初一数学竞赛讲座(三) (6)
- 格式:doc
- 大小:96.00 KB
- 文档页数:5
第六讲整式的运算吴忠市第一中学韩瑞峰一、知识要点1、整式的概念:单项式,多项式,一元多项式;2、整式的加减:合并同类项;3、整式的乘除:(1)记号f(x),f(a);(2)多项式长除法;(3)余数定理:多项式f(x)除以(x-a)所得的余数r等于f(a);(4)因数定理:(x-a)|f(x)⇔f(a)=0。
二、例题示范1、整式的加减例1、已知单项式0.25x b y c与单项式-0.125x m-1y2n-1的和为0.625ax n y m,求abc的值。
提示:只有同类项才能合并为一个单项式。
例2、已知A=3x2n-8x n+ax n+1-bx n-1,B=2x n+1-ax n-3x2n+2bx n-1,A-B中x n+1项的系数为3,x n-1项的系数为-12,求3A-2B。
例3、已知a-b=5,ab=-1,求(2a+3b-2ab) -(a+4b+ab) -(3ab+2b-2a)的值。
提示:先化简,再求值。
例4、化简:x-2x+3x-4x+5x-…+2001x-2002x。
例5、已知x=2002,化简|4x2-5x+9|-4|x2+2x+2|+3x+7。
提示:先去掉绝对值,再化简求值。
例6、5个数-1, -2, -3,1,2中,设其各个数之和为n1,任选两数之积的和为n2,任选三个数之积的和为n3,任选四个数之积的和为n4,5个数之积为n5,求n1+n2+n3+n4+n5的值。
例7、王老板承包了一个养鱼场,第一年产鱼m千克,预计第二年产鱼量增长率为200%,以后每年的增长率都是前一年增长率的一半。
(1)写出第五年的预计产鱼量;(2)由于环境污染,实际每年要损失产鱼量的10%,第五年的实际产鱼量为多少?比预计产鱼量少多少?2、整式的乘除例1、已知f(x)=2x+3,求f(2),f(-1),f(a),f(x2),f(f(x))。
例2、计算:(2x+1)÷(3x-2)⨯(6x-4)÷(4x+2)长除法与综合除法:一个一元多项式f(x)除以另一个多项式g(x),存在下列关系:f(x)=g(x)q(x)+r(x) 其中余式r(x)的次数小于除式g(x)的次数。
初一数学竞赛讲座第3讲奇偶分析我们知道,全体自然数按被2除的余数不同可以划分为奇数与偶数两大类。
被2除余1的属于一类,被2整除的属于另一类。
前一类中的数叫做奇数,后一类中的数叫做偶数。
关于奇偶数有一些特殊性质,比如,奇数≠偶数,奇数个奇数之和是奇数等。
灵活、巧妙、有意识地利用这些性质,加上正确的分析推理,可以解决许多复杂而有趣的问题。
用奇偶数性质解题的方法称为奇偶分析,善于运用奇偶分析,往往有意想不到的效果。
例1 右表中有15个数,选出5个数,使它们的和等于30,你能做到吗?为什么?分析与解:如果一个一个去找、去试、去算,那就太费事了。
因为无论你选择哪5个数,它们的和总不等于30,而且你还不敢马上断言这是做不到的。
最简单的方法是利用奇偶数的性质来解,因为奇数个奇数之和仍是奇数,表中15个数全是奇数,所以要想从中找出5个使它们的和为偶数,是不可能的。
例2 小华买了一本共有96张练习纸的练习本,并依次将它的各面编号(即由第1面一直编到第192面)。
小丽从该练习本中撕下其中25张纸,并将写在它们上面的50个编号相加。
试问,小丽所加得的和数能否为2000?解:不能。
由于每一张上的两数之和都为奇数,而25个奇数之和为奇数,故不可能为2000。
说明:“相邻两个自然数的和一定是奇数”,这条性质几乎是显然的,但在解题过程中,能有意识地运用它却不容易做到,这要靠同学们多练习、多总结。
例3 有98个孩子,每人胸前有一个号码,号码从1到98各不相同。
试问:能否将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由。
解:不能。
如果可以按要求排成,每排中都有一个孩子的号码数等于同排中其余孩子号码数的和,那么每一排中各号码数之和都是某一个孩子号码数的2倍,是个偶数。
所以这98个号码数的总和是个偶数,但是这98个数的总和为1+2+…+98=99×49,是个奇数,矛盾!所以不能按要求排成。
2020-2021学年初一数学竞赛专题讲座(含例题练习及答案)第2讲数论的方法技巧(下)四、反证法反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的。
反证法的过程可简述为以下三个步骤:1.反设:假设所要证明的结论不成立,而其反面成立;2.归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾;3.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立。
运用反证法的关键在于导致矛盾。
在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的。
解:如果存在这样的三位数,那么就有100a+10b+c=(10a+b)+(10b+c)+(10a+c)。
上式可化简为 80a=b+c,而这显然是不可能的,因为a≥1,b≤9,c≤9。
这表明所找的数是不存在的。
说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾。
例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加。
试说明,得到的和中至少有一个数字是偶数。
解:假设得到的和中没有一个数字是偶数,即全是奇数。
在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9。
将已知数的前两位数字a,b与末两位数字c,d去掉,所得的13位数仍具有“将它的数字颠倒,得到的数与它相加,和的数字都是奇数”这一性质。
