一个基本图形的变式与应用讲解
- 格式:ppt
- 大小:800.50 KB
- 文档页数:16
共边型相似三角形及其变式共边共角型相似三角形下图是典型的共边型相似三角形,由斜A型基本图形进行变式。
通过平移线段DE,使得点E和点B重合,此时就形成了“共边共角型相似三角形(子母三角形)”,这组基本图形在几何证明题和压轴题中非常常见,如果能灵活运用其中的等积式,可以较快地解决一些问题。
模型背景其中的等积式一般不能在几何题中直接使用,必须先证明相似,化成比例式后再借助等积式进一步应用。
但是在填空题中如果能够灵活应用,则可以在很大程度上提升解题效率。
如下面这道题发现共边共角型相似三角形后,直接利用等积式,就可以快速地求出AC的长度。
对于解答题,借助结论或已知中的等积式,可以快速地帮助我们锁定相似三角形。
射影定理射影定理是共边共角型相似三角形的变形,其图形特点就是直角三角形及其斜边上的高所组成的三个两两相似的直角三角形,其中也隐含着丰富的线段关系,也可以用等积式来表示。
模型背景我们通常也可以借助射影定理中的等积式,快速求出线段的长度。
善于发现与射影定理相关的基本图形,有助于我们快速建立线段间的比例关系。
四边形背景下的共边三角形四边形背景下,也有比较常见的“共边型”相似三角形,主要分为以下两类:模型背景此类模型的考察题型主要就是利用共边型相似三角形构造线段间的比例关系,此类题目比较灵活,以以下两道题为主。
一线三等角中的共边型三角形模型背景此类模型的特点是“一线三等角模型”的变式,为“异侧”的情况,容易忽略,此类模型常常结合45°角进行综合考察,在平面直角坐标系中考察较多。
解法分析:由题意,已知中∠CPA=45°,同时根据OC=OB=3,可以得到∠CBO=∠OBA=45°,这是另一种一线三等角模型,发现了这三个等角后,则利用▲CPB∽▲ABP,求出BP长度。
同时我们也可以借助这种模型建立线段间的比例关系:解法分析:本题考察了借助“一线三等角模型”以及“X型基本图形”搭建线段间的数量关系。
图形与图形的变换1.图形的初步认识①掌握画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型.②了解直棱柱、圆锥的侧面展开图,能根据展开图判断立体模型.③了解几何体与其三视图、展开图(球除外)之间的关系.④掌握比较角的大小,估计一个角的大小,计算角度的和与差,进行度、分、秒简单换算.⑤了解角平分线及其性质,了解补角、余角、对顶角;理解等角的余角相等、等角的补角相等、对顶角相等.⑥了解两点之间,线段最短;了解经过两点有一条直线,并且只有一条直线.⑦了解垂线、垂线段等概念,垂线段最短的性质,点到直线距离的意义;了解过一点有且仅有一条直线垂直于已知直线.⑧掌握用三角尺或量角器过一点画一条直线的垂线;了解线段垂直平分线及其性质.⑨理解平行线的特征和平行线的识别;了解过直线外一点有且仅有一条直线平行于已知直线;掌握用三角尺和直尺过已知直线外一点画这条直线的平行线.⑩理解平行线之间距离的意义;掌握度量两条平行线之间的距离的方法.2.轴对称①认识轴对称.②理解对应点所连的线段被对称轴垂直平分的性质.③掌握能按要求作简单平面图形经过一次或两次轴对称后的图形.④掌握简单图形之间的轴对称关系,并指出对称轴.⑤掌握基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及相关性质.⑥掌握利用轴对称进行图案的设计.3.平移和旋转①认识平移,理解对应点连线平行且相等的性质;掌握按要求作简单平面图形平移后的图形;掌握选用平移进行图案设计.②认识旋转(含中心对称);理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.③了解平行四边形、圆是中心对称图形.④掌握按要求作简单平面图形旋转后的图形.⑤掌握图形之间的轴对称、平移、旋转及其组合四种关系形式.⑥掌握运用轴对称、平移和旋转的组合进行图案设计.⑦在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,培养学生的数学说理的习惯与能力.【课时分布】图形与图形的变换在第一轮复习时大约需要3个课时,下表为内容及课时安排(仅供参考)课时数内容1基本图形的认识1轴对称与轴对称图形1平移与旋转1图形与图形的变换单元测试与评析【知识回顾】1.知识脉络图形的初步认识立体图形平面图形视图平面展开图点和线角相交线平行线图形之间的变换关系轴对称平移旋转旋转对称中心对称2.基础知识(1)两点之间线段最短;连结直线外一点与直线上各点的所有线段中,垂线段最短.(2)视图有正视图、俯视图、侧视图(左视图、右视图).(3)平行线间的距离处处相等.(4)平移是由移动的方向和距离决定的.(5)平移的特征:①对应线段平行(或共线)且相等;连结对应的线段平行(或共线)且相等;②对应角分别相等;③平移后的图形与原图形全等.