数学学业水平考试专题复习(全解析)
- 格式:docx
- 大小:703.98 KB
- 文档页数:10
2024年广东省初中学业水平考试数 学本试卷共4页,23小题,满分120分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案、答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的绝对值等于( )A .B .3C .D.2.据教育部统计,2024届全国普通高校毕业生规模预计达1179万人.数据1179万用科学记数法表示为()A .B .C .D .3.如题3图是一个由5个相同的正方体组成的立体图形,它的俯视图是()题3图A .B .C .D .4.不等式组的解集在数轴上表示为( )A .B .C .D .3-3-13-1380.117910⨯81.17910⨯611.7910⨯71.17910⨯22343x xx +≥⎧⎨+<⎩5.勾股定理在《九章算术》中的表述是:“勾股各自乘,并而开方除之,即弦.”即为勾,为股,为弦),若“勾”为2,“股”为3,则“弦”最接近的整数是( )A .2B .3C .4D .56.若关于的方程有实数根,则的值可能是( )A .4B .5C .6D .77.正方形与的位置如题7图所示,已知,则的度数为()题7图A .B .C .D .8.某校运动会的接力赛中,甲、乙两名同学都是第一棒,这两名同学各自随机从四个赛道中抽取一个赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为( )A.B .C .D .9.关于反比例函数,下列说法错误的是( )A .反比例函数图象经过点B .当时,C.该反比例函数图象与函数的图象没有交点D .若点在该反比例函数的图象上,则点也在其图象上10.如题10图,已知菱形的顶点,若菱形绕点逆时针旋转,每秒旋转,则第20秒时,菱形的对角线交点的坐标为()题10图c a =b c x 240x x c -+=c ABCO Rt DEO △AOD COE α∠+∠=DOC ∠90α︒-90α︒+902α︒-902α︒+4400m ⨯121416182y x=1x >02y <<y x =-(),P m n (),Q m n -OABC ()()0,0,2,2O B O 45︒DA .B .C .D .二、填空题:本大题共5小题,每小题3分,共15分.11.因式分解:______.12.一个多边形的内角和比外角和多,这个多边形的边数是______.13.代数式与代数式的值相等,则______.14.如题14图,是的直径,是上一点,过点作的切线交的延长线于点,连接,且,若的长为______.题14图15.北宋数学家贾宪提出一个定理“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如题15—1图中)”.问题解决:如题15—2图,是矩形的对角线上一点,过点作分别交于点,连接.若,则______.题15—1图 题15—2图三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.(1)计算:;(2)先化简,再求值:其中.17.漏刻是我国古代的一种计时工具.小轩依据漏刻的原理制作了一个简单的漏刻计时工具模型,研究中发现其水位与时间之间成一次函数关系.小轩通过多次计时并测量水位的高度,得到如下表数据:()1,1-()1,1--)(0,269x x -+=180︒31x -4xx =AB O e C O e A O e BC D AC BAC CAD ∠=∠AC =BD AEOM CFON S S =矩形矩形M ABCD AC M EF BC ∥,AB CD ,E F ,BM DM 4,3,2CF EM DF ===MF =()1012024sin452-⎛⎫-+-︒ ⎪⎝⎭21,11x x x x ⎛⎫÷+ ⎪--⎝⎭3x =()cm h ()min t…1235……2.42.83.24.0…(1)求关于的函数关系式;(2)若小轩开始测量的时间为早上9:30,当水位读数为14cm 时,求此时的时间.18.如题18图,在等边中,为边上的高.题18图(1)实践与操作:利用尺规,以为边在下方作等边,延长交于点;(要求:尺规作图并保留作图痕迹、不写作法,标明字母)(2)应用与证明:在(1)的条件下,证明.四、解答题(二):本大题共3小题,每小题9分,共27分.19.测速仪是协助道路安全工作必不可少的装置,如题19图.为保障学生安全,某中学入口处的街道安装了车辆自动测速仪,测速仪置于路面上方横杆的点位置,点到路面的距离米.已知,点,在同一平面内.求测速区间的距离.(结果保留整数,参考数据:,)题19图20.某市教育部启动“书香校园”的读书行动,鼓励学生多读书、读好书,好读书.现从某校八、九年级中各随机抽取20名学生的阅读时间.并分为五个类别:(6小时及以下),(7小时),(8小时),(9小时),(10小时),整理分析后绘制了如下统计图表:抽取的八年级学生阅读时间条形统计图抽取的九年级学生阅读时间扇形统计图题20图抽取的八、九年级学生阅读时间统计表()min t ()cm h h t ABC △AD BC CD CD CDE △ED AB M CE BM =C C 6CD =12,33CAD CBD ∠=︒∠=︒A ,,B C D AB sin120.21,cos120.98,tan120.21︒=︒≈︒≈sin330.54,cos330.84,tan330.65︒=︒≈︒≈A B C D E年级平均数中位数众数八年级7.58九年级8.210根据以上信息,解答下列问题:(1),.(2)该校八年级共有400名学生、九年级共有500名学生参加此次读书行动,若该校计划给阅读时间不低于9小时的学生颁发荣誉证书,请估计该校需准备多少份证书;(3)根据分析的数据,请从一个方面评价该校八、九年级中哪个年级抽取的学生阅读时间更好,并说明理由.21.综合与实践“转化”是一种重要的数学思想,将空间问题转化为平面问题是转化思想的一个重要方面.为了让同学们探究“转化”思想在数学中的应用,在数学活动课上,老师带领学生研究几何体的最短路线问题:问题情境:如题21—1图,一只蚂蚁从点出发沿圆柱侧面爬行到点C ,其最短路线正是侧面展开图中的线段,若圆柱的高为.底面直径为.问题解决:(1)判断最短路线的依据是______;(2)求出蚂蚁沿圆柱侧面爬行的最短路线的长(结果保留根号和);拓展迁移:如题21—2图,为圆锥的顶点,为底面圆周上一点,点是的中点,母线,底面圆半径为2,粗线为蚂蚁从点出发绕圆锥侧面爬行回到点时所经过的路径的痕迹.(3)请求出蚂蚁爬行的最短距离.题21—1图 题21—2图五、解答题(三):本大题共2小题,每小题12分,共24分.22.综合探究如题22图,在平面直角坐标系中.直线与抛物线交于两点,点的横坐标为.ab______a =______b =A AC AB 2cm BC 8cm AC πO M P OM 8OM =P P ()0y kx k =≠()20y ax c a =+≠()8,6,A B B 2-题22图(1)求抛物线的解析式;(2)点是直线下方抛物线上一动点,过点作轴的平行线,与直线交于点C .连接,设点的横坐标为.①若点在轴上方,当为何值时,;②若点在轴下方,求周长的最大值.23.综合运用如题23—1图,在平面直角坐标系中,点为,点为,连接.提出问题:(1)如题23—2图,以为边在右侧构成正方形,且正方形的边与轴相交于点,用含的代数式表示此时点的坐标;问题探究:(2)如题23—3图,以为对角线构成正方形,且正方形的边与轴相交于点,当时,求线段的值;问题深化:(3)若以为边在右侧构成正方形,过点作轴于点,连接,令的面积为,求关于的函数关系式.题23—1图 图题23—2图 题23—3图P AB P x AB PO P m P x m OC CP =P x POC △A ()0,4B (),0n AB AB AB ABCD ABCD y E n E AB ACBD ACBD y E 2n =-:BE CE AB AB ABCD D DF x ⊥F CF CDF △S S n数 学快速对答案一、选择题:共10小题,每小题3分,共30分。