照此进行,每次去掉首末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾。
故和的数字中必有偶数。
说明:显然结论对(4k+1)位数也成立。
但对其他位数的数不一定成立。
如12+21,506+605等。
例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。
初中数学竞赛专题培训第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以 a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.解 x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即 (x-2)2+|3x-y|=0.所以 y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即 (mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a,x2+y2=b2,求x4+y4的值.3.已知a+b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.(改)(第一个分母改为x) 5.设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.8.已知13x2-6xy+y2-4x+1=0,求(x+y)^13·x^10的值.1.3832.(b4+2a2b2-a4)/23.424.25.06.27.88.8。
初一数学竞赛讲座第4讲整数的分拆整数的分拆,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。
整数的分拆是古老而又有趣的问题,其中最著名的是哥德巴赫猜想。
在国内外数学竞赛中,整数分拆的问题常常以各种形式出现,如,存在性问题、计数问题、最优化问题等。
例1 电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?分析与解:由于希望播出的天数尽可能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少。
我们知道,1+2+3+4+5+6+7=28。
如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出。
由于已有过一天播出2集的情形,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子,通过改动某一天或某二天播出的集数,来解决这个问题。
例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9都可以。
所以最多可以播7天。
说明:本题实际上是问,把正整数30分拆成互不相等的正整数之和时,最多能写成几项之和?也可以问,把一个正整数拆成若干个整数之和时,有多少种分拆的办法?例如:5=1+1+1+1+1=1+1+1+2,=1+2+2=1+1+3=2+3=1+4,共有6种分拆法(不计分成的整数相加的顺序)。
例2 有面值为1分、2分、5分的硬币各4枚,用它们去支付2角3分。
问:有多少种不同的支付方法?分析与解:要付2角3分钱,最多只能使用4枚5分币。
因为全部1分和2分币都用上时,共值12分,所以最少要用3枚5分币。
当使用3枚5分币时,5×3=15,23-15=8,所以使用2分币最多4枚,最少2枚,可有23=15+(2+2+2+2),23=15+(2+2+2+1+1),23=15+(2+2+1+1+1+1),共3种支付方法。
当使用4枚5分币时,5×4=20,23-20=3,所以最多使用1枚2分币,或不使用,从而可有23=20+(2+1),23=20+(1+1+1),共2种支付方法。
初一数学竞赛系列讲座(6)整式的恒等变形一、知识要点1、 整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、 整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。
3、 乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条: ① (a+b) (a-b)=a 2-b 2② (a±b)2=a 2±2ab+b 2③ (a+b) (a 2-ab+b 2)=a 3+b 3④ (a-b) (a 2+ab+b 2)=a 3-b 3⑤ (a+b+c)2= a 2+b 2+c 2+2ab+2bc+2ca⑥ (a+b+c) (a 2+b 2+c 2-ab-bc-ca)= a 3+b 3+c 3-3abc⑦ (a±b)3= a 3±3a 2b+3a b 2±b 34、 整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。
5、 余数定理多项式()x f 除以 (x-a) 所得的余数等于()a f 。
特别地()a f =0时,多项式()x f 能被(x-a) 整除二、例题精讲例1 在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析 要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解 因1+2+3+…+1998=()19999992199811998⨯=+⨯是一个奇数, 又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。
先考虑四个连续的自然数n 、n+1、n+2、n+3之间如何添符号,使其代数和最小。
