同底数幂的除法试题精选(三)附答案
- 格式:doc
- 大小:131.50 KB
- 文档页数:8
同底数幂的除法专项练习题(有答案)1.计算:$(-2m^2)^3+m^7/m$。
2.计算:$3(x^2)^3x^3-(x^3)^3+(-x)^2x^9/x^2$。
3.已知 $a_m=3$,$a_n=4$,求 $a_{2m-n}$ 的值。
4.已知 $3^m=6$,$3^n=-3$,求 $3^{2m-3n}$ 的值。
5.已知 $2a=3$,$4b=5$,$8c=7$,求 $8a+c-2b$ 的值。
6.如果 $x^m=5$,$x^n=25$,求 $x^{5m-2n}$ 的值。
7.计算:$a^{n+5}/a^7$($n$ 是整数)。
8.计算:(1) $-m^9/m^3$;(2) $(-a)^6/(-a)^3$;(3) $(-8)^6/(-8)^5$;(4) $6^{2m+3}/6^m$。
9.计算:$33\times36/(-3)^8$。
10.把下式化成 $(a-b)^p$ 的形式:$15(a-b)^3[-6(a-b)^p+5](b-a)^2/45(b-a)^5$。
11.计算:(1) $(a^8)^2/a^8$;(2) $(a-b)^2(b-a)^{2n}/(a-b)^{2n-1}$。
12.$(a^2)^3(a^2)^4/(-a^2)^5$。
13.计算:$x^3(2x^3)^2/(x^4)^2$。
14.若 $[(x^m/x^{2n})^3]/x^{m-n}$ 与 $4x^2$ 为同类项,且 $2m+5n=7$,求 $4m^2-25n^2$ 的值。
15.计算:(1) $m^9/m^7$;(2) $(-a)^6/(-a)^2$;(3) $(x-y)^6/(y-x)/(x-y)$。
16.已知 $2^m=8$,$2^n=4$,求:(1) $2^{m-n}$ 的值;(2) $2^{m+2n}$ 的值。
17.(1) 已知 $x^m=8$,$x^n=5$,求 $x^{m-n}$ 的值;(2) 已知 $10^m=3$,$10^n=2$,求 $10^{3m-2n}$ 的值。
1.3同底数幂的除法1.下列计算正确的是( )A.a m·a2=a2m B.(a3)2=a3 C.x3·x2·x= x5D.a3n-5÷a5-n= a4n-10 2.若(x -2) 0=1,则( ) A.x≠0 B.x≥2 C.x≤2 D.x≠23.在243-⎪⎭⎫⎝⎛,256⎪⎭⎫⎝⎛,076⎪⎭⎫⎝⎛这三个数中,最大的是( )A.243-⎪⎭⎫⎝⎛ B.256⎪⎭⎫⎝⎛ C.076⎪⎭⎫⎝⎛D.不确定4.下列各式中不正确的是( )A.2913⎪⎭⎫⎝⎛⨯-=1 B.2212⎪⎭⎫⎝⎛-a=1 C.(|a|+1)0=1 D.(-1- a2) 0=15.填空:(1)x( )÷( )5=x 3;(2)( ) 5÷y2=y( );(3) x2m÷x( )=( )m(4) x m÷x( )=x m-1;(5)32⎪⎭⎫⎝⎛-÷(-5)( )=1;6.求下列各式中m的取值范围.(1)( m+3)0=1 (2) ( m-4)0=1 (3) ( m+5)-3有意义.7.计算.(1)a24÷[(a2)3)4(2)( a3·a4)2÷(a3)2÷a (3)- x12÷(-x4)3 (4)( x6÷x4·x2)2;(5)(x-y)7÷(y-x)2÷(x-y)3 (6)231⎪⎭⎫⎝⎛-+31⎪⎭⎫⎝⎛+331-⎪⎭⎫⎝⎛(7)(-2)0-421-⎪⎭⎫⎝⎛-+1101-⎪⎭⎫⎝⎛+231-⎪⎭⎫⎝⎛·021⎪⎭⎫⎝⎛(8) a4m+1÷(-a)2m+1 (m为正整数).8.用科学记数法表示纯小数,是把纯小数表示为a×10-p的形式,其中p是正整数,a是大于0小于10的整数,请把下列各数用科学记数法表示出来.(1)0.00000015;(2)-0.00027;(3)(5.2×1.8) ×0.001;(4)1÷(2×105) 2.9.已知2×5m=5×2m,求m的值.1.1同底数幂的乘法1.下列式子:①1644333=⋅;②7343)3()3(-=-⋅-;③81)3(322-=-⋅-;④544222=+.其中计算正确的有( ) A .1个 B. 2个 C .3个 D. 4个2.1002+()1012-所得的结果是( ) A .1002 B. 1002- C .2- D. 2 3.n x -与n x )(-的关系正确的是( )A .相等B .互为相反数C .当n 为奇数时它们互为相反数,当n 为偶数时它们相等D .当n 为奇数时它们相等,当n 为偶数时它们互为相反数4.4435)()(a a a a ⋅---⋅等于( ) A .0 B. 82a - C .16a - D. 162a -5.计算12))(()(----m n b a a b b a 的结果是( )A .m n b a +-2)( B.m n b a +--2)( C.m n a b +-2)(D .以上都错 6.432a a a a ⋅⋅⋅= . 7.423)()()(y x y x x -⋅-⋅-= . 8.⋅=1116a a . 9.⋅-=36a a .10.⋅=++123m m a a = .11.计算.(1)43)())((m n m n n m ---(2))44)((44<<--⋅⋅-+m a a a m m (3).),0()()(122为整数且m m x y y x m m >-⋅--12.把下列各式化为n b a k )(-的形式.(1)23)(4)(3y x y x -⋅-(2))(49)(327n m n m -⋅⎥⎦⎤⎢⎣⎡--(3)[][])1()(32)(2)(3212>⎥⎦⎤⎢⎣⎡--⋅-⋅---m b a b a b a m m .13.求值.(1)已知7=m a ,3=n a ,求n m a +的值;(2)已知27312=+x ,求x 的值;(3)已知52=a ,202=b ,82=c ,求a ,b ,c 之间的值;除法参考答案1.D[提示:A ,C 两项根据同底数幂相乘性质计算,均不正确;B 项根据幂的乘方性质计算,结果错误;D 项根据同底数幂除法性质计算,正确.故选D .]2.D[提示:根据零指数幂的性质求解.]3.A[提示:分别计算求解.] 4.B[提示:计算哪个选项中的零指数幂的底数可能为0,即为答案.]5.(1)8 x (2) y 3 (3)m x (4)1 (5)06.(1)m ≠-3. (2) m ≠4. (3) m ≠-5.7.(1)1. (2) a 7. (3)1. (4) x 8. (5)(x-y ) 2. (6)2891. (7)4. (8) –a 2m . 8.(1)1.5×10-7. (2)-2.7×10-4. (3)9.36×10-3. (4) 2.5×10-11.9.解:由2×5m =5×2m 得5m-1=2m -1,即5m-1÷2m -12=1,125-⎪⎭⎫ ⎝⎛m =1,因为底数25不等于0和l ,所以125-⎪⎭⎫ ⎝⎛m =025⎪⎭⎫ ⎝⎛,所以m -1=0,解得m =1. 乘法参考答案1.C 2.B 3.D 4.B 5.B 6.10a 7.9)(y x - 8.5a 9.)(3a - 10.12+m a11.(1)8)(m n -- (2)9a - (3)14)(--m x y 12.(1)5)(12y x - (2)8)(23n m -- (3)13)(4+-m b a13.解:(1)2137=⨯=⋅=+n m n m a a a . (2)3123273==+x ,所以2x +1=3,所以x =1. (3)1222202408522,82,52+=⨯=⨯==⨯=⋅==b b c a c a ,则1+=+b c a .。
同底数幂除法【知识梳理】一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a −÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【考点剖析】 题型一、同底数幂的除法例1、计算:(1)83x x ÷;(2)3()a a −÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫−÷− ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】解:(1)83835x x x x −÷==.(2)3312()a a a a −−÷=−=−.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y −÷===. (4)535321111133339−⎛⎫⎛⎫⎛⎫⎛⎫−÷−=−=−=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号. 【变式1】(2021•上海)计算:x 7÷x 2= .【分析】根据同底数幂的除法法则进行解答即可. 【解答】解:x7÷x2=x7﹣2=x5, 故答案为:x5.【点评】此题考查了同底数幂的除法,熟练掌握同底数幂相除,底数不变指数相减是解题的关键. 【变式2】(2022•浦东新区二模)计算:(﹣a 6)÷(﹣a )2= . 【分析】根据同底数幂相除的法则:底数不变,指数相减即可得出答案. 【解答】解:(﹣a6)÷(﹣a )2=﹣(a6÷a2)=﹣a4. 故答案为:﹣a4.【点评】本题考查了同底数幂的除法,同底数幂相除的法则:底数不变,指数相减. 【变式3】计算:(1)()()151233−÷−;(2)853377⎛⎫⎛⎫÷− ⎪ ⎪⎝⎭⎝⎭;(3)10010099÷.【答案】(1)27−;(2)27343−;(3)1.【解析】(1)()()()()151215123333327−−÷−=−=−=−;(2)858533333277777343−⎛⎫⎛⎫⎛⎫⎛⎫÷−===⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3)100100100100099991−÷===.【总结】本题考查了同底数幂的除法,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠.【变式4】计算: (1)107a a ÷;(2)102102x x −÷;(3)()()75a a −÷−.【答案】(1)3a ;(2)1−;(3)2a .【解析】(1)1071073a a aa −÷==; (2)10210210210201x x x x −−÷=−=−=−;(3)()()()()757522a a a a a −−÷−=−=−=.【总结】本题考查了同底数幂的除法,同底数幂相除,底数不变,指数相减. 【变式5】计算:(1)()()105x y x y +÷+;(2)()()97a b b a −÷−.【答案】(1)()5x y +;(2)222a ab b −+−.【解析】(1)()()()()1051055x y x y x y x y −+÷+=+=+;(2)()()()()()()9797972222a b b a b a b a b a b a a ab b −−÷−=−−÷−=−−=−−−+−.【总结】本题主要考查了同底数幂的除法. 题型二、科学记数法有关的同底数幂的除法例2.下雨时,常常是“先见闪电、后闻雷鸣”,这是因为光速比声速快的缘故.已知光在空气中的传播速度为8310⨯米每秒,而声音在空气中的传播速度约为300米每秒,你知道光速是声速的多少倍吗? 【答案】610.【解析】8631030010⨯÷=.【总结】本题考查了整式的除法,解题的关键是根据题意列出代数式,再根据除法运算法则求出答案. 【变式】月球距离地球大约53.8410⨯千米,一架飞机的速度约为2810⨯千米/时.如果乘坐此飞机飞行这么远的距离,大约需要多少时间? 【答案】480小时.【解析】()()()()52523.8410810 3.8481010480⨯÷⨯=÷⨯÷=(小时)【总结】本题考查了单项式除以单项式,用整式乘除法解决实际问题时要注意分清量与量之间存在的数量关系.