8[1].3同底数幂的除法2
- 格式:docx
- 大小:30.16 KB
- 文档页数:6
专题14.1幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的乘法法则+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.【要点提示】(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).【知识点2】幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.【要点提示】(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数)(2)逆用公式:()()n m mn m n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识点3】积的乘方法则()=⋅n n nab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.【要点提示】(1)公式的推广:()=⋅⋅n n n n abc a b c(n 为正整数).(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识点4】注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【题型目录】【题型1】同底数幂的乘法运算及逆运算...........................................2;【题型2】幂的乘方运算及逆运算.................................................3;【题型3】积的乘方运算及逆运算.................................................3;【题型4】幂的混合运算.........................................................4;【题型5】幂的运算的应用.......................................................4;【题型6】直通中考.............................................................5;【题型7】拓展与延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】同底数幂的乘法运算及逆运算【例1】(23-24七年级上·河南周口·期中)在学习第一章有理数时,类比小学两个正数的运算法则学习了有理数的加减法、有理数的乘除法,在第二章整式的加减时,类比第一章有理数的学习过程学习了整式的加减,那么整式的乘法是否可以类比有理数的乘法进行学习呢?我们从特殊情况入手对两个同底数幂相乘进行探究.(1)探究根据乘方的意义填空,观察计算结果,你能发现什么规律①53( )222⨯=,②42( )a a a ⋅=,③( )555m n ⨯=,(2)规律( )m n a a a ⋅=(,m n 都是正整数).即______.(文字表达)(3)应用①计算31m m a a +⋅;②把(2)x y +看成一个整体,计算23(2)(2)x y x y +⋅+.【变式1】(23-24七年级下·全国·单元测试)计算3()()x y y x -⋅-=()A .4()x y -B .4()x y --C .4)y x -(D .4()x y +【变式2】(23-24七年级下·全国·单元测试)已知1222162x x ⋅⋅=,则x =.【例2】(2024七年级下·全国·专题练习)(1)已知23x =,求32x +的值;(2)若21464a +=,求a 的值.【变式1】(23-24七年级下·江苏淮安·期中)已知23x =,26y =,则2x y +的值是()A .12B .18C .36D .54【变式2】(2024七年级上·上海·专题练习)已知4222112x x +-⋅=,则x 的值为.【题型2】幂的乘方运算及逆运算【例3】(21-22七年级上·上海·期末)计算:()()()3254652x x x x x x ⎡⎤⋅-⋅+-⋅+-⎣⎦.【变式1】(2022·江苏镇江·中考真题)下列运算中,结果正确的是()A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a =【变式2】.若25 3 0x y +-=,则432⋅=x y .【例4】(2023八年级上·全国·专题练习)(1)若23m n a a ==,,求32m n a +的值;(2)若2639273x x ⨯⨯=,求x 的值.【变式1】已知553a =,444b =,335c =,则a 、b 、c 的大小关系为()A .c a b <<B .c b a <<C .a b c <<D .a c b<<【变式2】(23-24八年级上·重庆九龙坡·阶段练习)已知433,33a b ==,则239a b ⨯=.【题型3】积的乘方运算及逆运算25.【例5】(22-23八年级上·黑龙江哈尔滨·阶段练习)(1)()34222x x x ⋅-;(2)()()23332232x y x y +-【变式1】(2022·广东深圳·中考真题)下列运算正确的是()A .268a a a ⋅=B .