浅谈基质效应[优质ppt]
- 格式:ppt
- 大小:859.50 KB
- 文档页数:34
液质联用技术中基质效应的评价方法王凌王鹏卓宏审评五部1. 前言在人体生物等效性或临床药代动力学试验中,液质联用(LC/MS,LC/MSn)技术被广泛用于生物样品中药物及其代谢物浓度的检测。
液质联用技术具有高灵敏度和高特异性的显著特点,研究者往往会认为采用该技术可以简化或者省去样品的前处理和色谱分离步骤。
但由于质谱检测是基于化合物离子化并通过特定的核质比来检测和定量,因此任何干扰待测物离子化的物质都可能影响检测方法的灵敏度和选择性,即引入了基质效应(Matrix Effect,ME)的概念。
基质效应是指在样品测试过程中,由待测物以外的其他物质的存在,直接或间接影响待测物响应的现象[1]。
由于质谱检测的高选择性,基质效应的影响在色谱图上往往观察不到,即空白基质色谱图表现为一条直线,但这些共流出组分会改变待测物的离子化效率,引起对待测物检测信号的抑制或提高。
这些基质成分包含了生物样品中的内源性成分和样品前处理过程中引入的外源性成分。
内源性组分包括无机盐或者胆汁中的有机盐、各种有机化合物(糖类、胺类、尿素、类脂类、肽类)和分析目标物的同类物及其代谢物。
外源性组分尽管在生物样品中不存在,但同样会产生基质效应,包括处理样品的塑料管中残留的聚合物、离子对试剂、有机酸、缓冲液、SPE柱材料、抗凝管中的抗凝剂如EDTA或肝素锂等[2]。
FDA在生物分析方法建立的指导原则中明确提出对于基于LC/MSn 的方法,在整个分析过程中需通过适当的方法减少基质效应的影响,从而保证方法的灵敏度和选择性[1];EMEA在《生物分析方法的验证指导原则(草案)》中更加细化了基质效应的评判标准[3]。
2. 评价方法目前评价基质效应的方法主要有两种:(1)柱后灌注法(Post-column infusion method)和(2)提取后加入法(Post-extraction spiking method)[4,5]。
其中柱后灌注法能直观的显示基质效应对被测物色谱保留时间的影响范围和影响程度,适合在色谱方法筛选过程中评估基质效应的影响情况,为色谱条件的优化提供信息。
基质效应化学分析中,基质指的是样品中被分析物以外的组分。
基质常常对分析物的分析过程有显著的干扰,并影响分析结果的准确性。
例如,溶液的离子强度会对分析物活度系数有影响,这些影响和干扰被称为基质效应(matrix effect)。
目前最常用的去除基质效应的方法是,通过已知分析物浓度的标准样品,同时尽可能保持样品中基质不变,建立一个校正曲线(calibration curve)。
固体样品同样有很强的基质效应,对其校正也尤为重要。
对于复杂的或者未知组分基质的影响,可以采用标准添加法(standard addition method)。
在这一方法中,需要测量和记录样品的响应值。
进一步加入少量的标准溶液,再次记录样品的响应值。
理想地说来,标准添加应该增加分析物的浓度1.5到3倍,同时几次添加的溶液也应该保持一致。
使用的标准样品的体积应该尽可能小,尽量降低过程中对基质的影响。
基质效应的评价方法一种是较简单的采用相对响应值法A:在纯溶剂中农药的响应值B:样品基质中添加的相同含量农药响应值基质效应Matrix Effect (%)=B/A×100另一种方法是比较复杂的标准曲线测定法配制3组标准曲线。
第1组用有机溶剂配制成含系列浓度待测组分和内标的标准曲线,可以做5个重复。
第2组标准曲线是将5种不同来源或不同品种的的空白样品经提取后加入与第1组相同系列浓度的待测组分和内标后制得。
第3组标准曲线采用与第2组相同的空白样品在提取前加入与第1组相同系列浓度的待测组分和内标后再经提取后制得。
通过比较3组标准曲线待测组分的绝对响应值、待测组分与内标的响应值比值和标准曲线的斜率,可以确定基质效应对定量的影响。
第1组测定结果可评价整个系统的重复性。
第2组测定结果同第1组测定结果相比,若待测组分响应值的相对标准偏差明显增加,表明存在基质效应的影响。
对第3组测定结果,若待测组分响应值的相对标准偏差明显增加,表明存在基质效应和提取回收率因样品来源不同而产生的共同影响。
基质效应、Carry over和Cross-talk一、定义:1. 基质指的是样品中被分析物以外的组分。
如果分析的是生物样品,那么生物样品中的基质可能会增强或者抑制其响应,从而对我们影响我们检测,这就是基质效应;2. 如果我们的线性范围很宽,ULOQ很高,那么在分析完ULOQ后,可能在系统中残留一些待测物,这样就会对低浓度的检测有影响,这就是Carry over;3. 我们进行MRM或者SRM检测时,不同的离子通道间可能存在相互干扰的现象,这就是Cross-talk。
备注:ULOQ是定量上限,定量下限是LLOQ二、基质效应产生的原因MS中,一般认为可能源于待测组分与生物样品中的基质成分在雾滴表面离子化过程的竞争。
其竞争结果会显著地降低(离子抑制)或增加(离子增强)目标离子的生成效率及离子强度,进而影响测定结果的精密度和准确度。
也有人认为基质效应是由于待测组分与基质中内源性物质共洗脱而引起的色谱柱超载所致,这些成分常因在色谱分析中与目标化合物分离不完全或未被检测到而进入质谱后产生基质效应。
三、基质效应的评价方法比较实际样品和空白溶剂在Q1SIM中的响应值。
更加一个实际的方法是将被分析物的纯品加入空白基质和纯溶剂中,比较两者的信噪比。
如果样品中被分析物浓度已知,则可将分析物加入纯溶剂中,使之达到与样品中分析物的浓度一样。
如果样品中分析物浓度未知,或者是纯粹的无分析物的基质无法得到,则可用分析物的同位素内标分别加入到样品和纯溶剂中,比较二者响应差别。
通常基质效应可用抑制系数衡量,绝大部分情况下降低信号响应,抑制系数<1,少数情况下,也能增强响应信号,此时抑制系数>1.一般是1)用流动相配制高中低三个浓度的待测物,并加入内标,测得响应值; 2)空白血浆提取后加入与1)相同浓度的待测物和内标,测响应值基质效应 ME%=响应值2/响应值1×100%这样,不同浓度的待测物的基质效应和内标的基质效应均可得到。