题型三、同底数幂的除法的逆用例3、已知32m =,34n=,求129m n +−的值.【答案与解析】解:121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++−======.当32m =,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 【变式1】(2020秋•宝山区期末)如果2021a =7,2021b =2.那么20212a﹣3b= .【分析】根据幂的乘方以及同底数幂的除法法则计算即可,幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减. 【解答】解:∵2021a =7,2021b =2.∴20212a ﹣3b =20212a ÷20213b =(2021a )2÷(2021b )3=72÷23=.故答案为:.【点评】本题主要考查了同底数幂的除法以及幂的乘方,熟记相关运算法则是解答本题的关键.【变式2】已知2552m m⨯=⨯,求m 的值.【答案】解:由2552m m ⨯=⨯得1152m m −−=,即11521m m −−÷=,1512m −⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1,∴ 15522m −⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,即10m −=,1m =.题型四、同底数幂的除法有关的混合运算例4.(2020秋•浦东新区期末)计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.【分析】分别根据同底数幂的乘除法法则以及积的乘方运算法则化简后,再合并同类项即可. 【解答】解:a •a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【变式1】(2022y 3•y 5÷(﹣y )4= . 【分析】利用同底数幂的乘除法运算法则进行计算. 【解答】解:原式=﹣y3•y5÷y4=﹣y3+5﹣4=﹣y4, 故答案为:﹣y4.【点评】本题考查同底数幂的乘除法,掌握同底数幂的乘法(底数不变,指数相加),同底数幂的除法(底数不变,指数相减)的运算法则是解题关键. 【变式2】计算: (1)()623x x x ÷⋅;(2)()1243x x x ⋅÷.【答案】(1)x ;(2)13x . 【解析】(1)()6236236565x x x x x x x x x+−÷⋅=÷=÷==;(2)()124312*********x x x x x x x x x −+⋅÷=⋅=⋅==.【总结】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠.【变式3】.计算: (1)()()4334a a −÷−;(2)()()22237a a a a ⋅÷⨯−.【答案】(1)1−;(2)5a .【解析】(1)()()()433412121a a a a −÷−=÷−=−;(2)()()()22223757210725a a a a a a a a a −+⋅÷⨯−=÷⋅==.【总结】本题考查了同底数幂的乘法与除法,m nm na a a +⋅=,()nm mna a =,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠,注意负数的奇次幂还是负数.【变式4】计算:(1)()3232942x x x x x ⋅−+÷;(2)54189t t t t ⋅−÷.【答案】(1)5628x x −;(2)0.【解析】(1)()3232942323945655628828x x x x x x x x x x x x x +⨯−⋅−+÷=−+=−+=−;(2)5418954189990t t t t t tt t +−⋅−÷=−=−=. 【总结】本题考查了同底数幂的乘法与除法以及幂的乘方,注意法则的准确运用.【过关检测】一、单选题1.(2022秋·上海·七年级专题练习)下列计算正确的是( )A .235a a ()=B .3232a b a b −−()= C .448a a a += D .532a a a ÷=【答案】D【分析】利用合并同类项的法则,同底数幂的除法的法则,幂的乘方的法则,单项式乘多项式的法则对各项进行运算即可.【详解】解:A 、623a a ()=,故A 不符合题意;B 、3(a ﹣2b )=3a ﹣6b ,故B 不符合题意;C 、4442a a a +=,故C 不符合题意;D 、532a a a ÷=,故D 符合题意;故选:D .【点睛】本题主要考查幂的乘方,同底数幂的除法,单项式乘多项式,合并同类项,解答的关键是对相应的运算法则的掌握.2.(2023·上海·七年级假期作业)在下列运算中,计算正确的是( ) A .3262()x y x y −= B .339x x x ⋅= C .224x x x += D .62322x x x ÷=【答案】A【分析】按照幂的乘方、积的乘方、合并同类项、同底数幂相乘、同底数幂相除的运算法则.【详解】解:3262x y x y =(-),故A 正确,符合题意; 336x x x ⋅=,故B 错误,不符合题意; 2222x x x +=,故C 错误,不符合题意; 62422x x x ÷=,故D 错误,不符合题意;故选:A .【点睛】本题考查了幂的乘方、积的乘方、合并同类项、同底数幂相乘、同底数幂相除等运算,熟练掌握相关运算法则是解题关键.【答案】B【分析】根据幂的公式逆运算即可求解.【详解】∵3,2m nx x ==,∴23m nx−=(mx )2÷(nx )3=32÷23=98故选B【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.4.(2021秋·上海浦东新·七年级期末)下列运算中,正确的是( ) A .(﹣m )6÷(﹣m )3=﹣m 3 B .(﹣a 3)2=﹣a 6 C .(xy 2)2=xy 4 D .a 2•a 3=a 6【答案】A【分析】根据同底数幂的除法,幂的乘方,积的乘方,同底数幂的乘法逐项分析判断即可. 【详解】解:A 、(﹣m )6÷(﹣m )3=﹣m3,故本选项符合题意; B 、(﹣a3)2=a6,故本选项不符合题意; C 、(xy2)2=x2y4,故本选项不符合题意; D 、a2•a3=a5,故本选项不符合题意; 故选:A .【点睛】本题考查了幂的运算,掌握幂的运算是解题的关键. 5.(2023·上海·七年级假期作业)下列计算结果中,正确的是( ) A .a 3+a 3=a 6 B .(2a )3=6a 3 C .(a ﹣7)2=a 2﹣49 D .a 7÷a 6=a .【答案】D【分析】根据合并同类项法则、积的乘方的运算法则、完全平方公式、同底数幂的除法的运算法则逐项计算得出结果即可得出答案.【详解】解:A 、3332a a a +=,原计算错误,故此选项不符合题意;B 、33(2)8a a =,原计算错误,故此选项不符合题意;C 、22(7)1449a a a =−−+,原计算错误,故此选项不符合题意;D 、76a a a ÷=,原计算正确,故此选项符合题意.故选:D .【点睛】本题考查合并同类项、积的乘方、完全平方公式和同底数幂的除法.掌握各运算法则是解题关键. 6.(2023·上海·七年级假期作业)下列运算正确的是( ) A .()323a a = B .623a a a ÷= C .235a a a += D .235a a a ⋅=【答案】D【分析】根据幂的乘方,同底数幂的乘法和除法,以及合并同类项法则,逐一进行计算即可.【详解】解:A 、()326a a =,选项错误,不符合题意;B 、624a a a ÷=,选项错误,不符合题意;C 、235a a a +≠,选项错误,不符合题意;D 、235a a a ⋅=,选项正确,符合题意;故选D .【点睛】本题考查幂的乘方,同底数幂的乘法和除法,以及合并同类项法.熟练掌握相关法则,是解题的关键.二、填空题7.(2023·上海·七年级假期作业)42()()n n y y −÷−=________;4232()()()a b a b a b ⎡⎤⎡⎤−⨯−÷−=⎣⎦⎣⎦___________.【答案】 2n y 9()a b −【分析】利用同底数幂的乘法、除法、幂的乘方化简,先算乘方,再算乘除.【详解】解:42()()n n y y −÷−=42()n n y −−=2()ny −=2n y ,4232()()()a b a b a b ⎡⎤⎡⎤−⨯−÷−⎣⎦⎣⎦=124()()()a a b a b −⨯−÷−=124()()()a b a b a b −⨯−÷−=1214()a b +−−=9()a b −.故答案为:2n y ,9()a b −.【点睛】此题考查了同底数幂的乘法、除法、幂的乘方运算,解题的关键是掌握同底数幂的乘法、除法、幂的乘方的运算法则.8.(2023·上海·七年级假期作业)计算:结果用幂的形式表示94()()a b b a −÷−=_____. 【答案】5()a b −【分析】利用同底数幂的除法的法则进行运算即可.【详解】解:94()()a b b a −÷−94()()a b a b =−÷−5()a b =−.故答案为:5()a b −.【点睛】本题主要考查同底数幂的除法,解答的关键是对同底数幂除法法则的掌握.9.(2023秋·上海青浦·七年级校考期末)计算:()()2333142a b a b b −−−⋅÷=____________.(结果只含有正整数指数幂) 【答案】934b a【分析】根据幂的运算法则和整式的混合运算法则计算可得.【详解】解:()()2333142a b a b b −−−⋅÷293464a b a b b −−=⋅÷()492634a b +−−−=934a b −=394b a =.【点睛】本题主要考查整式的混合运算,解题的关键是熟练掌握幂的运算法则和整式的混合运算法则.10.(2022秋·上海·七年级专题练习)计算:62a a ÷(-)(-)=______. 【答案】4a −【分析】先依据公式得出正确的符号,再利用幂的除法公式计算.【详解】62624a a a a a −÷−−÷−()()=()=.故答案为:4a −.【点睛】本题考查幂的运算,正确运用公式是解题的关键.11.(2019秋·上海·七年级上海市张江集团中学校考期中)已知3m a =,5n a =,则32m n a +=_______________ 【答案】675【分析】根据幂的乘方以及同底数幂的乘法法则解答即可. 【详解】∵am=3,an=5,∴a3m+2n=(am)3•(an)2=33×52=27×25=675. 故答案为:675.【点睛】本题考查了幂的乘方与积的乘方以及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.【答案】9【分析】根据同底数幂除法的逆用、幂的乘方的逆用进行计算即可得.【详解】解:因为102a =,109b=,所以112210100100b aa b −=÷1222(10)(10)b a=÷1222(10)10b a ⨯=÷2210b=÷49=÷49=,故答案为:49.【点睛】本题考查了同底数幂除法的逆用、幂的乘方的逆用,熟练掌握各运算法则是解题关键.13.(2023秋·上海静安·七年级新中初级中学校考期末)若15m x =,5n x =,则m n x −等于_____. 【答案】3【分析】逆向运算同底数幂的除法法则计算即可.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.【详解】解:∵xm=15,xn=5, ∴xm-n=xm÷xn=15÷5=3. 