基质与基质效应
- 格式:doc
- 大小:19.50 KB
- 文档页数:1
药物色谱分析中基质效应理论基质又称为基体或者介质,是指在分析样品中,除了目标物以外的其他物质和组分,称为该目标物的基质[1]。
需要强调的是溶剂亦属于基质。
在药物色谱分析中,由于药物之间物理化学性质差别较大,每种基质对药物的影响也不相同,直接影响方法的重现性、线性和准确度,这些干扰和影响被称为基质效应[2]。
基质效应多出现在气相痕量检测、气相串联质谱和液相串联质谱。
基质效应产生机理当分析一个多组分样品时,一旦基质和目标分析物一起进入分析系统中,就会产生基质效应。
液相串联质谱中的基质效应是由于基质中的非挥发性组分与目标分析物,在雾滴表面离子化的过程中产生竞争,影响电喷雾接口处的离子化效率。
气相(串联质谱)的基质效应是样品中的基质成分与目标分析物分子竞争进样口或柱头的金属离子、硅烷基及其他活性位点,从而掩盖了这些活性位点,使得目标分析物与活性位点接触诱导的吸附、分解等于干扰大大减少,从而使样品中的目标分析物的含量较纯溶剂中的含量在色谱响应上明显增高。
图1很形象的描述这种现象[3]。
.基质效应的来源产生基质效应的干扰物主要有内源物质和外源物质[3]。
内源物质主要是样品中存在的有机和无机成分,经样品处理后仍然存在。
外源物质并非来自样品本身,而是来源于方法建立过程中外部环境,包括缓冲盐溶液、离子对试剂、有机酸、溶剂等[4,5]。
笔者大量实验证明,在气相色谱中采用N-甲基吡咯烷酮作为溶剂较其他溶剂更易发生基质效应。
基质效应的评价文献报道了评价基质效应主要有柱后灌注法、监控法、提取后加入等方法。
柱后灌注法一种常见的评价方法,它是用溶剂制备的纯的目标分析物标准溶液通过色谱柱和检测器之间的三通注入后所得到色谱图与将溶剂和样品溶液直接进样的色谱图进行比较,如果样— 1 —品溶液的响应信号明显增强或减弱,则说明存在基质效应[6]。
在这里笔者介绍两种简单方法:相对响应值法和标准曲线法。
1)相对响应值法是以对照溶液与样品加样溶液中目标分析物的响应值进行比较,以百分比表征基质效应。
基质效应(matrix effect)化学分析中,基质指的是样品中被分析物以外的组分。
基质常常对分析物的分析过程有显著的干扰,并影响分析结果的准确性。
例如,溶液的离子强度会对分析物活度系数有影响,这些影响和干扰被称为基质效应(matrix effect)。
什么是基质效应?基质是指的是样品中被分析物以外的组分。
基质常常对分析物的分析过程有显著的干扰,并影响分析结果的准确性。
目前最常用的去除基质效应的方法是,通过已知分析物浓度的标准样品,同时尽可能保持样品中基质不变,建立一个校正曲线(calibration curve)。
固体样品同样有很强的基质效应,对其校正也尤为重要。
对于复杂的或者未知组分基质的影响,可以采用标准添加法(standard addition method)。
在这一方法中,需要测量和记录样品的响应值。
进一步加入少量的标准溶液,再次记录样品的响应值。
理想地说来,标准添加应该增加分析物的浓度1.5到3倍,同时几次添加的溶液也应该保持一致。
使用的标准样品的体积应该尽可能小,尽量降低过程中对基质的影响。
评价方法较简单的采用相对响应值法A:在纯溶剂中农药的响应值B:样品基质中添加的相同含量农药响应值基质效应Matrix Effect (%)=B/A×100比较复杂的标准曲线测定法配制3组标准曲线。
第1组用有机溶剂配制成含系列浓度待测组分和内标的标准曲线,可以做5个重复。
第2组标准曲线是将5种不同来源或不同品种的的空白样品经提取后加入与第1组相同系列浓度的待测组分和内标后制得。
第3组标准曲线采用与第2组相同的空白样品在提取前加入与第1组相同系列浓度的待测组分和内标后再经提取后制得。
通过比较3组标准曲线待测组分的绝对响应值、待测组分与内标的响应值比值和标准曲线的斜率,可以确定基质效应对定量的影响。
第1组测定结果可评价整个系统的重复性。
第2组测定结果同第1组测定结果相比,若待测组分响应值的相对标准偏差明显增加,表明存在基质效应的影响。
基质和基质效应
基质和基质效应是植物生长和发育过程中的重要概念。
基质是指植物在生长过程中所依赖的基础物质,比如土壤中的矿物质、水分、空气和阳光等。
这些物质为植物提供了生长所需的营养和能量。
而基质效应则是指植物在特定的基质条件下所表现出的生长和发育差异。
这种差异可能来自于基质中的营养成分、pH值、湿度、光照等条件的改变,也可能来自于植物本身对基质的适应性。
比如,一种植物在含有丰富矿物质的土壤中生长,其生长速度和果实产量可能会比在贫瘠的土壤中更高。