(6)图形的旋转由旋转中心、旋转角度和旋转方向决定.(7)旋转的特征:①对应点与旋转中心的距离相等;对应线段相等,对应角相等;②每一点都绕旋转中心旋转了相同的角度;③旋转后的图形与原图形全等.3、能力要求例1选择、填空题(1)如图6-1,小军将一个直角三角板绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是·····································A.B.C .D .【分析】图形的旋转与展开.【解】D .(2)如图6-2,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为()A .4πcmB .3πcmC .2πcmD .πcm【分析】图形的旋转与圆弧问题结合.【解】C .(3)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45 ,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是()A .图①B .图②C .图③D .图④【分析】图形的旋转与操作.【解】B .(4)如图6-3,在Rt △ABC 中,∠C =90°,AC =8,BC =6,ABCD 图6-3C’图①图②图③图④图6-2ABCDO图6-1(5)按图中所示方法将△BCD 沿BD 折叠,使点C 落在边AB 上的点C ′处,则折痕BD的长为__________.【分析】图形的折叠与勾股定理应用.【解】35.(5)如图6-4,在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移个单位长度.【分析】图形平移、圆的位置关系与发散思维结合【解】4或6(6)如图6-5所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别是边AB 、AC 上,将ABC△沿着DE 折叠压平,A 与'A 重合,若=70A ︒∠,则1+2∠∠=()A.140︒B.130︒C.110︒D.70︒【分析】图形折叠、三角形内角和与平角的结合【解】A(7)如图6-6-1和6-6-2,四边形ABCD 是边长为1的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是()图6-4图6-5图图【分析】图形的平移、动点问题及函数图像【解】B【说明】由于概念、性质比较多,复习时可以通过基本练习题的训练,使学生熟练掌握图形与图形变换的基本知识、基本方法和基本技能.重视平移、旋转、折叠、展开过程中学生思维的训练,重视平移、旋转、折叠、展开的操作过程,提高学生的分解、组合图形的能力和动手能力。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】中考总复习:图形的变换--知识讲解(基础)【考纲要求】1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【考点梳理】考点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.【要点诠释】(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【要点诠释】(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.考点二、轴对称变换1.轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3.轴对称作图步骤①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.考点三、旋转变换1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.2.旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.3.旋转作图步骤①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.4.中心对称与中心对称图形中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心对称的对称点.中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫中心对称图形.5.中心对称作图步骤①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.【要点诠释】图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.