2023年初中学业水平考试数学试题及答案详解一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数1,0,23-,﹣2中最大的是()A.1B.0C.23-D.﹣22.原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示()A.51710⨯ B.61.710⨯ C.70.1710⨯ D.71.710⨯3.某物体如图所示,它的主视图是()A. B. C. D.4.一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为()A.47B.37C.27D.175.如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作□BCDE ,则∠E 的度数为()A.40°B.50°C.60°D.70°6.山茶花是温州市的市花,品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表.这批“金心大红”花径的众数为()A.6.5cmB.6.6cmC. 6.7cmD. 6.8cm7.如图,菱形OABC 的顶点A ,B ,C 在⊙O 上,过点B 作⊙O 的切线交OA 的延长线于点D .若⊙O 的半径为1,则BD 的长为()A.1B.2C.D.8.如图,在离铁塔150米的A 处,用测倾仪测得塔顶的仰角为α,测倾仪高AD 为1.5米,则铁塔的高BC 为()A.(1.5+150tan α)米B.(1.5+150tan α)米 C.(1.5+150sin α)米D.(1.5+150sin α)米9.已知(﹣3,1y ),(﹣2,2y ),(1,3y )是抛物线2312y x x m =--+上的点,则()A.3y <2y <1yB.3y <1y <2yC.2y <3y <1yD.1y <3y <2y 10.如图,在Rt △ABC 中,∠ACB =90°,以其三边为边向外作正方形,过点C 作CR ⊥FG 于点R ,再过点C 作PQ ⊥CR 分别交边DE ,BH 于点P ,Q .若QH =2PE ,PQ =15,则CR 的长为()A.14B.15C. D.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:x 2-25=_________________.12.不等式组30412x x -<⎧⎪⎨+≥⎪⎩的解集为_______.13.若扇形的圆心角为45°,半径为3,则该扇形的弧长为_______.14.某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有_______头.15.点P ,Q ,R 在反比例函数ky x=(常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为_______.16.如图,在河对岸有一矩形场地ABCD ,为了估测场地大小,在笔直的河岸l 上依次取点E ,F ,N ,使AE ⊥l ,BF ⊥l ,点N ,A ,B 在同一直线上.在F 点观测A 点后,沿FN 方向走到M 点,观测C 点发现∠1=∠2.测得EF =15米,FM =2米,MN =8米,∠ANE =45°,则场地的边AB 为_______米,BC为_______米.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(102(1)-+--;(2)化简:2(1)(7)x x x --+.18.如图,在△ABC 和△DCE 中,AC =DE ,∠B =∠DCE =90°,点A ,C ,D 依次在同一直线上,且AB ∥DE .(1)求证:△ABC ≌△DCE ;(2)连结AE ,当BC =5,AC =12时,求AE 的长.19.A ,B 两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量;(2)已知A ,B 两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.20.如图,在6×4的方格纸ABCD 中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A ,B ,C ,D 重合.(1)在图1中画格点线段EF ,GH 各一条,使点E ,F ,G ,H 分别落在边AB ,BC ,CD ,DA 上,且EF =GH ,EF 不平行GH ;(2)在图2中画格点线段MN ,PQ 各一条,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且PQMN .21.已知抛物线21y ax bx =++经过点(1,﹣2),(﹣2,13).(1)求a ,b 的值;(2)若(5,1y ),(m ,2y )是抛物线上不同的两点,且2112y y =-,求m 的值.22.如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是 AC上一点,∠ADC=∠G.(1)求证:∠1=∠2;(2)点C关于DG的对称点为F,连结CF,当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.23.某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进单批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b;②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.24.如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知6125y x=-+,当Q为BF中点时,245y=.(1)判断DE与BF的位置关系,并说明理由;(2)求DE,BF的长;(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系;②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.2023年初中学业水平考试数学答案详解一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.A 【解析】排列得:-2<23-<0<1,则最大的数是1,故选:A .2.B 【解析】【详解】根据科学记数法的知识可得:1700000=61.710⨯.故选B .3.A 【解析】【详解】A 、是其主视图,故符合题意;B 、是其左视图,故不符合题意;C 、三种视图都不符合,故不符合题意;D 、是其俯视图,故不符合题意.故选:A .4.C 【解析】【详解】解:从布袋里任意摸出1个球,是红球的概率=27.故选:C .5.D 【解析】【详解】解:∵∠A =40°,AB =AC ,∴∠ABC =∠C =70°,∵四边形ABCD 是平行四边形,∴∠E =∠C =70°.故选D .6.C 【解析】【详解】解:花径6.7cm 的有12株,出现次数最多,因此这批“金心大红”花径的众数为6.7cm ,故选C .7.D 【解析】【详解】解:连接OB ∵菱形OABC ∴OA=AB 又∵OB=OA ∴OB=OA=AB ∴△OAB 是等边三角形∵BD 是圆O 的切线∴∠OBD=90°∴∠AOB=60°∴∠ODB=30°∴在Rt △ODB 中,OD=2OB=2,BD=OD·sin ∠ODB=2×32故选D .8.A 【解析】【详解】解:如图,过点A 作AE ⊥BC 于E ,可知AE=DC=150,EC=AD=1.5,∵塔顶的仰角为α,∴tan 150BE BEAE α==,∴150tan BE α=,∴ 1.5150tan BC BE CE BE AD α=+=+=+,故选A .9.B 【解析】【详解】解:抛物线2312y x x m =--+的对称轴为()12223x ==-⨯-,∵30-<,∴2x <-是y 随x 的增大而增大,2x >-是y 随x 的增大而减小,又∵(﹣3,1y )比(1,3y )距离对称轴较近,∴3y <1y <2y ,故选:B .10.A 【解析】【详解】解:如图,连接EC ,CH ,设AB 交CR 于点J ,∵四边形ACDE ,四边形BCIH 都是正方形,∴∠ACE =∠BCH =45°,∵∠ACB =90°,∠BCI =90°,∴∠ACE +∠ACB +∠BCH =180°,∠ACB +∠BCI =180°,∴点E 、C 、H 在同一直线上,点A 、C 、I 在同一直线上,∵DE ∥AI ∥BH ,∴∠CEP =∠CHQ ,∵∠ECP =∠QCH ,∴△ECP ∽△HCQ ,∴12PC CE EP CQ CH HQ ===,∵PQ =15,∴PC =5,CQ =10,∵EC :CH =1:2,∴AC :BC =1:2,设AC =a ,则BC =2a ,∵PQ ⊥CR ,CR ⊥AB ,∴CQ ∥AB ,∵AC ∥BQ ,CQ ∥AB ,∴四边形ABQC 为平行四边形,∴AB =CQ =10,∵222AC BC AB +=,∴25100a =,∴a =(舍负)∴AC =BC =∵1122AC BC AB CJ ⋅⋅=⋅⋅,∴4CJ ==,∵JR =AF =AB =10,∴CR =CJ +JR =14,故选:A .二、填空题(本题有6小题,每小题5分,共30分)11.()()x 5x 5+-【解析】因为x 2﹣25=x 2﹣52,所以直接应用平方差公式即可:()()2x 25x 5x 5-=+-.12.23x -≤<【解析】【详解】解:30412x x -<⎧⎪⎨+≥⎪⎩①②由①得:3x <,由②得:2x ≥-,∴不等式组的解集为:23x -≤<,13.34π【解析】【详解】45331801804n R L πππ⨯===.14.140【解析】【详解】由直方图,得质量在77.5kg 及以上的生猪有:90+30+20=140(头),15.275【解析】【详解】解:由题意知:矩形OFPC 的面积,k =,OE DE DC == 11,3S k ∴=同理:矩形OGQD ,矩形OARE 的面积都为k ,,OE DE DC == 2121,236S k k k ⎛⎫∴=-= ⎪⎝⎭3111,362S k k k k =--=1327,S S += 1127,23k k ∴+=162,5k ∴=2162127.565S ∴=⨯=16.