故答案为:3.【点睛】本题考查了同底数幂的除法,掌握幂的运算法则是解答本题的关键.14.(2023·上海·七年级假期作业)已知5m a =,5n b =,则25m n +=______,235m n −=______.(请用含有a ,b 的代数式表示)【答案】 2a b /2ba 23a b【分析】逆用同底数幂的乘法,幂的乘方,同底数幂的除法运算法则,进行计算即可.【详解】解:∵5m a =,5nb =,∴()222255555m n m n m n a b+=⋅=⋅=;()()223232323355555m nmnm n a a b b −=÷=÷=÷=.故答案为:2a b ;23a b .【点睛】本题主要考查了同底数幂的乘法,同底数幂的除法,幂的乘方,解题的关键是熟练掌握同底数幂的乘法,幂的乘方,同底数幂的除法运算法则.15.(2023·上海·七年级假期作业)已知2m a =,3n a =,那么3m n a −=___________. 【答案】83【分析】根据同底数幂的除法底数不变指数相减,可得答案. 【详解】解:2m a =,3n a =,∴3m na−3mnaa =÷3()m na a =÷323=÷83=.故答案为:83.【点睛】本题考查了同底数幂的除法,逆用同底数幂除法的计算法则是解题关键.16.(2022秋·上海·七年级阶段练习)﹣y 3•y 5÷(﹣y )4=_____.【答案】﹣y4【分析】先计算幂的乘方,再计算同底数幂的乘、除法,注意负号的作用.【详解】解:﹣y3•y5÷(﹣y )4=﹣y8÷y4=﹣y4故答案为:﹣y4【点睛】本题考查幂的乘方、同底数幂的乘除法等知识,是基础考点,掌握相关知识是解题关键.17.(2022秋·七年级单元测试)已知5230x y −−=,则324x y ÷=________.【答案】8【分析】先求出523x y −=,然后逆用幂的乘方法则对所求式子变形,再根据同底数幂的除法法则计算.【详解】解:∵5230x y −−=,∴523x y −=,∴5253228324222x y x y x y −===÷=÷, 故答案为:8.【点睛】本题考查了代数式求值,涉及幂的乘方的逆用,同底数幂的除法,有理数的乘方运算,熟练掌握运算法则是解题的关键.18.(2023·上海·七年级假期作业)已知2320x y −−=,则927x y ÷的值为________.【答案】9【分析】先变形,再根据同底数幂的除法进行计算,最后整体代入求出即可.【详解】解:∵2320x y −−=,∴232x y −=,∴927x y ÷2333x y =÷233x y −=23=9= 故答案为9.【点睛】本题考查了同底数幂的除法、幂的乘方等知识点,能正确根据法则进行变形是解此题的关键.三、解答题19.(2023·上海·七年级假期作业)计算:(1)()()105x y x y +÷+;(2)()()97a b b a −÷−. 【答案】(1)()5x y +(2)222a ab b −+− 【分析】(1)利用同底数幂的除法进行运算;(2)先将底数均化为a b −,再利用同底数幂的除法运算.【详解】(1)解:1055()()()x y x y x y +÷+=+;(2)解:97()()a b b a −÷−97()()a b a b ⎡⎤=−÷−−⎣⎦2()a b =−−222a ab b =−+−. 【点睛】本题考查了同底数幂的除法,熟练掌握相关运算规则是解题的关键.20.(2022秋·上海·七年级校考期中)计算:()()222334222a a a a a a +−−÷ 【答案】6a【分析】根据同底数幂乘法的法则,积的乘方的运算法则,同底数幂除法的运算法则先化简计算,然后合并同类项即可.【详解】解:()()222334222a a a a a a +−−÷668244a a a a =+−÷66644a a a =+−6a = 【点睛】本题考查了整式的混合运算,解题的关键是掌握相关公式并灵活运用.幂的乘方法则:底数不变,指数相乘.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. 21.(2023·上海·七年级假期作业)计算:(1)()()4334a a −÷−; (2)()()22237a a a a ⋅÷⨯−. 【答案】(1)1−(2)5a【分析】(1)先计算幂的乘方,再计算同底数幂的除法;(2)先计算同底数幂的乘法、乘方,再计算同底数幂的乘法与除法.【详解】(1)解:()()()433412121a a a a −÷−=÷−=−;(2)解:()()()22223757210725a a a a a a a a a −+⋅÷⨯−=÷⋅==.【点睛】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,()n m mn a a =,m n m n a a a −÷=(0a ≠,m ,n 都是正整数),注意负数的奇次幂还是负数.22.(2022秋·上海·七年级专题练习)已知3m =4,3n =5,分别求3m +n 与32m ﹣n 的值.【答案】20,165【分析】利用同底数幂的乘法的逆用法则,同底数幂的除法的逆用法则,幂的乘方的逆用法则对所求的式子进行整理,再代入运算即可.【详解】解:3334520m m n n +=⋅=⨯=;222233316(53)534m n m n m n −=÷=÷=÷=.【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.23.(2022秋·上海·七年级专题练习)已知34m =,35n =,分别求3m n +与23m n −的值.【答案】20,165【分析】同底数幂的除法的逆用法则,幂的乘方的逆用法则对所求的式子进行整理,再代入运算即可.【详解】解:3m n +33m n =⋅45=⨯20=;23m n −233m n =÷()233m n =÷245=÷165=.【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.24.(2022秋·上海·七年级校考期中)已知96,32b a ==,求323a b −的值. 【答案】43【分析】先根据幂的乘方求出3336,38b a ==,再逆用同底数幂的除法计算即可. 【详解】∵96,32b a ==, ∴233396,328b b a ====,∴3243863a b −=÷=.【点睛】本题考查了幂的乘方,同底数幂的除法,熟练掌握运算法则是解题的关键.25.(2021秋·上海浦东新·七年级期末)计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.【答案】﹣7a8【分析】根据同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,最后合并同类项即可【详解】解:a•a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点睛】本题考查了同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,掌握幂的运算是解题的关键.26.(2023·上海·七年级假期作业)若32x =,35y =,求23x y −的值. 【答案】45【分析】逆用幂的乘方,除法法则计算即可.【详解】()22233333x y x y x y −=÷=÷,把32x =,35y =代入得()224333455x y x y −=÷=÷=.【点睛】本题考查了同底数幂的乘方与除法,熟练掌握运算法则是解题的关键.。
第03讲 同底数幂的除法(6类热点题型讲练)1.经历同底数幂的除法法则的探索过程,理解同底数幂的除法法则;2.理解零次幂和负整数指数幂的意义,并能进行负整数指数幂的运算;3.会用同底数幂的除法法则进行计算.知识点01 同底数幂的除法m n m n a a a -÷=(其中都是正整数).即同底数幂相除,底数不变,指数相减.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)逆用公式:即=m n m n aa a -÷(都是正整数).知识点02 零指数幂:01a =(a ≠0)知识点03 负指数幂:1p p a a-=(a ≠0,p 是正整数)题型01 同底数幂的除法【例题】(2023上·八年级课时练习)计算:(1)()()()722ab ab ab-÷-÷-;,m n ,m n(2)()243m m ÷;(3)()()426x x x -×÷-.【答案】(1)33a b -(2)5m (3)4x -【分析】(1)把()ab -当作一个整体,根据同底数幂的除法法则计算,再利用积的乘方法则计算即可;(2)先根据幂的乘方法则计算,再根据同底数幂的除法法则计算;(3)先根据同底数幂的乘法法则计算同时根据有理数乘方进行运算,再根据同底数幂的除法法则计算即可.【详解】(1)解:()()()722ab ab ab -÷-÷-()722ab --=-()3ab =-33a b =-;(2)()243m m ÷83m m =÷5m =;(3)()()426x x x -×÷-84x x =-÷4x =-.【点睛】本题考查整式的乘除混合运算,掌握相应的运算法则、掌握运算顺序是解题的关键.【变式训练】1.(2023上·全国·八年级课堂例题)计算:(1)93m m -÷;(2)63()()a a -÷-;(3)2366m m +÷.【答案】(1)6m -(2)3a -(3)36m +【分析】(1)根据同底数幂的除法运算即可求解;(2)根据同底数幂的除法运算即可求解;(3)根据同底数幂的除法运算即可求解.【详解】(1)解:93m m -÷93m -=-6m =-.(2)解:63()()a a -÷-63()a -=-3()a =-3a =-.(3)解:2366m m +÷236m m +-=36m +=.【点睛】本题主要考查整式的乘除法的运算,掌握其运算法则是解题的关键.2.(2023上·全国·八年级课堂例题)计算:(1)1023a a a ÷÷;(2)255a a a ×÷;(3)()()5222x y x y ÷;(4)432()()()p q q p p q -÷-×-.【答案】(1)5a (2)2a (3)63x y (4)3()p q --【分析】(1)利用同底数幂的除法法则计算即可;(2)利用同底数幂的乘法和除法法则计算即可;(3)利用积的乘方和同底数幂的除法法则计算即可;(4)先把()q p p q -=--,底数p q -作为一个整体,利用同底数幂的乘法和除法计算即可;【详解】(1)解:310231025a a a a a --÷=÷=.(2)解:225755a a a a a a ×÷÷==.(3)解:()()10542635222x x y x y y x y y x =÷÷=.(4)解:3432432()()()()())(()p q q p p q p q p q p p q q -÷-×--÷-×-=-=--.【点睛】本题考查了同底数幂的乘法,同底数幂的除法,积的乘方,熟练运用这些运算法则是解题的关键.题型02 同底数幂除法的逆用∴9728n ´=,∴99n =,∴1n =.【点睛】本题主要考查了同底数幂乘除法的逆运算,幂的乘方和幂的乘方的逆运算,熟知相关计算法则是解题的关键.题型03 幂的混合运算【例题】(2023·上海·七年级假期作业)计算:(1)()()4334a a -÷-; (2)()()22237a a a a ×÷´-.【答案】(1)1-(2)5a 【分析】(1)先计算幂的乘方,再计算同底数幂的除法;(2)先计算同底数幂的乘法、乘方,再计算同底数幂的乘法与除法.【详解】(1)解:()()()433412121a a a a -÷-=÷-=-;(2)解:()()()22223757210725a a a a a a a a a -+×÷´-=÷×==.