很明显 n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号, 即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1故所求最小的非负数是1。
初一数学竞赛讲座(三)数字、数位及数谜问题一、一、知识要点1、整数的十进位数码表示一般地,任何一个n 位的自然数都可以表示成:122321*********a a a a a n n n n +⨯+⨯++⨯+⨯---其中,a i (i=1,2,…,n)表示数码,且0≢a i ≢9,a n ≠0.对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n -2、正整数指数幂的末两位数字(1) (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末位数字就是a n 的末位数字。
(2) (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末位数字与m q 的末位数字相同。
3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。
这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜”的方法求解,是一种有趣的数学游戏。
二、二、例题精讲例1、有一个四位数,已知其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。
分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。
解:设所求的四位数为a ⨯103+b ⨯102+c ⨯10+d ,依题意得:(a ⨯103+b ⨯102+c ⨯10+d)+( d ⨯103+c ⨯102+b ⨯10+a)=9988∴ (a+d) ⨯103+(b+c) ⨯102+(b+c) ⨯10+ (a+d)=9988比较等式两边首、末两位数字,得 a+d=8,于是b+c18又∵c-2=d ,d+2=b ,∴b-c=0从而解得:a=1,b=9,c=9,d=7故所求的四位数为1997评注:将整数用十进位数码表示,有助于将已知条件转化为等式,从而解决问题。
例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。
第6讲 一元一次方程笔记:一元一次方程是代数方程中最基础的部分,是后继学习的基础,其基本内容包括:解方程、方程的解及其讨论。
解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)解方程。
当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程。
含字母系数的一元一次方程总可化为ax=b 的形式,继续求解时,一般要对字母系数a,b 进行讨论:1、当0≠a 时,方程有唯一解:ab x =; 2、当00≠=b a 且时,方程无解;3、当00==b a 且时,方程有无数个解。
习题:1、当1=b 时,关于x 的方程78)32()23(-=-+-x x b x a 有无数多个解,则a 等于( )A 、2B 、2-C 、32- D 、不存在 2、已知关于x 的方程b x a x a 3)5()1(2+-=-有无数多个解,那么=a ;=b 。
3、如果方程x a a x 3200442003-=+的根(解)是1=x ,则=a 。
4、关于x 的方程09=-p x 的根(解)是p -9,则p = 。
5、已知a 是任意有理数,在下面各题中:①方程0=ax 的解是1=x ;②方程a ax =的解是1=x ;③ ax ax 11==的解是方程;④a x a =方程的解是1±=x 。
结论正确的个数是( )A 、0B 、1C 、2D 、36、已知关于x 的一次方程07)83=++b a (无解,则ab 是( )A 、正数B 、非正数C 、负数D 、非负数7、(华杯赛试题)若01)204)=--=++x m k x m k 和((是关于x 的同解方程,则2-mk 的值是 。
8、(希望杯试题)当1-=x 时,代数式8323+-bx ax 的值为18,这时,代数式269+-a b 等于( )A 、28B 、28-C 、32D 、32-9、若a 3的倒数与392-a 互为相反数,则a 等于( ) A 、23 B 、23- C 、3 D 、9 10、(14届希望杯)方程231)153(123661-=⎥⎦⎤⎢⎣⎡+--x x x 的解是( ) A 、1415 B 、1415- C 、1445 D 、1445- 总结:灵活地解一元一次方程时常用到以下方法和技巧:(1)若括号内含有分数,则由外向内先去括号,再去分母;(2)若有多重括号,则去括号与合并同类项可交替进行;(3)恰当用整体思想,即把含有未知数的代数式看做一个整体进行变形;(4)当分母中含有小数,可用分数的基本性质化成整数。
第6讲 算术基本定理一、基础知识算术基本定理:任何一个正整数N >1,都能分解成质因数的连乘积,即⋅⋅=2121ααp p N ……n np α⋅,(n ≥1) ① 其中1p ,2p ,…,n p 为互不相等的质数,1α,2α,…,n α为正整数;如果不考虑因数的顺序,则这个分解式是唯一的。
证明:存在性:(反证法)假设存在大于1的自然数不能写成质数的乘积,设其中最小的那个为n 。
自然数可以根据其可除性(是否能表示成两个不是自身的自然数的乘积)分成3类:质数、合数和1。
首先,按照定义,n 大于1;其次,n 不是质数,因为质数p 可以写成质数乘积:p =p ,这与假设不相符合;因此n 只能是合数,但每个合数都可以分解成两个严格小于自身而大于1的自然数的积。