(1).(2).【解析】【详解】解:过点C 作CP ⊥EF 于点P ,过点B 作直线GH ∥EF 交AE 于点G ,交CP 于点H ,如图,则GH ⊥AE ,GH ⊥CP ,∴四边形BGEF 、BHPF 是矩形,∵∠ANE =45°,∴∠NAE =45°,∴AE=EN=EF +FM +MN =15+2+8=25,∵∠ABG =45°,∴∠GAB =45°,∴AG =BG =EF =15,∴AB ==,GE=BF=PH =10,∵∠ABG =45°,∠ABC =90°,∴∠CBH =45°,∴∠BCH =45°,∴BH=CH,设FP=BH=CH=x ,则MP=x -2,CP=x +10,∵∠1=∠2,∠AEF =∠CPM =90°,∴△AEF ∽△CPM ,∴AE CP EF PM =,即2510152x x +=-,解得:x =20,即BH=CH =20,∴BC ==∴AB =BC =三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.解:(102(1)--+--=2-2+1+1=2;(2)2(1)(7)x x x --+=22217x x x x-+--=91x -+18.解:(1)∵//AB DE ∴BAC CDE∠=∠在△ABC 和△DCE 中,B DCE BAC CDE AC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCE(2)由(1),得BC =CE =5在直角三角形ACE 中,13AE ===19.解:(1)选择两家酒店月营业额的平均数:1(1 1.6 2.2 2.7 3.54) 2.56A x =+++++=,1(23 1.7 1.8 1.7 3.6) 2.36B x =+++++=,(2)A 酒店营业额的平均数比B 酒店的营业额的平均数大,且B 酒店的营业额的方差小于A 酒店,说明B 酒店的营业额比较稳定,而从图像上看A 酒店的营业额持续稳定增长,潜力大,说明A 酒店经营状况好.20.解:(1)由,可得图形如下图:(2)如图所示,MN ==PQ ==所以∶PQ MN =得到:PQ21.解:(1)∵抛物线21y ax bx =++经过点(1,-2),(-2,13),∴2113421a b a b -=++⎧⎨=-+⎩,解得14a b =⎧⎨=-⎩,∴a 的值为1,b 的值为-4;(2)∵(5,1y ),(m ,2y )是抛物线上不同的两点,∴12221252014112y m m y y y -+=⎧⎪-+=⎨⎪=-⎩,解得12616y m y =⎧⎪=-⎨⎪=⎩或12656y m y =⎧⎪=⎨⎪=⎩(舍去)∴m 的值为-1.22.解:(1)证明:∵∠ADC =∠G ,∴ AC AD =,∵AB 为⊙O 的直径,∴ ACB ADB=∴ ACB AC ADB AD -=-,∴ CBDB =,∴∠1=∠2;(2)解:连接OD 、FD ,∵ AC AD =, CBDB =,∴点C 、D 关于直径AB 对称,∴AB 垂直平分CD ,∴FC =FD ,CE =DE =12CD ,∠DEB =90°,∵点C 关于DG 的对称点为F ,∴DG 垂直平分FC ,∴FD =CD ,又∵CF =10,∴FC =FD =CD =10,∴DE =12CD =5,∵在Rt △DEB 中,tan ∠1=25∴25BE DE =,∴255BE =,∴BE =2,设OB =OD =x ,则OE =5-x ,∵在Rt △DOE 中,222OE DE OD +=,∴222(2)5x x -+=,解得:294x =∴⊙O 的半径为294.23.解:(1)设3月份购进T 恤x 件,由题意得:180002(10)39000x x+=,解得x=150,经检验x=150是分式方程的解,符合题意,∵4月份是3月份数量的2倍,∴4月份购进T 恤300件;(2)①由题意得,甲店总收入为180(150)0.8180a a +-⨯⨯,乙店总收入为1801800.91800.7(150)a b a b +⨯+⨯⨯--,∵甲乙两店利润相等,成本相等,∴总收入也相等,∴180(150)0.8180a a +-⨯⨯=1801800.91800.7(150)a b a b +⨯+⨯⨯--,化简可得1502a b -=,∴用含a 的代数式表示b 为:1502a b -=;②乙店利润函数式为1801800.9+1800.7(150)19500y a b a b =+⨯⨯---,结合①可得362100y a =+,因为a b ≤,1502a b -=,∴50a ≤,∴max 36502100y =⨯+=3900,即最大利润为3900元.24.解:(1)DE 与BF 的位置关系为:DE ∥BF ,理由如下:如图1所示:∵∠A=∠C=90°,∴∠ADC+∠ABC=360°-(∠A+∠C )=180°,∵DE 、BF 分别平分∠ADC 、∠ABC ,1122ADE ADC ABF ABC ∴∠=∠∠=∠,,1180902ADE ABF ∴∠+∠=⨯︒=︒,∵∠ADE+∠AED=90°,∴∠AED=∠ABF ,∴DE ∥BF ;(2)令x=0,得y=12,∴DE=12,令y=0,得x=10,∴MN=10,把254y =代入6125y x =-+,解得x=6,即NQ=6,∴QM=10-6=4,∵Q 是BF 中点,∴FQ=QB ,∵BM=2FN ,∴FN+6=4+2FN ,解得FN=2,∴BM=4,∴BF=FN+MN+MB=16;(3)①连接EM 并延长交BC 于点H ,如图2所示:∵FM=2+10=12=DE ,DE ∥BF ,∴四边形DFME 是平行四边形,∴DF=EM ,∵AD=6,DE=12,∠A=90°,∴∠DEA=30°,∴∠DEA=∠FBE=∠FBC=30°,∴∠ADE=60°,∴∠ADE=∠CDE=∠FME=60°,∴∠DFM=∠DEM=120°,∴∠MEB=180°-120°-30°=30°,∴∠MEB=∠FBE=30°,∴∠EHB=180°-30°-30°-30°=90°,DF=EM=BM=4,122MH BM ∴==,∴EH=4+2=6,由勾股定理得:BH ===,∴BE ===,当DP=DF 时,61245x -+=,解得:302x =,2022141433BQ x ∴=-=-=,223>,BQ >BE ;②(Ⅰ)当PQ 经过点D 时,如图3所示:y=0,则x=10;(Ⅱ)当PQ 经过点C 时,如图4所示:∵BF=16,∠FCB=90°,∠CBF=30°,182CF BF ==,CD=8+4=12,∵FQ ∥DP ,∴△CFQ ∽△CDP ,∴FQ CF DP CD =,∴28612125x +=-+,解得:103x =;(Ⅲ)当PQ 经过点A 时,如图5所示:∵PE ∥BQ ,∴△APE ∽△AQB ,∴PE AEBQ AB =,根据勾股定理得:AE ===,∴AB ==,61212514x ⎛⎫--+ ⎪⎝⎭∴=-,解得:143x =;由图可知,PQ 不可能过点B ;综上所述,当x=10或103x =或143x =时,PQ 所在的直线经过四边形ABCD的一个顶点.。
知识点一函数的概念1.函数的定义、定义域、值域2.两个函数相等的条件(1)定义域相同.(2)对应关系完全一致.知识点二函数的表示及分段函数1.函数的表示方法函数的三种表示法:解析法、图象法、列表法.2.分段函数如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的对应关系,那么称这样的函数为分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.知识点三函数的单调性与最大(小)值1.函数的单调性(1)增函数、减函数:设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.(2)函数的单调性:若函数f(x)在区间D上是增(减)函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.(3)单调性的常见结论:若函数f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数;若函数f(x)为增(减)函数,则-f(x)为减(增)函数;若函数f(x)为增(减)函数,且f(x)>0,则1 f(x)为减(增)函数.2.函数的最大值、最小值最值类别最大值最小值条件设函数y=f(x)的定义域为I,如果存在实数M满足(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M结论M是函数y=f(x)的最大值M是函数y=f(x)的最小值性质:定义在闭区间上的单调函数,必有最大(小)值.知识点四函数的奇偶性1.