【点睛】本题考查了同底数幂的乘法与除法,m n m n a a a +×=,()nm mn a a =,m n m na a a -÷=(0a ¹,m ,n 都是正整数),注意负数的奇次幂还是负数.【变式训练】(3)221684n n n ÷÷862222n n n =÷÷8622n n n --=02=1=;【点睛】本题主要考查了幂的混合运算及其逆运用,熟练掌握幂的运算性质是解题的关键.2.(2023下·全国·七年级假期作业)计算:(1)2642135(2)5x x x x x ×--+÷(2)253()()[()]a b b a a b -×-÷--;(3)先化简,再求值:426223225(3)()(2)a a a a a éù×-÷÷-ëû,其中5a =-.【答案】(1)82x (2)4()a b -(3)2a -,-25.【分析】(1)先算幂的乘方,再算乘除,最后计算加减即可求解;(2)把()a b - 作为一个整体,从左往右计算,即可求解;(3)先算括号内的,再计算除法,最后再代入求值,即可求解.【详解】(1)原式88845x x x =-+8(145)x =-+82x =;(2)原式253()()[()]a b a b a b =---÷--4()a b =-.(3)原式=()61264594a a a a -÷÷=6444a a -÷ =2a -,当a =-5时,原式=-25.【点睛】本题主要考查了幂的混合运算,零指数幂,负整数指数幂,熟练掌握幂的运算法则,零指数幂,负整数指数幂法则是解题的关键.题型04 零指数幂题型05负整数指数幂题型06用科学计数法表示绝对值小于1的数【变式训练】一、单选题1.(2023上·河南濮阳·八年级校联考期中)下列各式运算结果为6x 的是( )A . 24x x ×B .()42xC .122x x ÷D .33x x +【答案】A【分析】直接根据同底数幂的乘除法,幂的乘方,合并同类项的运算法则计算各项,即可得到答案.【详解】解:A .24246x x x x +×==,故选项符合题意;B .()428x x =,故选项不符合题意;C .12210122x x x x -÷==,故选项不符合题意;D .3332x x x +=,故选项不符合题意.故选:A .2.(2023上·四川宜宾·八年级统考期中)下列计算正确的是( )A .426235a a a +=B .824a a a ÷=C .53822a a a ×=D .()236a b a b =【答案】C【分析】本题考查的是合并同类项,同底数幂的除法,乘法运算,积的乘方运算,根据各自的运算法则逐一分析即可,熟记运算法则是解本题的关键.【详解】解:A 、42a 与23a 不是同类项,不能合并,不符合题意;B 、826a a a ÷=,故本选项计算错误,不符合题意;C 、53822a a a ×=,计算正确,符合题意;D 、()2362a b a b =,故本选项计算错误,不符合题意;故选:C .3.(2023上·吉林松原·八年级校联考期末)经测算,一粒芝麻的质量约为0.00000201kg ,数据0.00000201用科学记数法表示为( )A .320.110-´B .42.0110-´C .50.20110-´D .62.0110-´【答案】D【分析】本题考查用科学记数法表示较小的数,一般形式为10n a -´,其中1||10a £<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -´,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:60.00000201 2.0110-=´.故选:D .4.(2023上·河南濮阳·八年级校联考期中)若()021x +=,则x 的取值范围是( )A .2x ³-B .2x £-C .2x ¹-D .2x =- 【答案】C【分析】本题考查零指数幂的意义,根据零指数幂的定义即可判断.【详解】解:根据零指数幂的意义,20x +¹,∴2x ¹-.故选:C .5.(2023上·河南新乡·八年级校考阶段练习)下列四个算式:①()()4322x x x -÷-=-;②()()2122242n n x x x +--÷-=-;③()2522a b a b a ÷=;④()2642221832a b a b a b ÷-=.其中计算不正确的是( )A .①②B .①③C .②④D .②③【答案】B 【分析】本题考查幂的运算,涉及同底数幂的除法、积的乘方、幂的乘方等知识,是基础考点,掌握相关知识是解题关键.根据同底数幂的除法、积的乘方、幂的乘方法则逐个解题【详解】解:①()()43222x x x -÷-=-,错误,②()()2122242n n x x x +--÷-=-,正确,③()2522a b a b a ÷=,错误,④()2642221832a b a b a b ÷-=,正确故①③错误,故选:B .【答案】2【分析】本题主要考查了整式的加减计算,同底数幂除法的逆运算,先分别表示出经过取走和取出后,甲、乙、丙三个袋子中的球数分别为个,由此得到292y-【详解】解:经过取走和取出后,∴82126y x ==,,∴2221682x y x y -=÷=÷=,故答案为:2.。
同底数幂的除法习题带答案同底数幂的除法习题带答案在数学学习中,我们经常会遇到同底数幂的除法运算。
这种运算需要我们了解指数的性质,并运用相应的规则进行计算。
下面,我将为大家提供一些同底数幂的除法习题,并附上详细的答案解析,希望对大家的学习有所帮助。
1. 计算:(2^5) ÷ (2^3) = ?解析:根据指数的性质,同底数幂的除法可以简化为底数不变,指数相减的形式。
所以,(2^5) ÷ (2^3) = 2^(5-3) = 2^2 = 4。
答案:42. 计算:(5^4) ÷ (5^2) = ?解析:同样地,根据指数的性质,(5^4) ÷ (5^2) = 5^(4-2) = 5^2 = 25。
答案:253. 计算:(10^6) ÷ (10^3) = ?解析:利用指数的性质,(10^6) ÷ (10^3) = 10^(6-3) = 10^3 = 1000。
答案:10004. 计算:(8^3) ÷ (8^2) = ?解析:根据指数的性质,(8^3) ÷ (8^2) = 8^(3-2) = 8^1 = 8。
答案:85. 计算:(3^7) ÷ (3^4) = ?解析:同样地,(3^7) ÷ (3^4) = 3^(7-4) = 3^3 = 27。
答案:27通过以上的习题,我们可以看到,同底数幂的除法运算可以通过简化指数的方式进行计算。
这种运算规则在解决实际问题时非常有用。
除了简单的习题,我们也可以通过复杂一些的例子来加深对同底数幂的除法运算的理解。
例题1:计算:(2^8) ÷ (2^5) = ?解析:根据指数的性质,(2^8) ÷ (2^5) = 2^(8-5) = 2^3 = 8。
答案:8例题2:计算:(6^5) ÷ (6^3) = ?解析:同样地,(6^5) ÷ (6^3) = 6^(5-3) = 6^2 = 36。
原创精品资源学科网独家享有版权,侵权必究!1专题02同底数幂的除法(除法、逆运算、混合运算、零指数幂40题)目录一、同底数幂的除法运算,10题,难度三星........................................................................................................1二、同底数幂除法的逆用,10题,难度三星........................................................................................................8三、幂的混合运算,10题,难度三星..................................................................................................................14四、零指数幂,10题,难度三星 (23)一、同底数幂的除法运算,10题,难度三星1.(2023下·四川达州·七年级校考期末)下列计算正确的是()A .5552x x x ⋅=B .325a a a +=C .2383()ab a b =D .4222()()bc bc b c -÷-=【答案】D【分析】分别运用同底数幂的乘法,合并同类项法则,幂的乘方和同底数幂的除法运算即可.【详解】解:A 、5510x x x ⋅=,所以此选项错误;B 、32a a +,不能运算,所以此选项错误;C 、2363()a b a b =,所以此选项错误;D 、42222()()()bc bc bc b c -÷-=-=,所以此选项正确,故选:D .【点睛】此题考查了同底数幂的乘法,合并同类项法则,幂的乘方和同底数幂的除法运算,掌握运算法则是解题的关键.2.(2024下·全国·七年级假期作业)下列计算错误的是()A .2571a a a-÷=B .()63123b a ba-=C .232461b a a b -⎛⎫= ⎪⎝⎭D .()()8322228b a b a ba---⋅=【答案】C【分析】根据同底数幂的除法运算,积的乘方运算,负整数指数幂的运算法则,进行运算,即可一一判定.【详解】C解:A.25771a a a a --÷==,正确,故该选项不符合题意;原创精品资源学科网独家享有版权,侵权必究!3原创精品资源学科网独家享有版权,侵权必究!5329444=⨯-⨯512=.【点睛】本题考查同底数幂的乘除法,幂的乘法以及积的乘方,掌握同底数幂的除法法则,幂的乘法以及积的乘方法则是解题的关键.9.(2024下·全国·七年级假期作业)按要求解答下列各小题.(1)已知1012m =,103n =,求10m n -的值;(2)如果33a b +=,求327a b ⨯的值;(3)已知682162m m ⨯÷=,求m 的值.【答案】(1)4(2)27(3)1m =-【分析】(1)根据同底数幂相除的运算法则即可得到答案;(2)将27b 变成底数为3的幂,根据同底数幂相乘的法则即可得到答案;(3)将8,16m 变为底数为2的幂,再根据同底数幂相乘及相除的法则即可得到答案.【详解】(1)解:∵1012m =,103n =,∴4101210310m m n n -÷==÷=;(2)解:由题意可得,33327333a b a b a b +⨯=⨯=,∵33a b +=,∴3327327a b ⨯==;(3)解:由题意可得,36344222821622m m m m m m +-=÷=⨯=⨯÷,∴346m m +-=,解得1m =-.【点睛】本题考查同底数幂乘除的法则:同底数幂相乘底数不变指数相加,同底数幂相除底数不变指数相减.10.(2024下·全国·七年级假期作业)定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,(3)(3)(3)(3)-÷-÷-÷-写作(3)-④,读作“(3)-的圈4次方”.原创精品资源学科网独家享有版权,侵权必究!74=二、同底数幂除法的逆用,10题,难度三星原创精品资源学科网独家享有版权,侵权必究!922261248n p n p +=⋅=⨯= ,()44422381mm ===,422n p m +∴≠,4n p m ∴+≠,故④错误,不符合题意;∴正确的有:①②③,故答案为:①②③.【点睛】本题主要考查了同底数幂的除法的逆运算、同底数幂的乘法的逆运算及幂的乘方的逆运算,熟练掌握运算法则是解题的关键.13.(2024下·全国·七年级假期作业)对于整数a 、b 定义运算:()()b m a n a b a b =+※(其中m 、n 为常数),如2332(3)(2)m n =+※.