ꎬ制备一系列离子交换容量不同的PSA并得到最优小试制备工艺ꎮ将最优小试制备工艺在10L反应釜中进行公斤级中试放大实验ꎬ验证最优小试制备工艺的放大效果ꎬ对工业批量生产PSA具有一定借鉴意义ꎮ对中试实验制备㊁小试制备及商品化PSA进行离子交换容量㊁红外光谱和元素分析表征ꎬ并将其结果进行比较ꎬ结果表明中试放大实验得到的PSA性能与最优小试工艺相符ꎬ中试放大实验成功ꎬ并且其性能与商品化PSA性能相当ꎮ本文优化的制备工艺对工业生产PSA硅胶填料具有借鉴价值ꎮ将PSA装填成分离纯化小柱应用于银杏叶提取物中银杏酸的脱除ꎬ发现白果新酸的脱除效率与PSA的离子交换容量成正相关关系ꎮ4#键合PSA分离纯化柱对白果新酸脱除的突破体积和最大上样体积分别达到17mL和23mLꎬ结果表明键合PSA在银杏酸脱除方面具有应用潜力ꎮ参考文献:[1]宋祥家ꎬ李红霞.胺类硅胶材料的合成及应用[J].化工技术与开发ꎬ2012ꎬ41(8):26 ̄28.DOI:10.3969/j.issn.1671 ̄9905.2012.08.008.[2]王明华.硅胶负载酰胺 胺型螯合树脂的合成及性能研究[D].烟台:鲁东大学ꎬ2008.[3]朱萌.胺类聚合物型亲水作用色谱固定相的制备及色谱性能评价[D].青岛:青岛科技大学ꎬ2019.[4]王玲慧.乙二胺硅胶材料的制备及其吸附性能研究[D].郑州:郑州大学ꎬ2010.[5]包建民ꎬ王惠柳ꎬ李优鑫.HPLC级二氧化硅微球的制备及其功能化[J].精细化工ꎬ2018ꎬ35(9):1457 ̄1465.DOI:10.13550/j.jxhg.20170514.[6]李来明ꎬ任芳芳ꎬ包建民ꎬ等.7种胺基键合硅胶的制备及其对重金属Pb2+的吸附[J].色谱ꎬ2020ꎬ38(3):341 ̄349.DOI:10.3724/SP.J.1123.2019.09030.[7]AGUADOJꎬARSUAGAJMꎬARENCIBIAA.InfluenceofsynthesisconditionsonmercuryadsorptioncapacityofpropylthiolfunctionalizedSBA ̄15obtainedbyco ̄condensation[J].MicroporousandMesoporousMaterialsꎬ2008ꎬ109(1/2/3):513 ̄524.DOI:10.1016/j.micromeso.2007.05.061.[8]王军ꎬ扎西次旦ꎬ黄利英ꎬ等.基于N ̄丙基乙二胺键合硅胶和十八烷基键合锆胶的QuEChERS ̄气相色谱-质谱法检测酥油中的8种有机磷农药残留[J].食品安全质量检测学报ꎬ2019ꎬ10(21):7360 ̄7364.DOI:10.19812/j.cnki.jfsq11 ̄5956/ts.2019.21.050.[9]蒋明明ꎬ曾小娟ꎬ宋红坤ꎬ等.多壁碳纳米管/N-丙基乙二胺混合吸附-超高效液相色谱-串联质谱法测定普洱茶中3种手性杀菌剂农药残留[J].食品安全质量检测学报ꎬ2020ꎬ11(6):1702 ̄1708.DOI:10.19812/j.cnki.jfsq11 ̄5956/ts.2020.06.002. [10]MAYCꎬMANIANꎬCAIYLꎬetal.AneffectiveidentificationandquantificationmethodforGinkgobilobaflavonolglycosideswithtargetedevaluationofadulteratedproducts[J].Phytomedicineꎬ2016ꎬ23(4):377 ̄387.DOI:10.1016/j.phymed.2016.02.003. [11]池静端.银杏叶中黄酮类成分的化学研究[J].中国中药杂志ꎬ1998ꎬ23(1):40 ̄41.[12]杨小明ꎬ陈钧ꎬ钱之玉.烷基酚酸的生物活性研究进展[J].中草药ꎬ2003ꎬ34(5):U005 ̄U006.DOI:10.3321/j.issn:0253 ̄2670.2003.05.047.[13]沈琦ꎬ李贺ꎬ廉洪ꎬ等.银杏酸对大鼠肝毒性的影响研究[J].