函数奇偶性的概念偶函数奇函数条件对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x)f(-x)=-f(x)结论函数f(x)是偶函数函数f(x)是奇函数2.性质(1)偶函数的图象关于y轴对称,奇函数的图象关于原点对称.(2)奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反.(3)在定义域的公共部分内,两个奇函数之积与商(分母不为零)为偶函数;两个奇函数之和为奇函数;两个偶函数的和、积与商(分母不为零)为偶函数;一奇一偶函数之积与商(分母不为零)为奇函数.题型一函数的定义域、值域例1(1)(2018年6月学考)函数y=log2(x+1)的定义域是()A.(-1,+∞) B.[-1,+∞)C .(0,+∞)D .[0,+∞)(2)函数f (x )=x +2x -1的值域为____________. 答案 (1)A (2)⎣⎡⎭⎫12,+∞ 解析 (2)因为函数的定义域是⎣⎡⎭⎫12,+∞,且函数为单调递增函数,所以函数的最小值是f ⎝⎛⎭⎫12=12,故函数的值域是⎣⎡⎭⎫12,+∞. 感悟与点拨 (1)求函数的定义域,就是求使函数表达式有意义的自变量的取值范围. (2)在求函数定义域和值域的时候,要把定义域和值域写成集合或区间的形式. 跟踪训练1 (1)(2018年4月学考)函数f (x )=x +1x 的定义域是( )A .{x |x >0}B .{x |x ≥0}C .{x |x ≠0}D .R(2)函数f (x )=ln (2+x -x 2)|x |-x 的定义域为________.答案 (1)A (2)(-1,0)解析 (1)由题意知,⎩⎪⎨⎪⎧x ≥0,x ≠0,所以x >0.(2)∵2+x -x 2>0且|x |-x ≠0, ∴x ∈(-1,2)且x ∉[0,+∞), ∴x ∈(-1,0).题型二 函数的图象及图象的应用例2 (2016年4月学考)下列图象中,不可能成为函数y =f (x )的图象的是( )答案 A解析 当x =0时,有两个y 值对应,故A 不可能是函数y =f (x )的图象.感悟与点拨 一个图象能不能作为函数的图象,关键是看它是否符合函数的定义及函数的特征.跟踪训练2 已知函数f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( )答案 D题型三 分段函数例3 已知函数f (x )=132log ,1,24,1,x x x x x >⎧⎪⎨⎪--+≤⎩则f (f (3))=________,f (x )的单调递减区间是________.答案 5 [-1,+∞) 解析 f (3)=13log 3=-1,∴f (f (3))=f (-1)=-1+2+4=5.当x ≤1时,f (x )=-x 2-2x +4=-(x +1)2+5, 对称轴为x =-1,f (x )在[-1,1]上单调递减. 当x >1时,f (x )单调递减,且-12-2×1+4>13log 1,∴f (x )在[-1,+∞)上单调递减.感悟与点拨 解决分段函数问题的关键是:在定义域内的自变量x 取不同区间上的值时,有着不同的对应关系,要注意分别考虑.跟踪训练3 已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,x <0,f (x -1)-1,x >0,则f ⎝⎛⎭⎫-113+f ⎝⎛⎭⎫113=________.答案 -4解析 f ⎝⎛⎭⎫-113+f ⎝⎛⎭⎫113 =f ⎝⎛⎭⎫-113+f ⎝⎛⎭⎫-13-4 =sin ⎝⎛⎭⎫-11π3+sin ⎝⎛⎭⎫-π3-4=-4. 题型四 函数的单调性及应用例4 已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),求a 的取值范围.解 由题意可知⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,解得0<a <1.①又f (x )在(-1,1)上是减函数, 且f (1-a )<f (2a -1), ∴1-a >2a -1,即a <23.②由①②可知,0<a <23,即所求a 的取值范围是⎝⎛⎭⎫0,23. 感悟与点拨 利用函数的单调性,可将函数值的不等关系转化为自变量取值的不等关系,即转化为具体不等式来求解.跟踪训练4 已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x ≤1,log ax ,x >1是R 上的减函数,求实数a 的取值范围.解 由题意知,要使原函数在定义域上为减函数, 则需要满足⎩⎪⎨⎪⎧3a -1<0,0<a <1,(3a -1)×1+4a ≥log a1,解得17≤a <13,故实数a 的取值范围是⎣⎡⎭⎫17,13. 题型五 函数的奇偶性及应用例5 (2016年4月学考改编)已知函数f (x )=1x -1-1x -3.(1)设g (x )=f (x +2),判断函数g (x )的奇偶性,并说明理由; (2)求证:函数f (x )在[2,3)上是增函数. (1)解 g (x )是偶函数,证明如下: ∵f (x )=1x -1-1x -3,∴g (x )=f (x +2)=1x +1-1x -1,∵g (-x )=1-x +1-1-x -1=1x +1-1x -1=g (x ), 又∵g (x )的定义域为{x |x ≠-1且x ≠1}, ∴y =g (x )是偶函数.(2)证明 设x 1,x 2∈[2,3)且x 1<x 2,f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1x 1-1-1x 1-3-⎝ ⎛⎭⎪⎫1x 2-1-1x 2-3=2(x 1-x 2)(x 1+x 2-4)(x 1-1)(x 1-3)(x 2-1)(x 2-3),∵x 1,x 2∈[2,3)且x 1<x 2, ∴x 1-x 2<0,x 1+x 2-4>0, (x 1-1)(x 1-3)(x 2-1)(x 2-3)>0, 综上得f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴函数f (x )在[2,3)上是增函数.感悟与点拨 (1)在奇、偶函数定义中,交换条件和结论仍成立.即若f (x )为奇函数,则f (-x )=-f (x ).若f (x )为偶函数,则f (-x )=f (x ).(2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. 跟踪训练5 (1)(2018年4月学考)用列表法将函数f (x )表示为则( )A .f (x +2)为奇函数B .f (x +2)为偶函数C .f (x -2)为奇函数D .f (x -2)为偶函数答案 A(2)(2017年4月学考改编)已知函数f (x )=3|x -a |+|ax -1|,其中a ∈R . ①当a =1时,写出函数f (x )的单调区间; ②若函数f (x )为偶函数,求实数a 的值.解 ①当a =1时,f (x )=3|x -a |+|ax -1|=4|x -1|,函数f (x )的减区间为(-∞,1),增区间为(1,+∞).②若函数f (x )为偶函数,一定有f (1)=f (-1),即3|1-a |+|a -1|=3|-1-a |+|-a -1|,解得a =0,经检验符合题意.一、选择题1.(2017年11月学考)函数y =2-x +1x +1的定义域是( ) A .(-1,2] B .[-1,2] C .(-1,2) D .[-1,2)答案 A解析 由⎩⎪⎨⎪⎧2-x ≥0,x +1>0,得-1<x ≤2.2.已知函数f (x )=⎩⎪⎨⎪⎧1-2x ,x <0,3x ,x ≥0,则f (-1)+f (0)等于( )A .3B .4C .5D .6 答案 B解析 f (-1)+f (0)=1-2-1+30=4.3.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案B解析对于A,不符合定义域为{x|-2≤x≤2},故可排除;对于B,满足函数定义,故符合;对于C,出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以排除;对于D,因为值域不是{y|0≤y≤2},故可排除,故选B.4.已知函数g(x)=f(x)-x是偶函数,且f(3)=4,则f(-3)等于()A.-4 B.-2 C.0 D.4答案B解析∵g(-3)=g(3)=f(3)-3=4-3=1,又g(-3)=f(-3)+3=1,∴f(-3)=-2.5.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)的值为()A.-3 B.-1 C.1 D.3答案A解析∵f(-1)=2(-1)2-(-1)=3,∴f(1)=-f(-1)=-3.6.已知函数f(x),g(x)都是R上的奇函数,且F(x)=f(x)+3g(x)+5.若F(a)=b,则F(-a)等于()A.-b+10 B.-b+5C.b-5 D.b+5答案A解析∵f(x),g(x)都是R上的奇函数,∴F(-a)=f(-a)+3g(-a)+5=-[f (a )+3g (a )]+5. 