【典型例题】类型一、平移变换1.如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为____________.【思路点拨】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【答案与解析】∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;【总结升华】此题主要考查了平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.举一反三:【变式】(2015•顺义区一模)如图,平行四边形ABCD中,点E是AD边上一点,且CE⊥BD于点F,将△DEC沿从D到A的方向平移,使点D与点A重合,点E平移后的点记为G.(1)画出△DEC平移后的三角形;(2)若BC=,BD=6,CE=3,求AG的长.【答案】解:(1)△AGB为△DEC平移后的三角形,如下图所示;(2)∵△AGB为△DEC平移后的三角形,∴BG=CE=3,BG∥CE,∵CE⊥BD,∴BG⊥BD.在Rt△BDG中,∵∠GBD=90°,BG=3,BD=6,∴DG==3,∵四边形ABCD是平行四边形,∴AD=BC=2,∴AG=D G﹣AD=3﹣2=.2.如图(1),已知ABC ∆的面积为3,且,AC AB =现将ABC ∆沿CA 方向平移CA 长度得到EFA ∆. (1)求ABC ∆所扫过的图形面积;(2)试判断,AF 与BE 的位置关系,并说明理由; (3)若,15︒=∠BEC 求AC 的长.【思路点拨】(1)根据平移的性质及平行四边形的性质可得到S △EFA =S △BAF =S △ABC ,从而便可得到四边形CEFB 的面积;(2)由已知可证得平行四边形EFBA 为菱形,根据菱形的对角线互相垂直平分可得到AF 与BE 的位置关系为垂直;(3)作BD ⊥AC 于D ,结合三角形的面积求解. 【答案与解析】(1)由平移的性质得 AF ∥BC ,且AF=BC ,△EFA ≌△ABC ∴四边形AFBC 为平行四边形 S △EFA =S △BAF =S △ABC =3∴四边形EFBC 的面积为9;(2)BE ⊥AF证明:由(1)知四边形AFBC 为平行四边形 ∴BF ∥AC ,且BF=AC 又∵AE=CA∴BF ∥AE 且BF=AE∴四边形EFBA 为平行四边形又已知AB=AC ∴AB=AE∴平行四边形EFBA 为菱形 ∴BE ⊥AF ;(3)如上图,作BD ⊥AC 于D ∵∠BEC=15°,AE=AB ∴∠EBA=∠BEC=15° ∴∠BAC=2∠BEC=30°BCA ('C )E∴在Rt△BAD中,AB=2BD 设BD=x,则AC=AB=2x∵S△ABC=3,且S△ABC=12AC•BD=12•2x•x=x2∴x2=3∵x为正数∴x=3∴AC=23.【总结升华】此题主要考查了全等三角形的判定,平移的性质,菱形的性质等知识点的综合运用及推理计算能力.类型二、轴对称变换3(2016•贵阳模拟)(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,,求证:∠B=30°,请你完成证明过程.(2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.(3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.【思路点拨】(1)Rt△ABC中,根据sinB═=,即可证明∠B=30°;(2)求出∠FA′D的度数,利用翻折变换的性质可求出∠ADG的度数,在Rt△A'FD中求出A'F,得出A'E,在Rt△A'EG中可求出A'G,利用翻折变换的性质可得出AG的长度.(3)先判断出AD=AC,得出∠ACD=30°,∠DAC=60°,从而求出AD的长度,根据翻折变换的性质可得出∠DAF=∠FAO=30°,在Rt△ADF中求出DF,继而得出FO,同理可求出EO,再由EF=EO+FO,即可得出答案.【答案与解析】(1)证明:Rt△ABC中,∠C=90°,,∵sinB==,∴∠B=30°;(2)解:∵正方形边长为2,E、F为AB、CD的中点,∴EA=FD=×边长=1,∵沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,∴A′D=AD=2,∴=,∴∠FA′D=30°,可得∠FDA′=90°﹣30°=60°,∵A沿GD折叠落在A′处,∴∠ADG=∠A′DG,AG=A′G,∴∠ADG===15°,∵A′D=2,FD=1,∴A′F==,∴EA′=EF﹣A′F=2﹣,∵∠EA′G+∠DA′F=180°﹣∠GA′D=90°,∴∠EA′G=90°﹣∠DA′F=90°﹣30°=60°,∴∠EGA′=90°﹣∠EA′G=90°﹣60°=30°,则A′G=AG=2EA′=2(2﹣);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,=tan30°,则AD=DC•tan30°=6×=2,∵∠DAF=∠FAO=∠DAO==30°,∴=tan30°=,∴DF=AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.