设其中a 和b 都是介于1和n 之间的自然数,因此,按照n 的定义,a 和b 都可以写成质数的乘积。
从而n 也可以写成质数的乘积。
由此产生矛盾。
因此大于1的自然数必可写成质数的乘积。
唯一性:引理:若质数p | ab ,则不是 p | a ,就是p | b 。
证明:若p | a , 则证明完毕。
若p |a ,那么两者的最大公约数为1。
根据裴蜀定理,存在(m ,n ) 使得ma + np = 1。
于是b = b (ma + np ) = abm + bnp 。
由于p | ab ,上式右边两项都可以被p 整除。
所以p | b 。
再用反证法:假设有些大于1的自然数可以以多于一种的方式写成多个质数的乘积,那么假设n 是最小的一个。
首先n 不是质数。
将n 用两种方法写出:n =p 1p 2p 3…p r =q 1q 2q 3…q s根据引理,质数p 1|q 1q 2q 3…q s ,所以 q 1,q 2,q 3,…,q s 中有一个能被p 1整除,不妨设为q 1。
但q 1也是质数,因此q 1 = p 1 。
所以,比n 小的正整数n '=p 2p 3…p r 也可以写成q 2q 3…q s这与n 的最小性矛盾!因此唯一性得证。
初一数学竞赛讲座(三)数字、数位及数谜问题一、一、知识要点1、整数的十进位数码表示一般地,任何一个n 位的自然数都可以表示成:122321*********a a a a a n n n n +⨯+⨯++⨯+⨯---其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0.对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n -2、正整数指数幂的末两位数字(1) (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末位数字就是a n 的末位数字。
(2) (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末位数字与m q 的末位数字相同。
3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。
这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜”的方法求解,是一种有趣的数学游戏。
二、二、例题精讲例1、有一个四位数,已知其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。
分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。
解:设所求的四位数为a ⨯103+b ⨯102+c ⨯10+d ,依题意得:(a ⨯103+b ⨯102+c ⨯10+d)+( d ⨯103+c ⨯102+b ⨯10+a)=9988∴ (a+d) ⨯103+(b+c) ⨯102+(b+c) ⨯10+ (a+d)=9988比较等式两边首、末两位数字,得 a+d=8,于是b+c18又∵c-2=d ,d+2=b ,∴b-c=0从而解得:a=1,b=9,c=9,d=7故所求的四位数为1997评注:将整数用十进位数码表示,有助于将已知条件转化为等式,从而解决问题。
例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。
分析:将所有的三位“新生数”写出来,然后设出最大、最小数,求差后分析求出所有三位“新生数”的可能值,再进行筛选确定。
解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c(a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为cba 。
由“新生数”的定义,得 N=()()()c a a b c c b a cba abc -=++-++=-991010010100 由上式知N 为99的整数倍,这样的三位数可能为:198,297,396,495,594,693,792,891,990。
这9个数中,只有954-459=495符合条件。
故495是唯一的三位“新生数”评注:本题主要应用“新生数”的定义和整数性质,先将三位“新生数”进行预选,然后再从中筛选出符合题意的数。
这也是解答数学竞赛题的一种常用方法。
例3 从1到1999,其中有多少个整数,它的数字和被4整除?将每个数都看成四位数(不是四位的,在左面补0),0000至1999共2000个数。
千位数字是0或1,百位数字从0到9中选择,十位数字从0到9中选择,各有10种。
在千、百、十位数字选定后,个位数字在2到9中选择,要使数字和被4整除,这时有两种可能:设千、百、十位数字和为a ,在2,3,4,5中恰好有一个数b ,使a+b 被4整除(a+2、a+3、a+4、a+5除以4,余数互不相同,其中恰好有一个余数是0,即相应的数被4整除);在6,7,8,9中也恰好有一个数c(=b+4),使a+c 被4整除。
因而数字和被4整除的有:2⨯10⨯10⨯2=400个再看个位数字是0或1的数。
千位数字是0或1,百位数字从0到9中选择,在千、百、个位数字选定后,十位数字在2到9中选择。
与上面相同,有两种可能使数字和被4整除。
因此数字和被4整除的又有:2⨯2⨯10⨯2=80个。
在个位数字、十位数字、千位数字均为0或1的数中,百位数字在2到9中选择。
有两种可能使数字和被4整除。
因此数字和被4整除的又有:2⨯2⨯2⨯2=16个。
最后,千、百、十、个位数字为0或1的数中有两个数,数字和被4整除,即1111和0000,而0000不算。
于是1到1999中共有400+80+16+1=497个数,数字和被4整除。
例4 圆上有9个数码,已知从某一位起把这些数码按顺时针方向记下,得到的是一个9位数并且能被27整除。