()3326a a -=C .()22a b a b +=+D .235a b ab+=【变式2】(20-21七年级下·江苏扬州·期末)已知am =10,bm =2,则(ab )m =.【例6】(2023九年级·全国·专题练习)用简便方法计算:(1)88552510.25(4)57⎛⎫⎛⎫-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()201720180.1258⨯-.【变式1】(22-23七年级下·河北沧州·期中)若n 为正整数.且24n a =,则()()223224n n a a -的值为()A .4B .16C .64D .192【变式2】已知2232336x x x ++-⋅=,则x =.【题型4】幂的混合运算【例7】(21-22八年级上·全国·课后作业)计算:(1)()()()2243224249()(2)--+-a a b a b ;(2)()()()22112()3------n n n n x x x x x .【变式1】(20-21七年级下·甘肃兰州·阶段练习)下列各式计算正确的是()A .-3xy ·(-2xy )2=12x 3y 3B .4x 2·(-2x 3)2=16x 12C .(-a 2)·a 3=a 6D .2a 2b ·(-ab )2=2a 4b 3【变式2】已知2,3x x a t ==,则24x =.(用含,a t 的代数式表示)【题型5】幂的运算的应用【例8】(23-24八年级上·山西长治·阶段练习)我们知道,一般的数学公式、法则、定义可以正向运用,也可以逆向运用.对于“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为m n m n a a a += ,()()n m mn m n a a a ==,()mm m a b ab =;(m ,n 为正整数).请运用这个思路和幂的运算法则解决下列问题:(1)已知552a =,443b =,334c =,请把a ,b ,c 用“<”连接起来:;(2)若2a x =,3b x =,求32a b x +的值;(3)计算:2001001011284⎛⎫⨯⨯ ⎪⎝⎭.【变式1】(21-22八年级上·河南三门峡·期末)下列运算中,错误的个数是()(1)224a a a +=;(2)236a a a ⋅=;(3)2n n n a a a ⋅=;(4)()448a a a --⋅=A .1个B .2个C .3个D .4个【变式2】(20-21九年级下·湖南永州·期中)将边长为1的正方形纸片按如图所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,12320202021S S S S S +++++= .第三部分【中考链接与拓展延伸】【题型6】直通中考【例9】(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b =C .83a b +=D .38a b=+【例10】(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【题型7】拓展延伸【例11】(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +【例12】(19-20七年级下·江苏南京·期中)观察等式(2a ﹣1)a +2=1,其中a 的取值可能是()A .﹣2B .1或﹣2C .0或1D .1或﹣2或0。
幂的运算一、知识网络归纳二、学习重难点学习本章需关注的几个问题:●在运用n m n m a a a +=•(m 、n 为正整数),n m n m a a a -=÷(0≠a ,m 、n 为正整数且m >n ),mn n m a a =)((m 、n 为正整数),n n n b a ab =)((n 为正整数),)0(10≠=a a ,n n aa 1=-(0≠a ,n 为正整数)时,要特别注意各式子成立的条件。
◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。
换句话说,将底数看作是一个“整体”即可。
◆注意上述各式的逆向应用。
如计算20052004425.0⨯,可先逆用同底数幂的乘法法则将20054写成442004⨯,再逆用积的乘方法则计算11)425.0(425.02004200420042004==⨯=⨯,由此不难得到结果为1。
◆通过对式子的变形,进一步领会转化的数学思想方法。
如同底数幂的乘法就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。
◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。
一、同底数幂的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例题:例1:计算列下列各题(1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅- 简单练习: 一、选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。