【总结升华】本题考查了翻折变换的知识,涉及了含30°角的直角三角形的性质、平行四边形的性质,综合考察的知识点较多,注意将所学知识融会贯通.举一反三:【变式】(2016·松北区模拟)如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50°.若将其右下角向内这出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=度.【答案】∵∠CPR=12∠B=12×120°=60°,∠CRP=12∠D=12×50°=25°,∴∠C=180°-60°-25°=95°.4. 如图1,矩形纸片ABCD的边长分别为a,b(a<b).将纸片任意翻折(如图2),折痕为PQ.(P 在BC上),使顶点C落在四边形APCD内一点C′,PC′的延长线交直线AD于M,再将纸片的另一部分翻折,使A落在直线PM上一点A′,且A′M所在直线与PM•所在直线重合(如图3),折痕为MN.(1)猜想两折痕PQ,MN之间的位置关系,并加以证明.(2)若∠QPC的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕PQ,•MN间的距离有何变化?请说明理由.(3)若∠QPC的角度在每次翻折的过程中都为45°(如图4),每次翻折后,非重叠部分的四边形MC′QD,及四边形BPA′N的周长与a,b有何关系,为什么?(1)(2)(3)(4)【思路点拨】(1)猜想两直线平行,由矩形的对边平行,得到一组内错角相等,翻折前后对应角相等,那么可得到PQ与MN被MP所截得的内错角相等,得到平行.(2)作出两直线间的距离.∵PM长相等,∠NPM是不变的,所以利用相应的三角函数可得到两直线间的距离不变.(3)由特殊角得到所求四边形的形状,把与周长相关的边转移到同一线段求解.【答案与解析】(1)PQ∥MN.∵四边形ABCD是矩形,∴AD∥BC,且M在AD直线上,则有AM∥BC.∴∠AMP=∠MPC.由翻折可得:∠MPQ=∠CPQ=12∠MPC,∠NMP=∠AMN=12∠AMP,∴∠MPQ=∠NMP,故PQ∥MN.(2)两折痕PQ,MN间的距离不变.过P作PH⊥MN,则PH=PM•sin∠PMH,∵∠QPC的角度不变,∴∠C′PC的角度也不变,则所有的PM都是平行的.又∵AD∥BC,∴所有的PM都是相等的.又∵∠PMH=∠QPC,故PH的长不变.(3)当∠QPC=45°时,四边形PCQC′是正方形,四边形C′QDM是矩形.∵C′Q=CQ,C′Q+QD=a,∴矩形C′QDM的周长为2a.同理可得矩形BPA′N的周长为2a,∴两个四边形的周长都为2a,与b无关.【总结升华】翻折前后对应角相等,对应边相等,应注意使用相应的三角函数,平行线的判断,特殊四边形的判定.类型三、旋转变换【高清课堂图形的变换例4】5.已知O是等边三角形ABC内一点,∠AOB=110°,∠BOC=135°,试问:(1)以OA,OB,OC为边能否构成一个三角形?若能,求出该三角形各角的度数;若不能,请说明理由;(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时,以OA,OB,OC为边的三角形是一个直角三角形?【思路点拨】因为△ABC是等边三角形,所以可以运用旋转将△BCO转至△ACD.【答案与解析】(1)以OC为边作等边△OCD,连AD.∵△ABC是等边三角形∴∠BCO=∠ACD (∠BCO+∠ACO=60°,∠ACD+∠ACO=60°)∵ BC=AC,OC=CD∴△BCO≌△ACD (SAS)∴ OB=AD,∠ADC=∠BOC又∵OC=OD∴△OAD是以线段OA,OB,OC为边构成的三角形∵∠AOB=110°, ∠BOC=135°∴∠AOC=115°∴∠AOD=115°-60°=55°∵∠ADC=135°∴∠ADO=135°-60°=75°∴∠OAD=180°-55°-75°=50°∴以线段OA,OB,OC为边构成的三角形的各角是50°、55°、75°.(2)∠AOB+∠AOC+∠BOC=∠AOB+∠AOC+∠ADC=∠AOB+(∠AOD+∠DOC)+(∠ADO+∠CDO)=∠110°+(∠AOD+60°)+(∠ADO+60°) =360°∴∠AOD+∠ADO=130°∴∠OAD=50°当∠AOD是直角时,∠AOD=90°,∠AOC=90°+60°=150°,∠BOC=100°;当∠ADO是直角时,∠ADC=90°+60°=150°,∠BOC=150°.