证明:如果从任何一位起把这些数码按顺时针方向记下的话,那么所得的一个9位数也能被27整除。
分析:把从某一位起按顺时针方向记下的9位数记为:9321a a a a ,其能被27整除。
只需证明从其相邻一位读起的数:1932a a a a 也能被27整除即可。
证明:设从某一位起按顺时针方向记下的9位数为:9321a a a a 依题意得:9321a a a a =987281101010a a a a +⨯++⨯+⨯ 能被27整除。
为了证明题目结论,只要证明从其相邻一位读起的数:1932a a a a 也能被27整除即可。
1932a a a a =197382101010a a a a +⨯++⨯+⨯∴10•9321a a a a -1932a a a a=10(987281101010a a a a +⨯++⨯+⨯ )-(197382101010a a a a +⨯++⨯+⨯ )=101010109738291⨯++⨯+⨯+⨯a a a a -(197382101010a a a a +⨯++⨯+⨯ ) =()()13191911100011010a a a a -=-=-⨯ ∵()()()1100010009991100010001100011000223++=++-=- 而999能被27整除,∴10003-1也能被27整除。
因此,1932a a a a 能被27整除。
从而问题得证。
评注:本题中,109-1难以分解因数,故将它化为10003-1,使问题得到顺利解决。
这种想办法降低次数的思想,应注意领会掌握。
例5 证明:111111+112112+113113能被10整除分析:要证明111111+112112+113113能被10整除,只需证明111111+112112+113113的末位数字为0,即证111111,112112,113113三个数的末位数字和为10。
证明:111111的末位数字显然为1;112112=(1124)28,而1124的末位数字是6,所以112112的末位数字也是6;113113=(1134)28•113,1134的末位数字是1,所以113113的末位数字是3;∴111111,112112,113113三个数的末位数字和为1+6+3=10∴111111+112112+113113能被10整除评注:本题是将证明被10整除转化为求三数的末位数字和为10。
解决数学问题时,常将未知的问题转化为熟知的问题、复杂的问题转化为简单的问题,这是化归思想。
例6 设P (m)表示自然数m 的末位数,()()n P n P a n -=2 求199521a a a ++的值。
解:199521a a a ++=()()112P P -+()()222P P -+…+()()199519952P P - =()()()[]()()()[]199521199521222P P P P P P +++-+++ =()()199521199521222+++-+++ P P ∵1995=10⨯199+5,又因为连续10个自然数的平方和的末位数都是5∴()()()51995432119952122222222⨯+++++=+++P P P =5+5=10又()⎪⎭⎫ ⎝⎛⨯=+++219961995199521P P =0 ∴199521a a a ++=10评注:本题用到了连续10个自然数的平方和的末位数都是5这个结论。
例71111111=+++++?????? 请找出6个不同的自然数,分别填入6个问号中,使这个等式成立。
(第三届华杯赛口试题) 分析:分子为1分母为自然数的分数称作单位分数或埃及分数,它在很多问题中经常出现。
解决这类问题的一个基本等式是:()11111+++=n n n n ,它表明每一个埃及分数都可以写成两个埃及分数之和。
解:首先,1=2121+ 从这个式子出发,利用上面给出的基本等式,取n=2可得: 613121+= ∴1=613121++又利用上面给出的基本等式,取n=3可得:1214131+=∴ 1=611214121+++ 再利用上面给出的基本等式,取n=4可得:2015141+=∴ 1=611212015121++++最后再次利用上面给出的基本等式,取n=6可得:4217161+=∴ 1=421711212015121+++++即可找出2,5,20,12,7,42六个自然数分别填入6个问号中,使等式成立。
评注:1、因为问题要求填入的六个自然数要互不相同,所以每步取n 时要适当考虑,如:最后一步就不能取n=5,因为n=5将产生30161+,而61已出现了。
2、本题的答案是不唯一的,如最后一步取n=12,就可得:1=6115611312015121+++++例8 如图,在一个正方体的八个顶点处填上1到9这些数码中的8个,每个顶点处只填一个数码,使得每个面上的四个顶点处所填的数码之和都相等,并且这个和数不能被那个未被填上的数码整除。
求所填入的8个数码的平方和。
(第12届“希望杯”数学竞赛培训题)解:设a 是未填上的数码,s 是每个面上的四个顶点处所填的数码之和,由于每个顶点都属于3个面,所以6s=3(1+2+3+4+5+6+7+8+9)-3a即6s=3•45-3a,于是2s=45-a,可以断定a是奇数而a不整除s,所以a只能是7,则填入的8个数码是1,2,3,4,5,6,8,9,它们的平方和是:12+22+32+42+52+62+82+92=236例9在右边的加法算式中,每个 表示一个数字,任意两个数字都不同。
试求A和B乘积的最大值。
+)A B分析:先通过运算的进位,将能确定的 确定下来,再来分析求出A和B乘积的最大值。
解:设算式为:ab c+) d e fg h A B显然,g=1,d=9,h=0a+c+f=10+B,b+c=9+A, ∴A≤62 (A+B)+19=2+3+4+5+6+7+8=35,∴A+B=8要想A•B最大,∵A≤6,∴取A=5,B=3。