(1)填空:当1m =,2023n =时,2)(1=※__________;(2)若1410=※,2215=※,求214m n +-的值.【答案】(1)3(2)81【分析】(1)根据新定义的运算方法计算即可;(2)根据条件结合新定义的运算方法判断出49n =,46m =,可得结论.【详解】(1)解:112202321(2)(1)=+※21=+3=,故答案为:3;(2)1410= ※,2215=※,41(1)(4)10m n +=,225(2)(2)1n m +=,整理得:49n =,4415m n +=,解得:46m =,2124444m n m n +-=⨯÷2(4)44m n =⨯÷2694=⨯÷81=.【点睛】本题考查新定义运算和幂的运算法则,包括幂的乘方,同底数幂相乘的逆用,同底数幂相除的逆用,实数的混合运算,解题的关键是理解题意,灵活运用幂的运算法则解决问题.原创精品资源学科网独家享有版权,侵权必究!11原创精品资源学科网独家享有版权,侵权必究!13(2) 4216y x ==,442162y x ∴===,24x y ∴=±=,,当24x y ==,时,222410x y +=+⨯=,当24x y =-=,时,22246x y +=-+⨯=,∴2x y +的值为10或6;(3) 75p =,57q =,()()()5735353535755735575757p q ∴=⨯=⨯=⨯=.【点睛】本题主要考查了同底数幂的除法的逆用、幂的乘方的逆用、已知字母的值求代数式的值,熟练掌握运算法则是解题的关键.三、幂的混合运算,10题,难度三星原创精品资源学科网独家享有版权,侵权必究!15原创精品资源学科网独家享有版权,侵权必究!17原创精品资源学科网独家享有版权,侵权必究!19原创精品资源学科网独家享有版权,侵权必究!21计算,同时注意计算中需注意的事项是本题的解题关键.四、零指数幂,10题,难度三星原创精品资源学科网独家享有版权,侵权必究!23原创精品资源学科网独家享有版权,侵权必究!252()m n=⋅a a2=⨯28=⨯48=.32【点睛】本题主要考查了实数的运算,有理数的乘方法则,负整数指数幂的意义和零指数幂的意义,幂的乘方与同底数幂的乘法法则,熟练掌握上述法则与性质是解题的关键.原创精品资源学科网独家享有版权,侵权必究!27。
专题1.8 同底数幂的除法(拓展提高)一、单选题1.下列计算正确的是( )A .2223a a a +=B .824a a a ÷=C .324a a a ⋅=D .()236a a = 【答案】D【分析】根据合并同类项法则,同底数幂的乘法和除法,幂的乘方运算法则对四个选项依次判断即可.【详解】解:A 选项,2223a a a +≠,故A 选项不符合题意;B 选项,8264a a a a ÷=≠,故B 选项不符合题意;C 选项,3254a a a a ⋅=≠,故C 选项不符合题意;D 选项,()236a a =,故D 选项符合题意. 故选:D .【点睛】本题考查了合并同类项法则,同底数幂的乘法和除法,幂的乘方运算法则,熟练掌握这些知识点是解题关键.2.运算结果为6a 的式子是( )A .32a a ⋅B .()32aC .122a a ÷D .7a a -【答案】B【分析】先将选项中的式子进行化简算出正确的结果,然后进行对照即可解答本题.【详解】解:A .33522a a a a +⋅==,故不符合题意;B .()23236a a a ⨯==,符合题意;C .12210122=a a a a -=÷ ,故不符合题意;D . 7a 与a -无法合并,故不符合题意;故选:B【点睛】本题考查幂的乘方与积的乘方、合并同类项、同底数幂的乘除法,解题的关键是明确它们各自的计算方法.3.2a m =,3b m =,4c m =,则a b c m +-的值为.( )A .1B .1.5C .2D .2.5【答案】B【分析】根据幂的运算的逆运算,把所求变成同底数幂相乘和除法即可.【详解】解:=a a c b b c m m m m +-⨯÷,=234⨯÷=1.5故选:B .【点睛】本题考查了幂的运算,解题关键是熟练运用幂的运算的逆运算,把所求式子变形.4.下列运算:①236a a a ⋅=;②()236a a =;③55a a a ÷=;④333()ab a b =.其中结果正确的有( ) A .1个B .2个C .3个D .4个【答案】B 【分析】按照幂的运算法则直接判断即可.【详解】解:①235a a a ⋅=,原式错误;②()236a a =,原式正确; ③551a a ÷=,原式错误;④333()ab a b =,原式正确;故选:B .【点睛】本题考查了幂的运算,熟记幂的运算法则,注意它们之间的区别是解题关键.5.太阳到地球的距离约为81.510km ⨯,光的速度约为53.010/km s ⨯,则太阳光到达地球的时间约为( ) A .50sB .2510s ⨯C .3510s ⨯D .4510s ⨯ 【答案】B【分析】根据太阳到地球的距离除以光的速度,即可得出太阳光到达地球的时间.【详解】∵太阳到地球的距离约为1.5×108km ,光的速度约为3.0×105km/s , ∴太阳光到达地球的时约为:(1.5×108)÷(3.0×105)=5×102(s ).故选:B .【点睛】本题主要考查了同底数幂的除法以及科学记数法,熟记幂的运算法则是解答本题的关键. 6.若33333333333m k +++⋅⋅⋅+=个(1k >,k ,m 都为正整数),则m 的最小值为( ) A .3B .4C .6D .9 【答案】B【分析】计算3333333333333m k k +++⋅⋅⋅+=⋅=个,再利用同底数幂的除法,结合1k >,k ,m 都为正整数求得m的最小值.【详解】∵3333333333333mk k +++⋅⋅⋅+=⋅=个∴33m k -=.∵1k >,k ,m 都为正整数,∴k 的最小值为3,此时m 取得的最小值为4,故选B .【点睛】本题考查同底数幂的除法.关键在于找到k 与m 之间的关系.二、填空题7.计算423287x y x y -÷的结果等于___________.【答案】4xy -【分析】利用同底数除法的法则计算即可【详解】解:423287x y x y -÷=-4x 4-3y 2-1=-4xy故答案为:-4xy【点睛】本题考查同底数除法法则,正确使用法则是关键8.已知9a =8,3b =4,则32a -b =__________;【答案】2【分析】根据幂的乘方法则以及同底数幂的除法法则计算即可.【详解】∵9a =(3a )2=8,3b =4,∴32a -b =(3a )2÷3b =8÷4=2,故答案为:2【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.9.若x ,y 均为实数,432021x =,472021y =,则4347xy xy ⋅=______x y +;11x y+=_______. 【答案】2021 1【分析】根据同底数幂乘法、积的乘方、幂的乘方等计算法则进行等量代换即可.【详解】解:∵432021x =,472021y =∴(432021)x y y =,(472021)y x x =,4347(43)(47)202120212021xy xy x y y x y x x y +⋅=⨯=⨯=,故答案为:2021;∵=4)3(4347202147xy xy xy xy =⋅⨯,即20212021xy x y +=,∴xy x y =+, ∴111x y x y xy++==, 故答案为:1.【点睛】本题主要考查同底数幂乘法、积的乘方、幂的乘方等知识点,熟练掌握以上知识点的运算法则是解决本题的关键.10.已知8m a =,2n a =.则m n a -=___________,m 与n 的数量关系为__________.【答案】4 3m n =【分析】由同底数的除法可得:m n m n a a a -=÷,从而可得:m n a -的值,由2n a =,可得38,n a =可得3,m n a a =从而可得答案. 【详解】解:8m a =,2n a =∴ 824,m n m n a a a -=÷=÷=2n a =,()3328,n a ∴== 38,n a ∴=3,m n a a ∴=3.m n ∴=故答案为:43m n =,.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键.11.已知10m =20,10n 15=,则10m ﹣n =__;9m ÷32n =____ 【答案】100 81【分析】根据同底数幂的除法可得第一个空的值及m 与n 的关系,根据幂的乘方及同底数幂的除法即可得出第二个空的答案.【详解】解:∵10m =20,10n 15=, ∴10m ﹣n =10m ÷10n 1205=÷=100; ∴m ﹣n =2,9m ÷32n =32m ÷32n =32m ﹣2n =32(m ﹣n )=34=81.故答案为:100;81.【点睛】本题考查了同底数幂的除法,根据法则计算是解题的关键.12.月球距离地球约为3.84×105千米,一架飞机速度约为8×102千米/时,若坐飞机飞行这么远的距离需__________天.【答案】20【分析】根据题意列出运算式子,再计算同底数幂的除法即可得.【详解】由题意得:()5224203.8410810⨯⨯÷÷=,即若坐飞机飞行这么远的距离需20天,故答案为:20.【点睛】本题考查了同底数幂除法的实际应用,依据题意,正确列出运算式子是解题关键.13.如果a c =b ,那么我们规定(a ,b)=c ,例如:因为23=8,所以(2,8)=3.若(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,则m=________. 【答案】256【分析】由新规定的运算可得3a =5,3b =6,m=32a-b ,再将32a-b ,转化为2(3)3a b后,再代入求值即可. 【详解】解:由于(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,根据新规定的运算可得,3a =5,3b =6,m=32a-b , ∴222(3)5253366a a bb m -====, 故答案为:256. 【点睛】本题考查了幂的乘方,同底数幂的除法,掌握幂的乘方和同底数幂的除法的计算方法是正确计算的前提,理解新规定运算的意义是解决问题的关键.14.下列有四个结论.其中正确的是__.①若(x ﹣1)x +1=1,则x 只能是2;②若(x ﹣1)(x 2+ax +1)的运算结果中不含x 2项,则a =1;③若a +b =10,ab =2,则a ﹣b =2;④若4x =a ,8y =b ,则23y ﹣2x 可表示b a. 【答案】②④【分析】根据多项式乘多项式、幂的乘方、同底数幂除法、零指数幂、完全平方公式等逐一进行计算即可.【详解】解:①若(x ﹣1)x +1=1,则x 是2或﹣1.故①错误;②若(x ﹣1)(x 2+ax +1)的运算结果中不含x 2项,∵(x ﹣1)(x 2+ax +1)=x 3+(a ﹣1)x 2+(1﹣a )x ﹣1,∴a ﹣1=0,解得a =1,故②正确;③若a +b =10,ab =2,∵(a ﹣b )2=(a +b )2﹣4ab =100﹣8=92,则a ﹣b =±③错误; ④若4x =a ,8y =b ,则23y ﹣2x =(23)y ÷(22)x =8y ÷4x =b a.故④正确. 所以其中正确的是②④.故答案为:②④.【点睛】本题考查多项式乘多项式、幂的乘方、同底数幂除法、零指数幂、完全平方公式等.熟练掌握相关公式是解题关键.三、解答题15.计算(1)23a a ⋅(2)()322y y ⋅ (3)3236415x y x y ⎛⎫-- ⎪⎝⎭ (4)852()()()x y y x y x -÷-⋅-.