这就是基质效应的体现,说明植物对基质的适应性对其生长和发育有着重要的影响。
基质效应的评价基质效应是指细胞外基质对于细胞行为和功能的影响。
基质是由细胞分泌的一种复杂的结构,包含许多不同的蛋白质和其他分子组成。
在细胞外基质中,细胞能够感知到并与基质相互作用,从而调控细胞的生长、分化、迁移和存活等生理活动。
下面将从细胞生长、细胞迁移和细胞信号传导三个方面来评价基质效应。
基质效应对细胞生长具有重要影响。
基质提供了细胞黏附的支持,并提供了细胞生长所需的生理和机械信号。
细胞黏附在基质上时,会通过细胞外基质中的信号分子激活细胞内的生长因子受体,从而启动细胞生长和增殖过程。
此外,基质中的生长因子和细胞外基质分子也可以直接与细胞表面的受体相互作用,进一步调控细胞的生长和增殖。
因此,基质对于细胞生长具有重要的调控作用。
基质效应对细胞迁移具有重要影响。
细胞迁移是许多生物学过程中的关键步骤,如胚胎发育、组织修复和肿瘤转移等。
基质可以提供细胞迁移所需的支持和方向性信号。
细胞在基质上的黏附和运动依赖于细胞外基质中的纤维蛋白和整合素等分子的相互作用。
这些分子在细胞外基质中形成的纤维网络可以提供细胞迁移所需的支持和导向。
此外,基质中的化学和力学信号也可以调控细胞的迁移速度和方向性。
因此,基质对于细胞迁移具有重要的调控作用。
基质效应对细胞信号传导具有重要影响。
基质可以调控细胞的信号传导过程,包括细胞外信号分子的识别和细胞内信号通路的激活。
细胞外基质中的分子可以与细胞表面的受体相互作用,从而启动细胞内的信号传导。
这些信号可以通过细胞内的信号通路调控细胞的功能和行为。
此外,基质中的物理和化学特性也可以直接影响细胞信号传导的过程。
例如,基质的刚度可以影响细胞外信号分子的受体的活性和信号通路的激活。
因此,基质对于细胞信号传导具有重要的调控作用。
基质效应对于细胞行为和功能具有重要的影响。
基质通过调控细胞的生长、迁移和信号传导等过程,对细胞的生理活动起到重要的调节作用。
研究基质效应有助于深入理解细胞和组织的生物学过程,并为疾病的治疗和组织工程提供理论基础。
基质效应基质效应、Carry over和Cross-talk⼀、定义:1. 基质指的是样品中被分析物以外的组分。
如果分析的是⽣物样品,那么⽣物样品中的基质可能会增强或者抑制其响应,从⽽对我们影响我们检测,这就是基质效应;2. 如果我们的线性范围很宽,ULOQ很⾼,那么在分析完ULOQ后,可能在系统中残留⼀些待测物,这样就会对低浓度的检测有影响,这就是Carry over;3. 我们进⾏MRM或者SRM检测时,不同的离⼦通道间可能存在相互⼲扰的现象,这就是Cross-talk。
备注:ULOQ是定量上限,定量下限是LLOQ⼆、基质效应产⽣的原因MS中,⼀般认为可能源于待测组分与⽣物样品中的基质成分在雾滴表⾯离⼦化过程的竞争。
其竞争结果会显著地降低(离⼦抑制)或增加(离⼦增强)⽬标离⼦的⽣成效率及离⼦强度,进⽽影响测定结果的精密度和准确度。
也有⼈认为基质效应是由于待测组分与基质中内源性物质共洗脱⽽引起的⾊谱柱超载所致,这些成分常因在⾊谱分析中与⽬标化合物分离不完全或未被检测到⽽进⼊质谱后产⽣基质效应。
三、基质效应的评价⽅法⽐较实际样品和空⽩溶剂在Q1SIM中的响应值。
更加⼀个实际的⽅法是将被分析物的纯品加⼊空⽩基质和纯溶剂中,⽐较两者的信噪⽐。
如果样品中被分析物浓度已知,则可将分析物加⼊纯溶剂中,使之达到与样品中分析物的浓度⼀样。
如果样品中分析物浓度未知,或者是纯粹的⽆分析物的基质⽆法得到,则可⽤分析物的同位素内标分别加⼊到样品和纯溶剂中,⽐较⼆者响应差别。
通常基质效应可⽤抑制系数衡量,绝⼤部分情况下降低信号响应,抑制系数<1,少数情况下,也能增强响应信号,此时抑制系数>1.⼀般是1)⽤流动相配制⾼中低三个浓度的待测物,并加⼊内标,测得响应值; 2)空⽩⾎浆提取后加⼊与1)相同浓度的待测物和内标,测响应值基质效应 ME%=响应值2/响应值1×100%这样,不同浓度的待测物的基质效应和内标的基质效应均可得到。
基质与基质效应
基质又称基体或介质,是指在分析样品中,除了分析物以外的所有其他物质和组分(包括溶剂),称为该分析物的基质。
基质效应,是指检测系统在分析样品中的分析物时,处于分析物周围的基质对分析物测定结果的影响,称为基质效应。
因此,单一纯品的标准液,经过加工处理的商品化的质控品和校准品其基质与临床样本的基质是不同的。
他们与不同试剂使用时所产生的基质效应也不相同,因而临床实验室在使用时必须了解他们的差别,并注意其专用属性。