3 同底数幂的除法【优质一等奖创新教案】班海数学精批——一本可精细批改的教辅同底数幂的除法【知识与技能】掌握同底数幂的除法法则并用于计算.【过程与方法】经历探索同底数幂的除法的运算法则的过程,理解运算算理.【情感态度】经历探索过程,获得成功感和积累数学经验.【教学重点】同底数幂的除法法则的运用.【教学难点】根据乘、除互为逆运算推出同底数幂的除法法则.一、情境导入,初步认识1.回忆同底数幂乘法法则,并填空:(2)依题(1)的结果,并结合乘除法互为逆运算,填空:(3)观察题(2)中的每一个等式,以小组为单位讨论,找出这些等式的共同特点,并互相交流归纳.【教学说明】教师讲课前,先让学生完成“自主预习”.2.师生共同归纳结论:同底数幂相除,底数不变,指数相减.即am÷an=am-n(a≠0,m,n都是正整数,且m>n).提醒:底数可以是一个数,也可以是单项式或多项式;当三个或三个以上同底数幂相除时,也具有这个性质.二、思考探究,获取新知例1计算下列各题:【分析】(2)的解答可根据乘方的性质先确定商的性质符号,即(-a)8÷(-a)5=-a8÷a5;(3)与(2)有区别.其中(-a)5与-a5的意义不同,隐含了(-m)2=m2,(-m)3=-m3的关系式;(4)的底数是多项式,也适用同底数幂的除法法则.例2计算下列各题:【分析】同底数幂的除法法则也适用于底数是单项式的情形,当底数不相同时,应先设法转化为同底数幂,再应用法则.例3计算下列各题:【分析】解答本题的关键是遵循运算顺序,避免错算.【教学说明】不要出现-a21÷a6÷a6=-a21÷1=-a21这样的错误.三、运用新知,深化理解1.下面的计算对不对?如果不对,应当怎样改正?2.计算下列各题.3.计算下列各题.【教学说明】安排上述三题是为了帮助学生深化理解同底数幂的除法运算,题可师生共同评析.题2,3教师可指派学生到黑板上演算,然后全班订正,让学生加深印象,达成共识.四、师生互动,课堂小结谈谈本节课获得了哪些知识和解决问题的方法.【教学说明】这节课利用除法的意义及乘、除互逆的运算,揭示了同底数幂的除法的运算规律.并能运用运算法则解决简单的计算问题,积累了一定的数学经验.1.布置作业:从教材习题中选取部分题.2.完成练习册中本课时的练习.本课时教学重点在指导学生由同底数幂乘法法则推导出同底数幂除法法则,并类比已有知识由学生自主归纳总结出运用法则计算时应注意的问题,在学生充分认识法则的本质后,指导学生解决一定基础的具体问题,学生间互相查漏补缺,教师适时指点评价,帮助学生把知识转化为解决问题的能力,实际教学中,教师尽量多营造学生自主探究,自已解决问题的氛围.零指数幂与负整数指数幂教学设计思路教科书中根据除法是乘法的逆运算,从计算和这两个具体的同底数的幂的除法,到计算底数具有一般性的,逐步归纳出同底数幂除法的一般性质.教师讲课时要多举几个具体的例子,让学生运算出结果,接着,让学生自己举几个例子,再计算出结果,最后,让学生自己归纳出同底数的幂的除法法则.教学目标知识与技能1.经历同底数幂的除法运算性质的获得过程,掌握同底数幂的运算性质,会用同底数幂的运算性质进行有关计算,提高学生的运算能力.2.了解零指数幂和负整指数幂的意义,知道零指数幂和负整指数幂规定的合理性.过程与方法在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力.情感、态度与价值观1.提高学生观察、归纳、类比、概括等能力;2.在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养.教学媒体投影仪课时安排1课时教学重难点教学重点:同底数幂除法的运算性质及其应用.教学难点:零指数幂和负整数指数幂的意义.教学过程一、创设问题情景,引入新课一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的?[师]1012÷109是怎样的一种运算呢?通过上面的问题,我们会发现同底数幂的除法运算和现实世界有密切的联系,因此我们有必要了解同底数幂除法的运算性质.二、了解同底数幂除法的运算及其应用一起探究:计算下列各式,并说明理由(m>n).(1)(2)(3)(4)[师]我们利用幂的意义,得到:(1)(2)(3)(4)[生]从以上三个特例,可以归纳出同底数幂的运算性质:am ÷an=am-n(m,n是正整数且m>n).[生]小括号内的条件不完整.在同底数幂除法中有一个最不能忽略的问题:除数不能为0.不然这个运算性质无意义.所以在同底数幂的运算性质中规定这里的a不为0,记作a≠0.在前面的三个幂的运算性质中,a可取任意数或整式,所以没有此规定.[师]很好!这位同学考虑问题很全面.所以同底数幂的除法的运算性质为:(a≠0,m、n都为正整数,且m>n)运用自己的语言如何描述呢?[生]同底数幂相除,底数不变,指数相减.[例]计算:(1)(2)(3)(4)三、探索零指数幂和负整数指数幂的意义想一想:10000=104,16=24,1000=10( ),8=2( ),100=10( ),4=2( ),10=10( ). 2=2( ).猜一猜1=10( ),1=2( ),0.1=10( ),=2( ),0.01=10( ),=2( ),0.001=10( ). =2( )大家可以发现指数不是我们学过的正整数,而出现了负整数和0.正整数幂的意义表示几个相同的数相乘,如an(n为正整数)表示n个a相乘.如果用此定义解释负整数指数幂,零指数幂显然无意义.根据“猜一猜”,大家归纳一下,如何定义零指数幂和负整数指数幂呢?[生]由“猜一猜”得100=1,10-1=0.1=,10-2=0.01==,10-3=0.001==.20=12-1=,2-2==,2-3==.所以a0=1,a-p=(p为正整数).