又F (a )=f (a )+3g (a )+5=b , 即f (a )+3g (a )=b -5,∴F (-a )=-(b -5)+5=-b +10.7.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值为( ) A .2 B .-2 C .2或-2 D .0 答案 C解析 由题意知a ≠0,当a >0时,(2a +1)-(a +1)=2, 解得a =2;当a <0时,有(a +1)-(2a +1)=2, 解得a =-2.综上知,a =±2.8.已知f (x )=⎩⎪⎨⎪⎧a x,x >1,⎝⎛⎭⎫4-a 2x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)答案 B解析 ∵f (x )是R 上的单调递增函数,∴⎩⎨⎧a >1,4-a2>0,a ≥4-a2+2,解得4≤a <8.9.已知函数f (x )=|x 3+1|+|x 3-1|,则下列坐标表示的点一定在函数y =f (x )的图象上的是( ) A .(a ,-f (a )) B .(a ,f (-a )) C .(-a ,-f (a )) D .(-a ,-f (-a ))答案 B解析 ∵f (x )为偶函数,∴f (-a )=f (a ), ∴(a ,f (-a ))一定在y =f (x )的图象上,故选B.10.已知函数f (x )满足f (4+x )=f (-x ).当x 1,x 2∈(-∞,2)时,f (x 2)-f (x 1)x 2-x 1>0;当x 1,x 2∈(2,+∞)时,f (x 2)-f (x 1)x 2-x 1<0.若x 1<x 2,且x 1+x 2>4,则f (x 1),f (x 2)的大小关系是( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不确定 答案 B解析 ∵f (4+x )=f (-x ), ∴函数图象关于x =2对称. ∵当x 1,x 2∈(-∞,2)时,f (x 2)-f (x 1)x 2-x 1>0, ∴此时函数单调递增.当x 1,x 2∈(2,+∞)时,f (x 2)-f (x 1)x 2-x 1<0,∴此时函数单调递减. ∵x 1<x 2,且x 1+x 2>4, ∴若2<x 1<x 2,则f (x 1)>f (x 2); 若x 1<2<x 2,由x 1+x 2>4,得x 2>4-x 1. ∵x 1<2,∴-x 1>-2,则4-x 1>2, 则f (x 2)<f (4-x 1). ∵f (4+x )=f (-x ), ∴f (4-x )=f (x ), 即f (4-x 1)=f (x 1),∴f (x 2)<f (4-x 1)=f (x 1).综上所述,f (x 1)>f (x 2).二、填空题11.已知函数f (x )=⎩⎨⎧ 1-12x ,x ≥0,1x ,x <0,若f (a )=a ,则实数a =________.答案 -1或23 解析 当a ≥0时,f (a )=1-12a =a ,得a =23; 当a <0时,f (a )=1a=a , 解得a =-1或1(舍去).∴a =-1或23. 12.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围为______________.答案 (0,1)∪(1,4)解析 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1,x >1或x <-1,-x -1,-1≤x <1.在平面直角坐标系中作出该函数的图象,如图中实线所示.根据图象可知,当0<k <1或1<k <4时,函数y =kx -2与y =|x 2-1|x -1的图象恰有两个交点.13.若关于x 的不等式x 2-4x -a ≥0在[1,3]上恒成立,则实数a 的取值范围为________. 答案 (-∞,-4]解析 若关于x 的不等式x 2-4x -a ≥0在[1,3]上恒成立,则a ≤x 2-4x 在[1,3]上恒成立,令f (x )=x 2-4x =(x -2)2-4,x ∈[1,3],对称轴为x =2,开口向上,∴f (x )在[1,2)上单调递减,在(2,3]上单调递增,∴f (x )min =f (2)=-4,∴a ≤-4.14.已知函数f (x )=x +a +|x -a |2,g (x )=ax +1,其中a >0,若f (x )与g (x )的图象有两个不同的交点,则a 的取值范围是________.答案 (0,1)解析 由题意得f (x )=⎩⎪⎨⎪⎧x ,x >a ,a ,x ≤a ,在平面直角坐标系内分别画出当0<a <1,a =1,a >1时,函数f (x ),g (x )的图象,由图易得当f (x ),g (x )的图象有两个交点时, 有⎩⎪⎨⎪⎧0<a <1,g (a )>a ,解得0<a <1,即a 的取值范围是0<a <1.三、解答题15.已知函数f (x )=ax +1x +1+1x -1,a ∈R .(1)判断函数f (x )的奇偶性,并说明理由;(2)当a <2时,证明:函数f (x )在(0,1)上单调递减.(1)解 因为f (-x )=-ax +1-x +1+1-x -1 =-⎝ ⎛⎭⎪⎫ax +1x -1+1x +1 =-f (x ),又因为f (x )的定义域为{x ∈R |x ≠-1且x ≠1},所以函数f (x )为奇函数.(2)证明 任取x 1,x 2∈(0,1),设x 1<x 2,则f (x 1)-f (x 2)=a (x 1-x 2)+x 2-x 1(x 1-1)(x 2-1) +x 2-x 1(x 1+1)(x 2+1)=(x 1-x 2)⎣⎢⎡⎦⎥⎤a -2(x 1x 2+1)(x 21-1)(x 22-1). 因为0<x 1<x 2<1,所以2(x 1x 2+1)>2,0<(x 21-1)(x 22-1)<1,所以2(x 1x 2+1)(x 21-1)(x 22-1)>2>a , 所以a -2(x 1x 2+1)(x 21-1)(x 22-1)<0. 又因为x 1-x 2<0,所以f (x 1)>f (x 2),所以函数f (x )在(0,1)上单调递减.16.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],当a +b ≠0时,有f (a )+f (b )a +b>0成立. (1)判断f (x )在[-1,1]上的单调性,并证明;(2)解不等式:f ⎝⎛⎭⎫x +12<f ⎝⎛⎭⎫1x -1; (3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.解 (1)f (x )在[-1,1]上单调递增.证明如下:任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],x 1+(-x 2)≠0.因为f (x )为奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2), 由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0, 又x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以f (x )在[-1,1]上单调递增.(2)因为f (x )在[-1,1]上单调递增,所以⎩⎪⎨⎪⎧ x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1,所以-32≤x <-1. 所以不等式的解集为⎣⎡⎭⎫-32,-1. (3)因为f (1)=1,f (x )在[-1,1]上单调递增.所以在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0对a ∈[-1,1]恒成立.设g (a )=-2m ·a +m 2≥0.①若m=0,则g(a)=0≥0对a∈[-1,1]恒成立;②若m≠0,则g(a)为a的一次函数,若g(a)≥0对a∈[-1,1]恒成立,必须有g(-1)≥0且g(1)≥0,所以m≤-2或m≥2.所以m的取值范围是{m|m=0或m≥2或m≤-2}.。
