如果对于属于定义域 I 内某个区间上的任意两个自 变量的值 x1, x2, 当 x1<x2 时, 都有 f(x1)>f(x2), 那么就说 f(x) 在这个区间上是减函数.
注: 函数是增函数还是减函数是对定义域内某个区 间而言的. 有的函数在一些区间上是增函数, 而在另一些 区间上可能是减函数.
2020/10/20
的图象如图所示:
y
2 ab
-
b a
o
b a
x
-2 ab
②求函数的单调区间是单调性学习中的最基本的问题, 但必须注意, 如果函数的解析式含有参数, 而且参数 的取值影响函数的单调区间, 这时必须对参数的取值 进行分类讨论.
2020/10/20
10
典型例题
§2.5.1 函数的单调性与反函数(一)
1.试求函数
8
ห้องสมุดไป่ตู้
典型例题
§2.5.1 函数的单调性与反函数(一)
1.试求函数
f(x)=ax+
b x
(a>0,
b>0) 的单调区间.
解法2: ∵函数 f(x) 的定义域为(-∞, 0)∪(0, +∞),
函数
f(x) 的导函数
f (x)=a-
b x2
=
ax2-b x2
,
令
f
(x)>0
得:
x2>
b a
x<-
b a
或
x>
当x1 x2
b时, 0 b a
a
x1 x2
f 故
( f
x1 ) f (
(
x)在
x2 ) b, a
0