[师]a在这里能取0吗?[生]a在这里不能取0.我们在得出这一结论时,保持了一个规律,幂的值每缩小为原来的,指数就会减少1,因此a≠0.[师]这一点很重要.0的0次幂,0的负整数次幂是无意义的,就如同除数为0时无意义一样.因为我们规定:a0=1(a≠0);a-p=(a ≠0,p为正整数).我们的规定合理吗?我们不妨假设同底数幂的除法性质对于m ≤n仍然成立来说明这一规定是合理的.例如由于103÷103=1,借助于同底数幂的除法可得103÷103=103-3=100,因此可规定100=1.一般情况则为am÷am=1(a≠0).而am÷am=am-m=a0,所以a0=1(a≠0);而am÷an=(mn),但学习了负整数和0指数幂之后,m>n的条件可以不要,因为m≤n时,这个性质也成立.[生]我特别注意了我们这节课所学的几个性质,都有一个条件a≠0,它是由除数不为0引出的,我觉得这个条件很重要.[师]同学们收获确实不小,祝贺你们!五、课后作业课本A组3、4,B组2、3六、板书设计感谢您下载使用【班海】教学资源。
第1讲 幂的运算1. 掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.知识点01同底数幂的乘法+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m nm n a a a +=⋅(,m n 都是正整数).【知识拓展1】计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【即学即练1】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);知识精讲目标导航(3)232(2)(2)n⨯-⋅-(n 为正整数).【即学即练2】计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【知识拓展2】已知2220x +=,求2x 的值.知识点02幂的乘方()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a (0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n a aa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识拓展1】计算:(1)2()m a ; (2)34[()]m -; (3)32()m a-.【即学即练1】计算:(1)23[()]a b --; (2)32235()()2y y y y +-;(3)22412()()m m x x -+⋅; (4)3234()()x x ⋅.【知识拓展2】已知25mx =,求6155m x -的值.【即学即练1】已知2a x =,3b x =.求32a bx +的值.【即学即练2】已知84=m ,85=n ,求328+m n的值.【即学即练3】已知435,25ab m n ==,请用含m 、n 的代数式表示43625a b +.【即学即练4】已知2139324n n ++=,求n 的值;【即学即练5】已知322,3m m a b ==,则()()()36322mm m ma b a b b +-⋅= .知识点03积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识拓展1】指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【即学即练1】计算:(1)24(2)xy - (2)24333[()]a a b -⋅-【即学即练2】下列等式正确的个数是( ). ①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个【知识拓展2】计算:1718191(3)(2)6⎛⎫-⨯-⨯- ⎪⎝⎭.知识点04 同底数幂的除法同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【知识拓展1】计算:(1)83x x ÷; (2)3()a a -÷; (3)52(2)(2)xy xy ÷; (4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【即学即练1】计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【知识拓展2】已知32m =,34n =,求129m n+-的值.【即学即练1】已知2552m m⨯=⨯,求m 的值.1.已知(-x )a +2⋅ x 2a ⋅ (-x )3= x 32 , a 是正整数,求a 的值.2.已知n 为正整数,化简: (-x 2 )n+ (-x n )2.3.已知: 3x +1 ⋅ 2x - 3x ⋅ 2x +1 = 216 ,试求 x 的值.能力拓展4.已知35m =,45381m n -=,求201620151n n ⎛⎫-⋅ ⎪⎝⎭的值.5.如果整数x y z 、、满足151627168910xy z⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求2x y z y +-的值.6.已知()231x x +-=,求整数x .题组A 基础过关练一、单选题1.(2022·全国·七年级)化简1x y +-()的结果是( )A .11x y --+B .1xy C .11x y+D .1x y+ 2.