【答案】(1)5a ;(2)8y ;(3)64691125x y x y --;(4)5()y x - 【分析】(1)直接利用同底数幂的乘法计算即可;(2)先计算幂的乘方,再计算同底数幂的乘法;(3)直接利用积的乘方计算即可;(4)先利用乘方的符号法则将底数化为相同,再利用同底数幂的乘、除法计算即可.【详解】解:(1)原式=235a a +=;(2)原式=62y y ⋅=8y ;(3)原式=64691125x y x y --;(4)原式=852()()()y x y x y x -÷-⋅-=852()y x -+-=5()y x -.【点睛】本题考查幂的相关运算.主要考查同底数幂的乘、除法,幂的乘方和积的乘方.(4)中注意底数互为相反数时可先将底数化为相同在利用同底数幂的乘、除法计算.16.已知2m a =,3n a =.(1)求2m n a +的值;(2)23m n a -的值.【答案】(1)18;(2)427【分析】(1)先将2m n a +变形为()22=m n m n a a a a ,再代入m a ,n a 的值求解;(2)将23m n a -变形为()()23m n a a ÷,再代入m a ,n a 的值求解即可. 【详解】解:(1)原式2m n a a =()2=m n a a把2m a =,3n a =代入上式中 ()222318m n a a =⨯=(2)原式=23m n a a -()()23m n a a =÷ 把2m a =,3n a =代入上式中()()232342327m n a a ÷=÷= 故答案为:(1)18;(2)427. 【点睛】本题考查了同底数幂的除法、同底数幂的乘法,幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.17.根据题意,完成下列问题.(1)若8,2322m n ==,求22m n -的值;(2)已知2330x y +-=,求48x y ⋅的值;(3)已知22332510x x x ++-⋅=,求x 的值.【答案】(1)2;(2)8;(3)52. 【分析】(1)先逆用同底数幂的乘法公式、同底数幂的除法公式和幂的乘方公式,将22m n -转化为()222m n ÷的形式,再代入8,2322m n ==进行计算即可;(2)先求出233x y +=,再利用幂的乘方公式和同底数幂的乘法公式将48x y ⋅转化为232x y +的形式,最后代入数值运算即可;(3)先逆用积的乘方公式将2225x x ++⋅转化为210x +,然后得到关于x 的一元一次方程后求解即可.【详解】解:(1)∵8,2322m n ==,∴()22222283264322m n m n -=÷=÷=÷=;∴22m n -的值为2.(2)∵2330x y +-=,∴233x y +=,∴232334822228x y x y x y +⋅=⋅===;∴48x y ⋅的值为8.(3)∵2222510x x x +++⋅=,∴2331010x x +-=,∴233x x +=-, ∴52x =, ∴x 的值为52. 【点睛】本题综合考察了同底数幂的乘法公式以及逆用、同底数幂的除法公式的逆用、幂的乘方公式及其逆用、积的乘方公式及其逆用等知识,要求学生能理解并熟记公式,能灵活运用公式对代数式进行变形等,考察了学生对基础知识的理解与公式的掌握,本题蕴含了整体代入的思想方法.18.(1)填空()10222-=()21222-=()32222-=(2)探索(1)中式子的规律,试写出第n 个等式,并说明理由.(3)计算234991*********+++++⋯++;【答案】(1)0, 1,2;(2)2n -2n -1=2n -1,理由见解析;(3)2101-1.【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得2n -2n -1=2n -1,然后利用提2n -1可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式,相减即可.【详解】解:(1)21-20=2-1=20,22-21=4-2=21,23-22=8-4=22;故答案为: 0, 1,2;(2)第n 个等式为:2n -2n -1=2n -1,∵左边=2n -2n -1=2n -1(2-1)=2n -1,右边=2n -1,∴左边=右边,∴2n -2n -1=2n -1;(3)设a =20+21+22+23+…+299+2100.①则2a =21+22+23+…+299+2100+2101②由②-①得:a =2101-1∴20+21+22+23+…+298+2100=2101-1.【点睛】此题主要考查了探寻数列规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:2n -2n -1=2n -1成立.19.小明和小红在计算100101133⎛⎫-⨯ ⎪⎝⎭时,分别采用了不同的解法. 小明的解法:10010010010110010011133333(1)33333⎡⎤⎛⎫⎛⎫⎛⎫-⨯=-⨯⨯=-⨯⨯=-⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 小红的解法:()100100100101101110110010111333333333--⎛⎫⎛⎫-⨯=⨯=⨯=⨯= ⎪ ⎪⎝⎭⎝⎭.请你借鉴小明和小红的解题思路,解决下列问题:(1)若4310a b -+=,求2213927a b +⨯÷的值;(2)已知x 满足24222296x x ++-=,求x 的值.【答案】(1)27;(2)32x =. 【分析】(1)根据同底数幂的乘法和除法化简2213927a b +⨯÷,然后再计算即可;(2)将24222296x x ++-=化成2222222926x x ++-=⨯,然后得到22232x +=,然后再化成指数相同计算即可.【详解】解:(1)2213927a b +⨯÷()()21223333a b+=⨯÷ 2423333a b +=⨯÷4433a b +-=4343a b -+=∵4310a b -+=∴431a b -=-∴原式1433327-+===;(2)∵24222296x x ++-=∴2222222926x x ++-=⨯∴()22222196x +-=⨯∴229326x +⨯=∴22232x +=∴22522x +=∴225x += ∴32x =. 【点睛】本题考查了同底数幂的运算,熟悉相关性质是解题的关键.20.阅读以下材料,苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler .1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地.若x a N =(0a >且1a ≠),那么x 叫做以a 为底N 的对数,记作log a x N =,比如指数式4216=可以转化为对数式24log 16=,对数式32log 9=可以转化为指数式239=.我们根据对数的定义可得到对数的一个性质:log ()log log (0,1,0,0)a a a M N M N a a M N ⋅=+>≠>>,理由如下:设log ,log a a M m N n ==,则,n m M a N a ==.m n m n M N a a a +∴⋅=⋅=.由对数的定义得log ()a m n M N +=⋅又log log a a m n M N +=+log ()log log a a a M N M N ∴⋅=+.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①2log 32=___________;②3log 27=_______,③7log l =________;(2)求证:log log log (0,1,0,0)a a a M M N a a M N N=->≠>>; (3)拓展运用:计算555log 125log 6log 30+-.【答案】(1)5,3,0;(2)见解析;(3)2【分析】(1)直接根据定义计算即可;(2)结合题干中的过程,同理根据同底数幂的除法即可证明;(3)根据公式:log a (M •N )=log a M +log a N 和log a M N =log a M -log a N 的逆用,将所求式子表示为:5125630log ⨯,计算可得结论.【详解】解:(1)①∵5232=,∴2log 32=5,②∵3327=,∴3log 27=3,③∵071=,∴7log 1=0;(2)设log a M =m ,log a N =n ,∴m a M =,n a N =, ∴m n m n M a a a N -÷==, ∴log aM m n N =-, ∴log log log a a a M M N N=-; (3)555log 125log 6log 30+- =5125630log ⨯ =5log 25=2.【点睛】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.。
同底数幂的除法同步练习题3套(含答案)同底数幂的除法(一)同步练习【知识提要】 1.理解并掌握同底数幂的除法法则. 2.会熟练地进行同底数幂的除法运算.【学法指导】 1.运算时,如果底数相同,则用法则运算;如果底数不同,•但可能化为同底数,则先转化,后运算. 2.混合运算时,要按运算顺序进行.范例积累【例1】(1)a9÷a3;(2)212÷27;(3)(-x)4÷(-x);(4).【解】(1)a9÷a3=99-3=66;(2)212÷27=212-7=25=32;(3)(-x)4÷(-x)=(-x)3=-x3;(4)=(-3)11-8=(-3)3=-27.【注意】指数相等的同底数的幂相除,商等于1.【例2】计算:(1)a5÷a4•a2;(2)(-x)7÷x2;(3)(ab)5÷(ab)2;(4)(a+b)6÷(a+b)4.【解】(1)a5÷a4•a2=a5-4•a2=a3;(2)(-x)7÷x2=-x7÷x2=-x7-2=-x5;(3)(ab)5÷(ab)2=(ab)5-2=(ab)3=a3b3;(4)(a+b)6÷(a+b)4=(a+b)6-4=(a+b)2=a2+2ab+b2.【注意】同底数幂乘除运算是同级运算,按从左到右的顺序进行运算.基础训练 1.判断题(对的打“∨”,错的打“×”)(1)a9÷a3=a3;()(2)(-b)4÷(-b)2=-b2;()(3)s11÷s11=0 ;()(4)(-m)6÷(-m)3=-m3;()(5)x8÷x4÷x2=x2;()(6)n8÷(n4×n2)=n2.() 2.填空:(1)1010÷______=109;(2)a8÷a4=_____;(3)(-b)9÷(-b)7=________;(4)x7÷_______=1;(5)(y5)4÷y10=_______ ;(6)(-xy)10÷(-xy)5=_________. 3.计算:(s-t)7÷(s-t)6•(s-t). 4.下列计算错误的有()①a8÷a2=a4;②(-m)4÷(-m) 2=-m2;③x2n÷xn=xn;④-x=2÷(-x)2=-1. A.1个 B.2个 C.3个 D.4个 5.下列计算结果正确的是() A.(mn)6÷(mn)3=mn3 B.(x+y)6÷(x+y)2•(x+y)3=x+y C.x10÷x10=0 D.(m-2n)3÷(-m+2n)3=-1 6.下面计算正确的是() A.712÷712=0 B.108÷108=0 C.b10÷b5=b5 D.m6-m6=1 7.100m÷100 0n的计算结果是() A. B.100m-2n C.100m-n D.102m-3n提高训练 8.计算:[(xn+1)4•x2]÷[(xn+2)3÷(x2)n].9.天文学上常用地球和太阳的平均距离1.4960×108千米作为一个天文单位,•明明总是抱怨家离学校太远,他家距学校2992米,你能把这个距离折合成天文单位吗?10.解方程:(1)x6•x=38;(2) x=()5.应用拓展 11.若a2m=25,则a-m等于() A. B.-5 C.或- D. 12.现定义运算a*b=2ab-a-b,试计算6*(3*2)的值.答案: 1.(1)× (2)× (3)× (4)∨ (5)∨ (6)∨ 2.(1)10 (2)a4 (3)b2 (4)x7 (5)y10 (6)-x5y5 3.s2-2st+t2 4.B 5.D 6.C 7.D 8.x3n 9.2×10-5•个天文单位 10.(1)x=9 (2)x=()4= 11.C 12.16。