中国临床药理学杂志ꎬ2018ꎬ34(12):1457 ̄1459.DOI:10.13699/j.cnki.1001 ̄6821.2018.12.018.[14]IRIEJꎬMURATAMꎬHOMMAS.Glycerol ̄3 ̄phosphatedehydrogenaseinhibitorsꎬanacardicacidsꎬfromGinkgobiloba[J].BioscienceꎬBiotechnologyꎬandBiochemistryꎬ1996ꎬ60(2):240 ̄243.DOI:10.1271/bbb.60.240.[15]张秀丽ꎬ杨小明ꎬ夏圣ꎬ等.银杏酸对痤疮致病菌的抑制作用[J].江苏大学学报(医学版)ꎬ2007ꎬ17(6):523 ̄525.DOI:10.13312/j.issn.1671 ̄7783.2007.06.004.[16]王云飞ꎬ杨小明ꎬ李月英ꎬ等.银杏酚对SMMC ̄7721肝癌细胞和荷H22肝癌小鼠的抗癌作用[J].江苏大学学报(医学版)ꎬ2013ꎬ23(3):233 ̄237.DOI:10.13312/j.issn.1671 ̄7783.2013.03.018.[17]姚建标ꎬ金辉辉ꎬ王如伟ꎬ等.银杏叶提取物中总银杏酸HPLC法限量检测[J].药物分析杂志ꎬ2015ꎬ35(11):2041 ̄2044.DOI:10.16155/j.0254 ̄1793.2015.11.30.[18]国家药典委员会.中华人民共和国药典2020年版一部[S].北京:中国医药科技出版社ꎬ2020.[19]辛云海.银杏叶化学成分及银杏酚酸脱除工艺的研究[D].桂林:广西师范大学ꎬ2007.[20]YUJGꎬLEYꎬCHENGB.FabricationandCO2adsorptionperformanceofbimodalporoussilicahollowsphereswithamine ̄modifiedsurfaces[J].RSCAdvancesꎬ2012ꎬ2(17):6784 ̄6791.DOI:10.1039/C2RA21017G.。
一、选择题1.如图所示的盐可用于处理黑磷纳米材料,从而保护和控制其性质。
下列说法错误的是A.盐中碳原子的轨道杂化类型为sp3、sp2B.-4BF离子中含有配位键,配体为-FC.第一电离能:C<O<ND.1mol该盐的阳离子含有σ键的数目为A14N答案:D解析:A. 甲基中的碳原子的轨道杂化类型为sp3,苯环中的碳原子的轨道杂化类型为sp2,A项正确;B. -4BF是在BF3中B提供空轨道,-F提供孤对电子而形成的配位键,配体为-F,B项正确;C. 第一电离能在同一周期随原子序数的增加而变大,故第一电离:C<O<N,C项正确;D. 该盐阳离子中含有一个氮氮三键、一个氮碳键、苯环上有四个碳氢键、苯环上六个碳碳键、两个碳氧键、三个碳氢键,1 mol 该盐的阳离子含有σ键的数目为17mol,D项错误;答案选D。
2.由一种阳离子与两种酸根离子组成的盐称为混盐。
向混盐CaOCl2中加入足量浓硫酸,可发生反应:CaOCl2 + H2SO4(浓)→CaSO4 + Cl2↑+ H2O。
下列说法错误的是(N A表示阿佛加德罗常数)A.浓硫酸体现氧化性与酸性B.1 mol混盐CaOCl2中含有3N A个离子C.混盐CaOCl2中既含离子键又含共价键D.每产生1mol氯气,转移电子数为N A答案:A【分析】由混盐CaOCl2在酸性条件下可产生氯气,可知混盐为CaCl2和Ca(ClO)2的混合物,在酸性条件下发生Cl-+ ClO-+2H+= Cl2↑+ 2H2O,以此来解答题。
解析:A.CaOCl2 + H2SO4(浓)→CaSO4 + Cl2↑+H2O,硫酸中没有元素化合价变化,故浓硫酸只体现酸性,故A错误;B.CaOCl2中含有1个Ca2+、1个Cl-、1个ClO-,故1mol混盐CaOCl2中含有3N A个离子,故B正确;C.Ca2+和阴离子之间是离子键,Cl-O是共价键,故C正确;D.Cl-+ ClO-+2H+= Cl2↑+ 2H2O,每产生1mol氯气,转移电子数为N A,故D正确。