江苏省2023年普通高中学业水平合格性考试试卷数学参考公式:锥体的体积公式:13V Sh=,其中S 是底面积,h 是高.一、选择题:本大题共28小题,每小题3分,共84分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{}2,0,2,0,2,4A B =-=,则A B = ()A.{}0,2 B.{}2,2,4- C.{}2,0,2- D.{}2,0,2,4-2.已知a b >,则()A.33a b +>+B.33a b ->-C.33a b> D.22a b >3.已知3i z =-,则z =()A.3B.4C. D.104.已知五个数2,,6,5,3a 的平均数为4,则=a ()A.3B.4C.5D.65.命题“x ∀∈R ,210x x ++>”的否定为()A.x ∀∈R ,210x x ++≤B.x ∃∈R ,210x x ++≤C.x ∃∈R ,210x x ++< D.x ∃∈R ,210x x ++>6.已知角α的终边经过点(2,1)P -,则sin α= A.55B.5-C.255D.5-7.函数()f x =)A.(],1-∞ B.(),1-∞ C.[)1,+∞ D.()1,+∞8.要得到函数2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象.只需将函数2sin y x =的图象()A.向左平移3π个单位B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位9.党的二十大报告指出:“全面提高人才自主培养质量,着力造就拔尖创新人才,聚天下英才而用之.”某区域教育部门为提高学生的创新能力,组织了200名学生参与研究性学习,每人仅参加1个课题组,参加各课题组的人数占比的扇形统计图如图所示,则参加数学类的人数比参加理化类的人数多()A.16B.30C.32D.6210.从甲、乙、丙、丁4名同学中任选3名同学参加环保宣传志愿服务,则甲被选中的概率为()A.14B.13C.23D.3411.已知3321log ,log 2,log 32a b c ===,则()A.a b c <<B.b a c <<C.b<c<aD.c b a<<12.已知直线l 平面α,直线m ⊂平面α,则l 与m 不可能()A.平行B.相交C.异面D.垂直13.已知函数()f x x α=是偶函数,且在区间()0,∞+上单调递增,则下列实数可作为α值的是()A.-2B.12C.2D.314.已知tan 3α=-,则sin 2cos sin cos αααα+=-()A.52B.14C.54-D.72-15.对于两个非空实数集合A 和B ,我们把集合{},,x x a b a A b B =+∈∈∣记作A B *.若集合{}{}0,1,0,1A B ==-,则A B *中元素的个数为()A.1B.2C.3D.416.已知函数()f x 为奇函数,且当0x >时,()()3log 21f x x =+,则()1f -=()A.-1B.0C.1D.217.甲、乙两人独立地破译某个密码,如果每人译出密码得概率均为0.3,则密码被破译的概率为()A.0.09B.0.42C.0.51D.0.618.甲、乙、丙、丁4名学生参加数学竞赛,在成绩公布前,4人作出如下预测:甲说:乙第一;乙说:丁第一;丙说:我不是第一;丁说:乙第二.公布的成绩表明,4名学生的成绩互不相同,并且有且只有1名学生预测错误,则预测错误的学生是()A.甲B.乙C.丙D.丁19.如图,正方体1111ABCD A B C D -中,直线1BD 与平面ABCD 所成角的正切值为()A .1B.32C.22D.3320.在一次实验中,某小组测得一组数据()(),1,2,,11i i x y i = ,并由实验数据得到下面的散点图.由此散点图,在区间[]2,3-上,下列四个函数模型(,a b 为待定系数)中,最能反映,x y 函数关系的是()A.y a bx =+B.x y a b =+C.log b y a x=+ D.b y a x=+21.在ABC 中,已知3cos25A =-,则sin A =()A. B.45C.55D.25522.已知ABC 是边长为2的等边三角形,,,D E F 分别是边,,AB BC CA 的中点,则()A.AB AC AE+=B.AB AC BC-=C.12EF AB= D.12DE DF ⋅=23.在空间,到一个三角形的三个顶点距离相等的点的集合表示的图形是()A.一个点B.一条直线C.一个平面D.一个球面24.已知向量()(()()2,0,,a b a kb ka b ==+⊥-,则实数k =()A.1-B.0C.1D.1-或125.两游艇自某地同时出发,一艇以10km/h 的速度向正北方向行驶,另一艇以8km/h 的速度向北偏东θ(090θ︒<<︒)角的方向行驶.若经过30min km ,则θ=()A.30︒B.45︒C.60︒D.75︒26.2023年2月6日,土耳其发生强烈地震,造成重大人员伤亡和财产损失,江苏救援队伍紧急赴当地开展救报行动.尽管日前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.里氏8.0级地震所释放出来的能量是里氏6.0级地震所释放出来的能量的()A.6倍B.210倍C.310倍D.610倍27.若圆柱的上、下底面的圆周都在一个半径为2的球面上,则该圆柱侧面积的最大值为()A .4πB.8πC.12πD.16π28.若函数()221,3sin 1,3x x m x f x m x x ⎧--+<=⎨+≥⎩的值域为[)2,-+∞,则实数m 的可能值共有()A.1个B.2个C.3个D.4个二、解答题:本大题共2小题,共计16分.解答应写出文字说明、证明过程或演算步骤.29.如图,三棱锥-P ABC 的底面ABC 和侧面PBC 都是边长为2的等边三角形,,M N 分别是,AB BC 的中点,PN AN ⊥.(1)证明:MN //平面PAC ;(2)求三棱锥-P ABC 的体积.30.已知函数()sin f x x =.(1)求函数23πy f x ⎛⎫=+⎪⎝⎭的最小正周期;(2)若()()211[]28f x m f x +-≥,求实数m 的取值范围.江苏省2023年普通高中学业水平合格性考试试卷数学一、选择题:本大题共28小题,每小题3分,共84分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{}2,0,2,0,2,4A B =-=,则A B = ()A.{}0,2 B.{}2,2,4- C.{}2,0,2- D.{}2,0,2,4-【答案】A【分析】根据交集定义直接计算即可.【详解】集合{}{}2,0,2,0,2,4A B =-=,则{}0,2A B =I .故选:A2.已知a b >,则()A.33a b +>+B.33a b ->-C.33a b> D.22a b >【答案】A【分析】由不等式的基本性质逐一判断即可.【详解】A 选项:a b >,则33a b +>+,故A 正确;B 选项:a b >,则a b -<-,所以33a b -<-,故B 错误;C 选项:当0a b >>或0a b >>时,11a b <,则33a b<,故C 错误;D 选项:当0a b >>时,22a b <,故D 错误.故选:A .3.已知3i z =-,则z =()A.3B.4C.D.10【答案】C【分析】根据复数的模的计算公式,即可求得答案.【详解】因为3i z =-,所以z ==故选:C.4.已知五个数2,,6,5,3a 的平均数为4,则=a ()A.3 B.4C.5D.6【答案】B【分析】根据平均数的计算公式列式计算,即可求得答案.【详解】由题意可得26534,201645a a ++++=∴=-=,故选:B5.命题“x ∀∈R ,210x x ++>”的否定为()A.x ∀∈R ,210x x ++≤B.x ∃∈R ,210x x ++≤C.x ∃∈R ,210x x ++<D.x ∃∈R ,210x x ++>【答案】B【分析】全称命题的否定是特称命题,任意改为存在,再把结论否定.【详解】由题意x ∀∈R ,210x x ++>,否定是x ∃∈R ,210x x ++≤故选:B .6.已知角α的终边经过点(2,1)P -,则sin α=A.5B.55-C.5D.【答案】B【分析】由题意利用任意角的三角函数的定义,求得sin α的值.【详解】解:角α的终边经过点()2,1P -,则sin α55==-,故选B .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.7.函数()f x =)A.(],1-∞ B.(),1-∞ C.[)1,+∞ D.()1,+∞【答案】D【分析】函数定义域满足101x ≥-,10x -≠,解得答案.【详解】函数()f x =101x ≥-,10x -≠,解得1x >.故选:D8.要得到函数2sin 3y x π⎛⎫=+⎪⎝⎭的图象.只需将函数2sin y x =的图象()A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位【答案】A【分析】根据三角函数的图像变换中的相位变换确定结果.【详解】根据相位变换的左加右减有:2sin y x =向左移动3π个单位得到2sin 3y x π⎛⎫=+⎪⎝⎭,故选A.【点睛】本题考查三角函数的图象变换中的相位变换,难度较易.相位变换时注意一个原则:左加右减.9.党的二十大报告指出:“全面提高人才自主培养质量,着力造就拔尖创新人才,聚天下英才而用之.”某区域教育部门为提高学生的创新能力,组织了200名学生参与研究性学习,每人仅参加1个课题组,参加各课题组的人数占比的扇形统计图如图所示,则参加数学类的人数比参加理化类的人数多()A.16B.30C.32D.62【答案】C【分析】由扇形图计算参加数学类和理化类的人数,即可求得答案.