(2022·全国·七年级)计算52x x ÷结果正确的是( ). A .3B .3xC .10xD .25x3.(2021·甘肃白银·七年级期末)花粉的质量很小,一粒某种植物花粉的质量约为0.000036mg ,那么0.000036mg 用科学记数法表示为( ) A .53.610mg -⨯ B .63.610mg -⨯C .73.610mg -⨯D .83.610mg -⨯二、填空题4.(2022·黑龙江杜尔伯特·七年级期末)若am =10,an =6,则am +n =_____.分层提分5.(2022·全国·七年级)计算34x x x ⋅+的结果等于________. 6.(2022·黑龙江杜尔伯特·七年级期末)22013•(12)2012=_____. 7.(2021·上海虹口·七年级期末)计算:23(3)a =_______.8.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 9.(2022·全国·七年级)计算:0113()22-⨯+-=______.三、解答题10.(2022·全国·七年级)计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .11.(2018·全国·七年级课时练习)1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量,据估计地壳里含1×1010千克镭,试问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量?12.(2020·浙江杭州·模拟预测)计算题(结果用幂的形式表示):(1)2322⨯ (2)()32x (3)()()322533-⋅13.(2021·上海普陀·七年级期末)计算:2110213(2020)34π---⎛⎫⎛⎫⨯+-÷ ⎪ ⎪⎝⎭⎝⎭.题组B 能力提升练1.(2022·全国·七年级)计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.2.(2021·上海市民办新竹园中学七年级期中)计算:121432413()()()922x z y z y x------÷-⋅-3.(2022·全国·七年级)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”,一般地,把n aa a a a÷÷÷÷个(a ≠0)记作an ,读作“a 的n 次商”.【初步探究】(1)直接写出计算结果:23= ,(﹣3)4= ; (2)关于除方,下列说法错误的是 ;A .任何非零数的2次商都等于1;B .对于任何正整数n ,(﹣1)n =﹣1;C .34=43;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭.(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式.(﹣3)4= ;517⎛⎫⎪⎝⎭= .(4)想一想:将一个非零有理数a 的n 次方商an 写成幂的形式等于 . (5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .4.(2021·江苏·苏州市工业园区第一中学七年级阶段练习)已知10×102=1000=103, 102×102=10000=104, 102×103=100000=105.(1)猜想106×104= ,10m ×10n = .(m ,n 均为正整数) (2)运用上述猜想计算下列式子:①(1.5×104)×(1.2×105); ②(﹣6.4×103)×(2×106).5.(2022·全国·七年级)阅读,学习和解题. (1)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题: 比较34040,43030,52020的大小. (2)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题:已知am =2,an =3,求a 2m +3n 的值.(3)计算:(-16)505×(-0.5)2021.题组C 培优拔尖练一、单选题1.(2021·江苏·宜兴市实验中学七年级期中)计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( ) A .25033333⋅⋅⋅个 B .26033333⋅⋅⋅个 C .27033333⋅⋅⋅个 D .28033333⋅⋅⋅个2.(2022·全国·七年级)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( ) A .2S 2﹣SB .2S 2+SC .2S 2﹣2SD .2S 2﹣2S ﹣2二、填空题3.(2019·浙江·温州市第二十三中学七年级期中)已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.4.(2021·北京八十中七年级期中)已知一列数:-2,4,-8,16,-32,64,-128,……,将这列数按如右图所示的规律排成一个数阵,其中,4在第一个拐弯处,-8在第二个拐弯处,-32在第三个拐弯处,-128在第四个拐弯处,……,则第六个拐弯处的数是________,第一百个拐弯处的数是___________.三、解答题5.