1 2 1 2 ������ ×3 . 1 ������ ×3 2 2 =29.89(m/s).
1 2
.(g 取 9.8
=
0. 1
答案:29.89 m/s
-18-
3.2 双曲线的简单性质
目标导航
知识梳理
典型透析
随堂演练
1
2
3
4
5
5.甲、乙两厂污水的排放量W与时间t的关系如图,试指出哪一个厂 治污效果较好.
易错辨析 易错点 不理解平均变化率的概念而致误 【例 3】 若函数 f(x)=x2-1,其图像上点 P(2,3)及其邻近点
Q(2+Δx,3+Δy),则 =( ) Δ������ A.4Δx+(Δx)2 B.4Δx C.4+Δx D.Δx 错解:∵3+Δy=(2+Δx)2-1=4+4Δx+(Δx)2-1, ∴Δy=4Δx+(Δx)2.故选 A. 错因分析:因对平均变化率的概念理解不透彻而导致求解错误 , 其实,平均变化率就是 的值. 正解:∵Δy=(2+Δx)2-1-(22-1)=4Δx+(Δx)2,
典型透析
随Байду номын сангаас演练
函数的平均变化率 对于函数 y=f(x),当自变量 x 从 x1 变为 x2 时,函数值从 f(x1)变为 f(x2),它的平均变化率为 量的改变量,记作 Δx,函数值的变化 f(x2)-f(x1)称作函数值的改变量, 记作 Δy.这样,函数的平均变化率就可以表示为函数值的改变量与自 变量的改变量之比,即
目标导航
知识梳理
典例透析 典型透析
随堂演练
【变式训练1】 求函数y=-2x2+3在区间[2,2+Δx]内的平均变化率, 1 并求当 Δx= 时平均变化率的值 . 2