【详解】由扇形统计图可知参加数学类的人数为20031%62⨯=,参加理化类的人数为20015%30⨯=,故参加数学类的人数比参加理化类的人数多623032-=,故选:C10.从甲、乙、丙、丁4名同学中任选3名同学参加环保宣传志愿服务,则甲被选中的概率为()A.14B.13C.23D.34【答案】D【分析】列举出所有的基本事件,然后得到甲被选中的情况,利用古典概型求解即可【详解】从甲、乙、丙、丁4名同学中任选3名同学共有:(甲乙丙),(甲丙丁),(甲乙丁),(乙丙丁),4种情况,甲被选中共有3种情况,故对应的概率为34故选:D11.已知3321log ,log 2,log 32a b c ===,则()A.a b c <<B.b a c <<C.b<c<aD.c b a<<【答案】A【分析】利用对数函数的单调性得到a<0,0l b <<,1c >,得到答案.【详解】331log log 102a =<=;33310log log 2l g 13ob <=<<=;22log 321logc ==>,所以a b c <<.故选:A12.已知直线l 平面α,直线m ⊂平面α,则l 与m 不可能()A.平行B.相交C.异面D.垂直【答案】B【分析】若l 与m 相交,得到l 与α有交点,这与题设矛盾,得到答案.【详解】直线l 平面α,直线m ⊂平面α,则l 与m 可能平行,异面和垂直,若l 与m 相交,l m A = ,则∈A l ,A m ∈,直线m ⊂平面α,故A α∈,即l 与α有交点,这与题设矛盾.故选:B13.已知函数()f x x α=是偶函数,且在区间()0,∞+上单调递增,则下列实数可作为α值的是()A.-2B.12C.2D.3【答案】C【分析】()2f x x -=在()0,∞+上单调递减,A 错误,()12f x x =不是偶函数,B 错误,定义判断C 正确,()3f x x=函数为奇函数,D 错误,得到答案.【详解】对选项A :2α=-,()2f x x -=,函数在()0,∞+上单调递减,错误;对选项B :12α=,()12f x x =,函数定义域为[)0,∞+,不是偶函数,错误;对选项C :2α=,()2f x x =,函数定义域为R ,()()()2f x x f x -=-=,函数为偶函数,且在()0,∞+上单调递增,正确;对选项D :3α=,()3f x x =,函数定义域为R ,()()()3f x x f x -=-=-,函数为奇函数,错误;故选:C14.已知tan 3α=-,则sin 2cos sin cos αααα+=-()A.52B.14C.54-D.72-【答案】B【分析】根据三角函数同角的函数关系式,结合齐次式法求值,可得答案.【详解】由题意tan 3α=-,可知cos 0α≠,则sin 2cos tan 2321sin cos tan 1314αααααα++-+===----,故选:B15.对于两个非空实数集合A 和B ,我们把集合{},,x x a b a A b B =+∈∈∣记作A B *.若集合{}{}0,1,0,1A B ==-,则A B *中元素的个数为()A.1 B.2C.3D.4【答案】C【分析】计算{}0,1,1A B *=-,得到元素个数.【详解】{}{}0,1,0,1A B ==-,则{}0,1,1A B *=-,则A B *中元素的个数为3故选:C16.已知函数()f x 为奇函数,且当0x >时,()()3log 21f x x =+,则()1f -=()A.-1B.0C.1D.2【答案】A【分析】利用奇函数性质代入数据计算得到答案.【详解】因为函数()f x 为奇函数,且当0x >时,()()3log 21f x x =+,所以()()()311log 211f f -=-=-+=-.故选:A.17.甲、乙两人独立地破译某个密码,如果每人译出密码得概率均为0.3,则密码被破译的概率为()A.0.09B.0.42C.0.51D.0.6【答案】C【分析】甲乙都不能译出密码得概率为1049P =.,密码被破译的概率为11P -,得到答案.【详解】甲乙都不能译出密码得概率为()()110.310.30.49P =-⨯-=,故密码被破译的概率为110.51P -=.故选:C18.甲、乙、丙、丁4名学生参加数学竞赛,在成绩公布前,4人作出如下预测:甲说:乙第一;乙说:丁第一;丙说:我不是第一;丁说:乙第二.公布的成绩表明,4名学生的成绩互不相同,并且有且只有1名学生预测错误,则预测错误的学生是()A.甲B.乙C.丙D.丁【答案】A【分析】分别假设甲、乙、丙、丁的预测错误,看能否推出与题意相矛盾的情况,即可判断答案.【详解】若甲预测错误,则其余三人预测正确,即丁第一,乙第二,丙第三或第四,甲第四或第三,符合题意;若乙预测错误,则其余三人预测正确,则甲和丁的预测相矛盾,这样有两人预测错误,不符合题意;若丙预测错误,则其余三人预测正确,则甲和丁的预测相矛盾,这样有两人预测错误,不符合题意;若丁预测错误,则其余三人预测正确,则甲和乙的预测相矛盾,这样有两人预测错误,不符合题意;故选:A19.如图,正方体1111ABCD A B C D -中,直线1BD 与平面ABCD 所成角的正切值为()A.1B.2C.2D.33【答案】C【分析】连接BD ,1DD ⊥平面ABCD ,故1DBD ∠是1BD 与平面ABCD 所成角,计算得到答案.【详解】如图所示:连接BD ,因为1DD ⊥平面ABCD ,故1DBD ∠线1BD 与平面ABCD 所成角,设正方体棱长为1,则11,DD DB ==,112tan 2DD DBD DB ∴∠==.故选:C20.在一次实验中,某小组测得一组数据()(),1,2,,11i i x y i = ,并由实验数据得到下面的散点图.由此散点图,在区间[]2,3-上,下列四个函数模型(,a b 为待定系数)中,最能反映,x y 函数关系的是()A.y a bx=+ B.x y a b =+C.log b y a x=+ D.b y a x=+【答案】B 【分析】由函数模型的增长方式以及定义域可确定选项.【详解】由散点图的定义域可排除C 、D 选项,由散点图的增长方式可知函数模型为指数型.故选:B21.在ABC 中,已知3cos25A =-,则sin A =()A. B.45 C.55 D.255【答案】D【分析】确定sin 0A >,再利用二倍角公式计算得到答案.【详解】()0,πA ∈,sin 0A >,23cos212sin 5A A =-=-,解得25sin 5A =.故选:D22.已知ABC 是边长为2的等边三角形,,,D E F 分别是边,,AB BC CA 的中点,则()A.AB AC AE += B.AB AC BC -= C.12EF AB = D.12DE DF ⋅= 【答案】D 【分析】根据向量的运算法则得到ABC 错误,12cos 60DE DF DE DF =⋅⋅︒= ,D 正确,得到答案.【详解】对选项A :AB+AC =2AE ,错误;对选项B :AB AC CB -= ,错误;对选项C :12EF BA = ,错误;对选项D :1cos 6011212DE DF DE DF =︒=⋅⋅=⨯⨯ ,正确.故选:D23.在空间,到一个三角形的三个顶点距离相等的点的集合表示的图形是()A.一个点B.一条直线C.一个平面D.一个球面【答案】B 【分析】易得空间中到一个三角形的三个顶点距离相等的点组成的集合表示的图形为过该三角形的外心且与该三角形所在平面垂直的直线,如图,设点O 为ABC 的外心,且直线l ⊥平面ABC ,点P 为直线l 上任意一点,证明PA PB PC ==即可.【详解】空间中到一个三角形的三个顶点距离相等的点组成的集合表示的图形为过该三角形的外心且与该三角形所在平面垂直的直线,如图,设点O 为ABC 的外心,且直线l ⊥平面ABC ,点P 为直线l 上任意一点,则OA OB OC ==,且,,OA OB OC ⊂平面ABC ,所以直线l OA ⊥,直线l OB ⊥,直线l OC ⊥,当点P 与点O 重合时,PA PB PC ==,即直线l 的点到ABC 的三个顶点距离相等,当点P 与点O 不重合时,由勾股定理可得PA PB PC ==,即直线l 的点到ABC 的三个定点距离相等,综上直线l 的点到ABC 的三个顶点距离相等,反之到ABC 的三个顶点距离相等的点都在直线l 上,所以空间中到一个三角形的三个顶点距离相等的点组成的集合表示的图形为过该三角形的外心且与该三角形所在平面垂直的直线.故选:B24.已知向量()(()()2,0,,a b a kb ka b ==+⊥- ,则实数k =()A.1- B.0 C.1D.1-或1【答案】D 【分析】求出()(),a kb ka b +- 的坐标表示,根据向量垂直的坐标表示,可列方程,即可求得答案.【详解】由已知向量()(2,0,a b == ,可得()()(2),(21,a kb k ka b k +=+-=- ,由()()a kb ka b +⊥- 可得(2)(21,0k k +⋅-=,即(2)(21)30k k k +--=,解得1k =±,故选:D25.两游艇自某地同时出发,一艇以10km/h 的速度向正北方向行驶,另一艇以8km/h 的速度向北偏东θ(090θ︒<<︒)角的方向行驶.