(2019·甘肃·甘州中学七年级阶段练习)已知(﹣13xyz )2M =13x 2n+2y n+3z 4÷5x 2n ﹣1y n+1z ,自然数x ,z 满足123x z -⋅=72,且x =z ,求M 的值.6.(2021·全国·七年级专题练习)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Napier ,1550年-1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler ,1707年-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(0,1)x a N a a =≠>,则x 叫做以a 为底N 的对数,记作log a x N =.比如指数式4216=可以转化为24log 16=,对数式52log 25=可以转化为2525=.我们根据对数的定义可得到对数的一个性质:a log(?)log M N M =+log (0,a 1,0,N 0)a N a M ≠>>>.理由如下:设a log M m =,a log N n =,所以m M a =,n N a =,所以m n m n MN a a a +==,由对数的定义得a log ()m n M N +=+,又因为a log log a m n M N +=+,所以log ()log log a a a MN M N =+.解决以下问题: (1)将指数35125=转化为对数式: .(2)仿照上面的材料,试证明:log log -log (0,1,0,0)a a a M M N a a M N N=≠>>> (3)拓展运用:计算333log 2log 18-log 4+= .7.(2019·江苏·汇文实验初中七年级阶段练习)(1)填空:21﹣20=______=2(_____)22﹣21=_____=2(______)23﹣22=______=2(______)…(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+ (22019)8.(2021·全国·七年级专题练习)观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______; (3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.9.(2021·全国·七年级课时练习)探究:22﹣21=2×21﹣1×21=2( )23﹣22= =2( ),24﹣23= =2( ),……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.10.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)。
湘教版数学八年级上册1.3.1《同底数幂的除法》教学设计一. 教材分析《同底数幂的除法》是湘教版数学八年级上册1.3.1的内容。
本节内容是在学生学习了同底数幂的乘法的基础上进行学习的,是指数运算的重要内容,也是学生进一步学习幂的运算、对数运算等知识的基础。
本节内容主要让学生掌握同底数幂的除法法则,并能够熟练运用。
二. 学情分析学生在学习本节内容之前,已经学习了同底数幂的乘法,对幂的运算有一定的了解。
但在实际操作中,对于如何正确进行同底数幂的除法运算,还存在一定的困难。
因此,在教学过程中,需要引导学生通过实例分析,总结同底数幂的除法法则,并加强练习,提高学生的运算能力。
三. 教学目标1.知识与技能目标:让学生掌握同底数幂的除法法则,能够正确进行同底数幂的除法运算。
2.过程与方法目标:通过实例分析,让学生能够总结同底数幂的除法法则,培养学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的学习兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.教学重点:同底数幂的除法法则。
2.教学难点:如何引导学生总结同底数幂的除法法则,并能够熟练运用。
五. 教学方法1.情境教学法:通过生活实例,引导学生学习同底数幂的除法。
2.启发式教学法:在教学过程中,引导学生进行思考,总结同底数幂的除法法则。
3.小组合作学习:让学生分组讨论,共同完成练习题,培养学生的团队合作意识。
六. 教学准备1.教学课件:制作同底数幂的除法教学课件,包括实例分析、练习题等。
2.练习题:准备一些同底数幂的除法练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如“一块土地的面积是2平方米,将其分成两半,新的面积是多少?”引导学生思考,引出同底数幂的除法。
2.呈现(10分钟)通过PPT展示同底数幂的除法实例,让学生观察、分析,引导学生总结同底数幂的除法法则。
3.操练(10分钟)让学生分组讨论,共同完成练习题,巩固同底数幂的除法法则。
课题:8.3同底数幂除法(2)
主备:高吉课型:新授审核:
班级_________ 姓名 ___________ 学号 ________________
【学习目标】
1. 了解a°=1,a-n = I (a式0, n为正整数)的规定,会用运算性质进行计算。
a
2. 经历探索同底数幕的除法运算性质过程,从中感受从特殊到一般,从具体到抽象的思考问题
的方法。
【重点难点】
重点:正确理解零指数幕与负指数幕的意义.