【总结升华】此题主要运用旋转的性质、等边三角形的判定、勾股定理的逆定理等知识,渗透分类讨论思想.6 . 如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.【思路点拨】(1)要证AE1=BF1,就要首先考虑它们是全等三角形的对应边;(2)要证△AOE1为直角三角形,就要考虑证∠E1AO=90°.【答案与解析】(1)AE1=BF1,证明如下:∵O为正方形ABCD的中心,∴OA=OB=OD.∴OE=OF .∵△E1OF1是△EOF绕点O逆时针旋转α角得到,∴OE1=OF1.∵ ∠AOB=∠EOF=900,∴ ∠E1OA=900-∠F1OA=∠F1OB.在△E1OA和△F1OB中,1111OE OFE OA FOBO A OB⎧⎪∠∠⎨⎪⎩===,∴△E1OA≌△F1OB(SAS).∴AE1=BF1.(2)取OE1中点G,连接AG.∵∠AOD=900,α=30°,∴ ∠E1OA=900-α=60°.∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°.∴ AG=GE1,∴∠GAE1=∠GE1A=30°.∴∠E1AO=90°.∴△AOE1为直角三角形.【总结升华】正方形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的判定. 举一反三:【变式】如图,P为正方形ABCD内一点,若PA=a,PB=2a,PC=3a(a>0).(1)求∠APB的度数;(2)求正方形ABCD的面积.【答案】(1)将△ABP 绕点B顺时针方向旋转90°得△CBQ.则△ABP≌△CBQ且PB⊥QB.于是PB=QB=2a,.在△PQC中,∵,.∴.∴.∵△PBQ是等腰直角三角形,∴∠BPQ=∠BQP=45°.故∠APB=∠CQB=90°+45°=135°.(2)∵∠APQ=∠APB+∠BPQ=135°+45°=180°,∴三点A、P、Q在同一直线上.在Rt△AQC中,.∴正方形ABCD的面积.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
五年级下册数学《图形变换学》教案一、教学目标知识与技能1. 学生能够理解图形变换的概念,包括平移、旋转和轴对称。
2. 学生能够运用图形变换的知识解决实际问题。
过程与方法1. 学生通过观察、操作、思考,培养空间想象能力和逻辑思维能力。
2. 学生能够运用图形变换的方法创造新的图形。
情感态度价值观1. 学生培养对数学的兴趣,感受数学的美。
2. 学生学会合作研究,培养团队精神。
二、教学内容1. 图形变换的概念介绍平移、旋转和轴对称三种基本的图形变换。
2. 图形变换的性质讲解图形变换的不变性和可逆性。
3. 图形变换的实际应用通过实例讲解图形变换在实际问题中的应用。
三、教学过程1. 导入通过简单的图形变换游戏,激发学生的兴趣,引出本节课的主题。
2. 新课导入讲解图形变换的概念,并通过示例让学生直观地感受图形变换的效果。
3. 课堂互动让学生通过操作、观察,理解图形变换的性质,并通过小组讨论的方式,探讨图形变换的实际应用。
4. 练与巩固布置一些有关图形变换的练题,让学生独立完成,检验学生对知识的理解和掌握程度。
5. 总结与拓展对本节课的内容进行总结,并提出一些拓展问题,激发学生的思考。
四、教学评价通过课堂表现、练成绩和课后作业,综合评价学生在图形变换方面的掌握程度。
五、教学资源1. 教学PPT2. 图形变换的操作软件3. 练题库六、教学建议1. 注重学生的参与,鼓励学生积极思考和操作。
2. 注重知识点的巩固,及时检查学生的理解程度。
3. 结合实际生活中的例子,让学生感受数学的应用价值。
地理基本图形的变式应用
丁夏男;王润兰
【期刊名称】《中学地理教学参考》
【年(卷),期】2024()3
【摘要】高考试题通过问题情境考查学生的核心素养,基本图形是学生在课堂教学中习得的知识结构。
文章结合地质类高考试题,从地理基本图形的图形转化、典型例题、高考变式三个方面探究地理基本图形在高考试题中的解题运用,为地理教师研究地理图形教学提供启示。
【总页数】4页(P69-72)
【作者】丁夏男;王润兰
【作者单位】河北师范大学教育学院;江苏师范大学附属实验学校
【正文语种】中文
【中图分类】G63
【相关文献】
1.立足基本图形追寻多题归一r——从一道教材习题及其变式说开去
2.一个基本图形的变式及其应用
3.强化基本图形,突出变式研究——“轴对称图形”复习教学设计与思考
4.基本图形源于教材变式应用提高能力
5.构造基本图形渗透转化思想——一道不规则四边形面积问题的解法探究与变式
因版权原因,仅展示原文概要,查看原文内容请购买。