同底数幂的除法试题精选附答案1.已知 $a=6$,$a=3$,则 $a^{2m-3n}$ 的值为()。
A。
9.B。
$6^{2m-3n}$。
C。
2.2.下列计算:①$x÷x=x$,②$(x^m)^n=x^{mn}$,③$(3xy)^2=9x^2y^2$。
其中正确的计算有()。
A。
个。
B。
1个。
C。
2个。
3.已知$x^m=2$,$x^n=3$,则$x^{2m-3n}$ 的值为()。
A。
$-5$。
B。
$\dfrac{1}{6}$。
C。
$-\dfrac{1}{5}$。
4.若 $3x=15$,$3y=5$,则 $3x-y$ 等于()。
A。
5.B。
3.C。
15.5.($-2$)$^{2014}÷$($-2$)$^{2013}$ 等于()。
A。
$-2$。
B。
2.C。
$-2^{2012}$。
6.下面是某同学在一次测验中的计算摘录,其中正确的是()。
A。
$b^3·b^3=b^6$。
B。
$(a^5)^2=a^{10}$。
C。
$(ab^2)^3=a^3b^6$。
7.若 $a^m=2$,$a^n=3$,则 $a^{2m-n}$ 的值是()。
A。
1.B。
12.C。
18.8.$x^{15}÷x^3$ 等于()。
A。
$x^5$。
B。
$x^{45}$。
C。
$x^{12}$。
9.已知 $\dfrac{2amb^4}{4abn}=\dfrac{1}{2}$,则 $m$,$n$ 的值分别为()。
A。
$m=1$,$n=4$。
B。
$m=2$,$n=3$。
C。
$m=3$,$n=4$。
10.若 $m$,$n$ 都是正整数,$a^{mn}÷a^n$ 的结果是()。
A。
$a^m$。
B。
$a^{mn-n}$。
C。
$a^n$。
11.若 $x^{-2y+1}=0$,则 $2x÷4y×8$ 等于()。
A。
1.B。
4.C。
8.12.如果 $a^m=3$,$a^n=6$,则 $a^{n-m}$ 等于()。
8.3 同底数幂的除法知识点 1 同底数幂的除法的运算性质1.填空:(1)a 6÷a 2=a 6( )2=a ( ); (2)(-a )3÷(-a )2=( )( )=( ).2.计算a 5÷a 3,结果正确的是( )A .aB .a 2C .a 3D .a 43.计算(a 2)3÷(a 2)2的结果为( )A .aB .a 2C .a 3D .a 44.若m ·23=26,则m 的值为( ) A .2 B .4 C .6 D .85.计算:9m ÷3m=________.6.计算:(1)(-x )5÷(-x )2=________; (2)x 10÷x 2÷x 3÷x 4=________;(3)(p -q )4÷(q -p )3=________. 知识点 2 零指数幂的意义7.(-2)0的相反数是( ) A .0 B .-1 C.12D .208.若(m -3)0=1,则m 的取值为( )A .m <3B .m >3C .m =3D .m ≠39.若3x -2=1,则x =________. 知识点 3 负整数指数幂的意义10.3-1的值为( )A .3B .-13C .-3 D.1311.(13)-2的相反数是( )A .9B .-9 C.19 D .-1912.下列计算正确的是( )A .2÷2-1=-1 B .a 2·a -2=0 C .3a -2=13a 2 D .(-x )3÷x 5=-1x2 13.若|a |=2-1,则a =________.14.若a =-0.22,b =-2-2,c =(-12)-2,d =(-12)0,将a ,b ,c ,d 按从大到小的顺序用“>”连接起来:________________.15.计算:(3-π)0+(-0.2)-2=________.16.计算106×(102)3÷104的结果是( )A .103B .107C .108D .10917.若2x =3,4y =5,则2x -2y的值为________.18.若实数m ,n 满足|m -2|+(n -2018)2=0,则m -1+n 0=________.19.若5x -3y -2=0,则105x ÷103y =________;若a m =3,a n =9,则a 3m -2n=________. 20.图8-3-1是一个运算程序,若输入的数x =-1,则输出的值为________.图8-3-121.学习了幂的运算后,老师出了一道题目“(a +5)a +2=1(a 为整数),求a 的值”.小明给出了这样的答案:根据题意,得a +2=0,即a =-2.所以(a +5)a +2=(-2+5)0=30=1. 试回答下列问题:(1)小明在解决这个问题时,用到了关于幂的运算的一个重要结论,这个结论是________________________________________;(2)你认为小明的答案是否全面?如果不全面,请帮助小明补充完整.【详解详析】1.(1)- 4 (2)-a 3-2 -a 2.B 3.B4.D [解析] 此题主要考查同底数幂的除法,m =26÷23=26-3=23=8.故选D.5.3m 6.(1)-x 3(2)x (3)q -p7.B [解析] (-2)0=1,1的相反数是-1.故选B.8.D [解析] 若(m -3)0=1,则m ≠3. 9.210.D [解析] 3-1=13.故选D.11.B12.D [解析] 2÷2-1=4,a 2·a -2=1,3a -2=3a2,故A ,B ,C 选项均错误.13.±12 [解析] 由|a |=2-1,得|a |=12,所以a =±12.14.c >d >a >b [解析] ∵a =-0.22=-0.04;b =-2-2=-122=-14=-0.25,c =(-12)-2=4,d =(-12)0=1,∴c >d >a >b . 15.2616.C [解析] 106×(102)3÷104=106×106÷104=106+6-4=108. 17.3518.32 [解析] ∵|m -2|+(n -2018)2=0, ∴m -2=0,n -2018=0,∴m =2,n =2018,∴m -1+n 0=2-1+20180=12+1=32.故答案为32.19.100 13[解析] 5x -3y =2,105x ÷103y =105x -3y =102=100;a 3m -2n =a 3m ÷a 2n =(a m )3÷(a n )2=33÷92=33÷34=13.20.5 [解析] 由于x =-1为奇数,故把x =-1代入3x 2-30=3-1=2<4.当x =2时,x +⎝ ⎛⎭⎪⎫13-1=2+3=5>4,所以若输入的数x =-1,则输出的值为5. 21.解: (1)任何不等于0的数的0次幂都等于1 (2)不全面.补充如下: 当a +5=1时,a =-4.此时(a +5)a +2=(-4+5)-2=1-2=1;当a +5=-1时,a =-6.此时(a +5)a +2=(-6+5)-4=(-1)-4=1.。
同底数幂的除法试题精选(三)一.填空题(共17小题)1.(﹣b2)•b3÷(﹣b)5=_________.2.(1)a2•a3=_________;(2)x6÷(﹣x)3=_________.3.若2m=5,2n=6,则2m﹣2n=_________.若3m+2n=6,则8m×4n=_________.4.计算:(﹣a2)3+(﹣a3)2﹣a2•a4+a9÷a3=_________.5.①若m x=4,m y=3,则m x+y=_________;②若,则9x﹣y=_________.6.a5•a÷a2=_________;(x﹣y)(y﹣x)2(x﹣y)3=_________;(a2)m﹣a m=_________.7.(2012•滨州)根据你学习的数学知识,写出一个运算结果为a6的算式_________.8.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒,则光速是声速的_________倍.(结果保留两个有效数字)9.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是_________.10.(﹣x)10÷(﹣x)5÷(﹣x)÷x=_________.11.如果2x=5,2y=10,则2x+y﹣1=_________.12.已知a m=9,a n=8,a k=4,则a m﹣2k+n=_________.13.(2011•安徽)根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是_________.14.(2007•仙桃)计算:a2•a3÷a4的结果是_________.15.(2004•太原)人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011.摩托车的声音强度是说话声音强度的_________倍.16.(2005•河南)计算:(x2)3÷x5=_________.17.(2001•济南)_________÷a=a3.二.解答题(共8小题)18.化简:(x﹣y)12×(y﹣x)2÷(y﹣x)3.19.(2a+b)4÷(2a+b)2.20.已知a x=2,a y=3,求下列各式的值.(1)a2x+y(2)a3x﹣2y.21.已知5x=36,5y=2,求5x﹣2y的值.22.已知:x m=3,x n=2,求:(1)x m+n的值;(2)x2m﹣3n的值.23.利用幂的性质进行计算:.24.已知4m=y﹣1,9n=x,22m+1÷32n﹣1=12,试用含有字母x的代数式表示y.25.(1)计算:(﹣x)(﹣x)5+(x2)3;(2)计算:(﹣a2)3÷(﹣a3)2.同底数幂的除法试题精选(三)附答案参考答案与试题解析一.填空题(共17小题)1.(﹣b2)•b3÷(﹣b)5=1.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减计算即可.解答:解:(﹣b2)•b3÷(﹣b)5,=﹣b5÷(﹣b5),=1.点评:本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,要注意符号的运算.2.(1)a2•a3=a5;(2)x6÷(﹣x)3=﹣x3.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:(1)是考查同底数幂的乘法,底数不变指数相加.(2)是考查同底数幂相除,底数不变指数相减.解答:解:(1)a2•a3=a5(2)x6÷(﹣x)3=﹣x3故答案为:a5,﹣x3点评:这道题主要考查了同底数幂的乘法和除法,熟记计算法则是解题的关键.3.若2m=5,2n=6,则2m﹣2n=.若3m+2n=6,则8m×4n=64.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:把2m﹣2n化为2m÷(2n)2计算,把8m×4n化为23m+2n计算即可.解答:解:∵2m=5,2n=6,∴2m﹣2n=2m÷(2n)2=5÷36=,∵3m+2n=6,∴8m×4n=(2)3m•22n=23m+2n=26=64.故答案为:,64.点评:本题主要考查了同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方,解题的关键是正确运用法则进行变式.4.