难点:同底数幕的除法运算法则推导零指数幕过程,及性质的灵活运用
【自主学习】
读一读:阅读课本P55-P56
1. 请你用两种方法计算23亠23
2. 任何数的零次幕都是1吗?
3.请你用两种方法计算:23“ 25
练一练:
1 .计算:(——)0 = ______ ;3-
2 = _____ ; (-2 )-
3 =
36
2.判断:
(1)10=0,2「8,a )1
(2) a o“( )
(3) 2 ; = -8( )
【新知归纳】
1.任何的数的0次幂等于。
a0=-(a = 0 )
2.任何的数的-n (n是正整数)次幕等于这个数的次幕的
人生在于勤奋,成功来源拼搏1
人生在于勤奋,成功来源拼搏2
人生在于勤奋,成功来源拼搏 3
【例题教学】
例1:用小数或分数表示下列各数 (1)5」
(2)(一2)*
(3) a 6
a 0 (a = 0)
5 _2
(4) a :- a (a 0)
例3 :把下列各数写成负整数指数幕的形式
1
(1) 0.001
(2)
-
(3)
5
例2 :计算
⑴2。
+(弓-2
-3 (3) -5 一 6
(4) 10
1 1000000
4
【课堂检测】
1. 若(x-2) 0有意义,则x 的取值范围为 __________
2. 下列各式计算正确的是
( )
1
(A) (a
5)2
=a 7
(B) 2x- 2
(C)
2x 3. 把下列各数写成负整数指数幕的形式
1
(1)0.00001
(2) (3)
3
5.已知n 是正整数,且83n - 162n =4.求n 的值。
【课后巩固】 中正确的式子有 ()
A.4个
C.2个
D.1 个
4.计算:
(—3) 3 (-
3
)— 3
-(5)
52X 5 —90
—16X ( —
2)
c 2
c 3 6
3a 2a 6a 8.2 6
(D) a ■- a a
1
1
(4)
16 1000
1.在①(一1 ) 0
= 1 —1
②(一1) = — 1
③3a
-2
1 3a 2
④(一a)5- ( — a)3 =
B.3个
镇江市第十中学七年级数学教学案
5
2.右 a = — 0.5 , b = — 5 , c =(
-5)—2 A. a < b < c < d
B. b < a < d < c
C. a < b < d < c 人生在于勤奋,成功来源拼搏
D.c
丄)。
,则 5
< a < d < b
镇江市第十中学七年级数学教学案
3. 若23x-6 = 1 ,则x = ______________ 。
4. 若(y+2) 0 = 1 ,求y的取值范围为_________________________
5. 把下列各数写成负整数指数幕的形式
1
(1)0.0001 (2)
64
6.计算: (1) (-2)2(3)- 5工
(4)勺12—0.1,(5) (-+-2
<2;「2丿
⑹1•〔3丿~"5
7.如果:2x 5y=4,求4x-32y的值.
人生在于勤奋,成功来源拼搏6。