计算:(﹣a2)3+(﹣a3)2﹣a2•a4+a9÷a3=0.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方、同底数幂的除法,可得答案.解答:解:(﹣a2)3+(﹣a3)2﹣a2•a4+a9÷a3=﹣a2×3+a3×2﹣a2+4+a9﹣3=﹣a6+a6﹣a6+a6=0,故答案为:0.点评:本题考查了同底数幂的除法,幂的乘方底数不变指数相乘,同底数幂的乘法,底数不变指数相加,同底数幂的除法,底数不变指数相减.5.①若m x=4,m y=3,则m x+y=12;②若,则9x﹣y=.考点:同底数幂的除法.分析:①把m x+y化为m x•m y求解,②把9x﹣y化为(3x)2÷(3y)2求解.解答:解:①∵m x=4,m y=3,∴m x+y=m x•m y=4×3=12,②∵,∴9x﹣y=(3x)2÷(3y)2=÷=,故答案为:12,.点评:本题主要考查了同底数幂的除法,解题的关键是通过转化,得到含有已知的式子求解.6.a5•a÷a2=a4;(x﹣y)(y﹣x)2(x﹣y)3=(x﹣y)6;(a2)m﹣a m=a m.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减,同底数幂的乘法,底数不变指数相减,可得答案.解答:解:a5•a÷a2=a5+1﹣2=a4;(x﹣y)(y﹣x)2(x﹣y)3=(x﹣y)1+2+3=(x﹣y)6;(a2)m﹣a m=a2m﹣m=a m,故答案为:a4,(x﹣y)6,a.点评:本题考查了同底数幂的除法,根据乘方化成同底数的幂乘法是解题关键.7.(2012•滨州)根据你学习的数学知识,写出一个运算结果为a6的算式a4•a2=a6(答案不唯一).考点:幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.专题:开放型.分析:根据同底数幂相乘,底数不变,指数相加即可求.注意答案不唯一.解答:解:a4•a2=a6.故答案是a4•a2=a6(答案不唯一).点评:本题考查了同底数幂的乘方,解题的关键是注意掌握同底数幂的运算法则.8.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒,则光速是声速的8.8×105倍.(结果保留两个有效数字)考点:同底数幂的除法.专题:应用题.分析:首先根据题意可得:光速是声速的(3×108)÷(3.4×102)倍,利用同底数幂的除法法则求解即可求得答案.解答:解:∵光在空气中的传播速度约为3×108米/秒,声音在空气中的传播速度约为3.4×102米/秒,∴(3×108)÷(3.4×102)=(3÷3.4)×(108÷102)≈0.883×106≈8.8×105,∴光速是声速的8.8×105倍.故答案为:8.8×105.点评:本题考查同底数幂的除法.注意将实际问题转化为数学问题是解此题的关键.9.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是18.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:运用同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方把原式化为含有4x,3y的式子求解.解答:解:∵4x=3,3y=2,∴6x+y•23x﹣y÷3x=6x•6y•23x÷2y÷3x=2x•3x•2y•3y(2x)3÷2y÷3x=2x•3y•(2x)3=(4x)2•3y=9×2=18,故答案为:18.点评:本题主要考查了同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方,解题的关键是运用法则把6x+y•23x﹣y÷3x化为6x•6y•23x÷2y÷3x.10.(﹣x)10÷(﹣x)5÷(﹣x)÷x=x3.考点:同底数幂的除法;幂的乘方与积的乘方.分析:先根据有理数乘方的意义计算符号,再利用同底数幂相除,底数不变指数相减进行计算即可得解.解答:解:(﹣x)10÷(﹣x)5÷(﹣x)÷x,=x10÷x5÷x÷x,=x10﹣5﹣1﹣1,=x3.故答案为:x3.点评:本题主要考查了同底数幂相除,底数不变指数相减的性质,计算时要注意符号的处理,这也是本题最容易出错的地方.11.如果2x=5,2y=10,则2x+y﹣1=25.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂的除法底数不变指数相减,可得计算结果.解答:解:2x+y﹣1=2x×2y÷2=5×10÷2=25.故答案为:25.点评:本题考查了同底数幂的除法,底数不变指数相减.12.已知a m=9,a n=8,a k=4,则a m﹣2k+n= 4.5.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,同底数幂的除法,同底数幂的乘法的逆运算整理成已知条件的形式,然后代入数据求解即可.解答:解:∵a m=9,a n=8,a k=4,∴a m﹣2k+n=a m÷a2k•a n,=a m÷(a k)2•a n,=9÷16×8,=4.5.点评:本题主要考查幂的乘方,同底数幂的乘法,同底数幂的除法性质的逆运用,熟练掌握运算性质并灵活运用是解题的关键.13.(2011•安徽)根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是100.考点:同底数幂的除法.专题:应用题.分析:首先根据里氏震级的定义,得出9级地震所释放的相对能量为109,7级地震所释放的相对能量为107,然后列式表示9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是109÷107,最后根据同底数幂的除法法则计算即可.解答:解:∵地震所释放的相对能量E与地震级数n的关系为:E=10n,∴9级地震所释放的相对能量为109,7级地震所释放的相对能量为107,∴109÷107=102=100.即9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是100.故答案为100.点评:本题考查了同底数幂的除法在实际生活中的应用.理解里氏震级的定义,正确列式是解题的关键.14.(2007•仙桃)计算:a2•a3÷a4的结果是a.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减计算即可.解答:解:a2•a3÷a4=a2+3﹣4=a,故答案为:a.点评:本题考查了同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键.15.(2004•太原)人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011.摩托车的声音强度是说话声音强度的106倍.考点:同底数幂的除法.专题:应用题.分析:用摩托车的声音强度除以说话声音强度,再利用同底数幂相除,底数不变指数相减计算.解答:解:1011÷105=1011﹣5=106.答:摩托车的声音强度是说话声音强度的106倍.点评:本题主要考查同底数幂的除法的运算性质,熟练掌握运算性质是解题的关键.16.(2005•河南)计算:(x2)3÷x5=x.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减计算即可.解答:解:(x2)3÷x5=x6÷x5=x.点评:本题考查幂的乘方的性质,同底数幂的除法的性质,熟练掌握运算性质是解题的关键.17.(2001•济南)a4÷a=a3.考点:同底数幂的除法.分析:根据同底数幂的除法法则计算即可.解答:解:a4÷a=a3,故答案为a4.点评:本题考查了同底数幂的除法法则,底数不变指数相减,一定要记准法则才能做题.二.解答题(共8小题)18.化简:(x﹣y)12×(y﹣x)2÷(y﹣x)3.考点:同底数幂的除法;同底数幂的乘法.分析:运用同底数幂的除法及同底数幂的乘法法则求解即可.解答:解:(x﹣y)12×(y﹣x)2÷(y﹣x)3,=(x﹣y)14÷(y﹣x)3.=﹣(x﹣y)11.点评:本题主要考查了同底数幂的除法及同底数幂的乘法,解题的关键是注意运算符号.19.(2a+b)4÷(2a+b)2.考点:同底数幂的除法.分析:运用同底数幂的除法法则:底数不变,指数相减运算,再运用完全平方公式展开.解答:解:(2a+b)4÷(2a+b)2=(2a+b)2=4a2+4ab+b2点评:本题主要考查了同底数幂的除法和完全平方公式,解题的关键是熟记法则.20.已知a x=2,a y=3,求下列各式的值.(1)a2x+y(2)a3x﹣2y.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:把原式化为关于a x,a y式子,再代入求解即可.解答:解:(1)∵a x=2,a y=3,∴a2x+y=(a x)2a y=4×3=12,(2)∵a x=2,a y=3,∴a3x﹣2y=(a x)3÷(a y)2=8÷9=.点评:本题主要考查了同底数幂的除法,同底数幂的乘法和幂的乘方与积的乘方,解题的关键是把原式化为关于a x,a y式子求解.21.已知5x=36,5y=2,求5x﹣2y的值.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法底数不变指数相减,可得答案.解答:解:(5y)2=52y=4,5x﹣2y=5x÷52y=36÷4=9.点评:本题考查了同底数幂的除法,底数不变指数相减.22.已知:x m=3,x n=2,求:(1)x m+n的值;(2)x2m﹣3n的值.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:运用同底数幂的乘法与除法以及幂的乘方运算即可.解答:解:(1)∵x m=3,x n=2,∴x m+n=x m•x n=3×2=6,(2)∵x m=3,x n=2,∴x2m﹣3n=(x m)2÷(x n)3=9÷8=,点评:此题考查了同底数幂的乘法与除法以及幂的乘方等知识,解题的关键是熟记法则.23.利用幂的性质进行计算:.考点:实数的运算;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.分析:把式子化成指数幂的形式,通过同底数指数相乘,底数不变,指数相加即得.解答:解:原式=×=×=.点评:本题考查了实数运算,把根下化成指数幂,从而很容易解得.24.已知4m=y﹣1,9n=x,22m+1÷32n﹣1=12,试用含有字母x的代数式表示y.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,可化已知成要求的形式,根据已知,可得答案.解答:解:4m=22m=y﹣1,9n=32n=x,原式等价于;2×22m÷(32n÷3)=12,2(y﹣1)÷(x÷3)=122y﹣2=12(x÷3)2y﹣2=4xy=2x+1.点评:本题考查了同底数幂的除法,把已知化成要求的形式是解题关键.25.(1)计算:(﹣x)(﹣x)5+(x2)3;(2)计算:(﹣a2)3÷(﹣a3)2.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:(1)根据同底数幂的乘法、幂的乘方,可算出乘方,根据合并同类项,可得答案;(2)根据先算积的乘方,可得同底数幂的除法,再根据同底数幂的除法,可得答案.解答:解:(1)原式=(﹣x)1+5+x2×3=x6+x6=2x6;(2)原式=﹣a2×3÷a3×2=﹣a6÷a6=﹣1.点评:本题考查了同底数幂的除法,(1)先算同底数幂的乘法幂的乘方,再合并同类项,(2)先算积的乘方,再算算幂的乘方,最后算同底数幂的除法,底数不变指数相减.。