若经过30minkm ,则θ=()A.30︒B.45︒C.60︒D.75︒【答案】C【分析】如图,设点A 为出发点,点B 为10km/h 的船30min 后到达的点,点C 为8km/h 的船30min 后到达的点,再利用余弦定理即可得解.【详解】如图,设点A 为出发点,点B 为10km/h 的船30min 后到达的点,点C 为8km/h 的船30min 后到达的点,则5km,4km,AB AC BC BAC θ===∠=,则2222516211cos 22542AB AC BC AB AC θ+-+-===⋅⨯⨯,又因090θ︒<<︒,所以60θ=︒.故选:C.26.2023年2月6日,土耳其发生强烈地震,造成重大人员伤亡和财产损失,江苏救援队伍紧急赴当地开展救报行动.尽管日前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.里氏8.0级地震所释放出来的能量是里氏6.0级地震所释放出来的能量的()A.6倍B.210倍C.310倍D.610倍【答案】C 【分析】代入数据计算16.8110E =,13.8210E =,计算得到答案.【详解】1lg 4.8 1.5816.8E =+⨯=,16.8110E =;2lg 4.8 1.5613.8E =+⨯=,13.8210E =,16.83113.82101010E E ==.故选:C27.若圆柱的上、下底面的圆周都在一个半径为2的球面上,则该圆柱侧面积的最大值为()A.4πB.8πC.12πD.16π【答案】B【分析】设底面圆半径为r ,则圆柱的高为,圆柱侧面积为4πS =案.【详解】设底面圆半径为r ,则圆柱的高为,圆柱侧面积为2242π4π4π×8π2r r S r +-=⋅==,当且仅当r =,即r =时等号成立.故选:B.28.若函数()221,3sin 1,3x x m x f x m x x ⎧--+<=⎨+≥⎩的值域为[)2,-+∞,则实数m 的可能值共有()A.1个B.2个C.3个D.4个【答案】B 【分析】根据分段函数的解析式,讨论m 的范围,确定每段的函数最小值,由题意列方程,求得m 的值,可得答案.【详解】当3x <时,()2221(1)f x x x m x m m =--+=--≥-,当3x ≥时,()sin 1f x m x =+,若0m =,()f x 的值域为[)0,∞+,不合题意;若0m >,则3x ≥时,[]()1,1f x m m ∈-++,min ()1f x m =-+,由于1m m -+>-,由题意可知需使2,2m m -=-∴=;若0m <,则3x ≥时,[]()1,1f x m m ∈+-+,min ()1f x m =+,0m ->,故需使12,3m m +=-∴=-,即实数m 的可能值共有2个,故选:B二、解答题:本大题共2小题,共计16分.解答应写出文字说明、证明过程或演算步骤.29.如图,三棱锥-P ABC 的底面ABC 和侧面PBC 都是边长为2的等边三角形,,M N 分别是,AB BC 的中点,PN AN ⊥.(1)证明:MN //平面PAC ;(2)求三棱锥-P ABC 的体积.【答案】(1)证明见解析(2)1【分析】(1)利用线面平行的判定定理即可求证;(2)先证明PN ^平面ABC ,即可求出三棱锥的体积【小问1详解】因为,M N 分别是,AB BC 的中点,所以//MN AC ,因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以MN //平面PAC ;【小问2详解】因为PBC 是等边三角形,N 是BC 的中点,所以PN BC ⊥,因为PN AN ⊥,,AN BC ⊂平面ABC ,,AN BC N ⋂=所以PN ^平面ABC ,因为底面ABC 和侧面PBC 都是边长为2的等边三角形,所以1132231334P ABC ABC V S PN -=⨯=⨯⨯⨯ 30.已知函数()sin f x x =.(1)求函数23πy f x ⎛⎫=+ ⎪⎝⎭的最小正周期;(2)若()()211[]28f x m f x +-≥,求实数m 的取值范围.【答案】(1)π(2)21,2⎡⎫-++∞⎪⎢⎪⎣⎭【分析】(1)确定πsin 23y x ⎛⎫=+ ⎪⎝⎭,再计算周期即可.(2)设1sin 2x t -=,31,22t ⎡⎤∈-⎢⎥⎣⎦,考虑0t >,0=t ,0t <三种情况,利用均值不等式计算最值得到答案.【小问1详解】3π23πsin 2y f x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,最小正周期2ππ2T ==.【小问2详解】()()211[]28f x m f x +-≥,即211sin sin 28x m x +-≥,设1sin 2x t -=,1sin 2x t =+,31,22t ⎡⎤∈-⎢⎥⎣⎦,当0t >时,即21128t mt ⎛⎫++≥ ⎪⎝⎭,整理得到118m t t ⎛⎫≥-+- ⎪⎝⎭,111182t t ⎛⎫-+-≤-=- ⎪⎝⎭,当且仅当18t t =,即24t =时等号成立,故212m ≥--;当0=t 时,不等式恒成立;当0t <时,即21128t mt ⎛⎫+-≥ ⎪⎝⎭,整理得到118m t t ⎛⎫≥--++ ⎪-⎝⎭,1211182t t ⎛⎫--++≤-=- ⎪-⎝⎭,当且仅当18t t -=-,即24t =-时等号成立,故212m ≥-+.综上所述:12m ≥-+,即1,2m ⎡⎫∈-++∞⎪⎢⎪⎣⎭。
福建省普通高中2022-2023学年高二学业水平合格性考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....c b c >”是“a b >”.充分不必要条件.必要不充分条件.充要条件.既不充分又不必要条件.某学校新建的天文观测台可看作一个球体,其半径为3m .现要在观测台的表面涂一层防水漆,若每平方米需用涂料,则共需要涂料(单位:.1.5πB .6π二、多选题16.下列函数中,是偶函数的有()A .21y x =+B .2log y x=C .2xy =D .cos y x=17.袋中有大小和质地均相同的5个球,其中2个红球,3个黑球.现从中随机摸取2A .11AB CC ⊥B .11//A B B CC .平面1A BD ⊥平面D .平面1//A BD 平面19.某简谐运动在一个周期内的图象如图所示,下列判断正确的有(A .该简谐运动的振幅是3cmB .该简谐运动的初相是2π5C .该简谐运动往复运动一次需要D .该简谐运动100s 往复运动三、填空题20.已知i 为虚数单位,计算()i 1i -=________.四、解答题(1)求证://EF 平面ABD (2)若AD BD ⊥,3AD =,的体积.26.某地有农村居民320息,采用分层抽样的方法抽取得样本民户样本的均值为8.3,方差为(1)根据以上信息,能否求出(2)如果A 中农村居民户、城镇居民户的样本量都是(3)能否用(2)的结论估计该地居民的户月均用水量的均值和方差?若能,若不能,请给出一个可以用来估计该地居民的户月均用水量的均值和方差的样本.参考答案:共需36π0.518π⨯=kg 涂料.故选:D 16.AD【分析】先求出函数的定义域,然后将x -代入,结合偶函数的性质,即可得出答案.【详解】对于A 项,设()21f x x =+,函数()f x 定义域为R ,且()()21f x x f x -=+=,所以函数21y x =+为偶函数,故A 正确;对于B 项,因为函数2log y x =的定义域为()0,∞+,不关于原点对称,所以函数2log y x =为非奇非偶函数,故B 错误;对于C 项,设()2xg x =,函数()g x 定义域为R ,但()22x x g x --=≠,所以函数2x y =不是偶函数,故C 错误;对于D 项,设()cos h x x =,函数()h x 定义域为R ,且()()()cos cos h x x x h x -=-==,所以函数cos y x =为偶函数,故D 正确.故选:AD.17.BC【分析】以黑球的个数为切入点,试验的样本空间为{}0,1,2Ω=.将事件用集合表示出来,即可得出答案.【详解】以黑球的个数为切入点,试验的样本空间为{}0,1,2Ω=.对于A 项,“恰有一个红球”可用{}1A =来表示,“都是红球”可用事件{}0B =来表示.所以,事件,A B 互斥,但,A B 不是对立事件,故A 项错误;对于B 项,“恰有一个黑球”可用{}1A =来表示,“都是黑球”可用事件{}2C =来表示.所以事件,A C 互斥,故B 项正确;对于C 项,“至少有一个黑球”可用事件{}1,2D =来表示,“都是红球”可用事件{}0B =来表示.所以,事件,B D 为互斥事件,也是对立事件,故C 项正确;对于D 项,“至少有一个红球”可用事件{}0,1E =来表示,“都是红球”可用事件{}0B =来表示.所以,事件{}0B E = ,即交事件为“都是红球”,故D 项错误.故选:BC.18.CD【分析】根据长方体的性质推得11//AA CC ,即可判断A 项;根据长方体的性质推得四边形11DCB A 是平行四边形,得出11//A D B C ,即可判断B 项;根据长方体的性质以及线面垂直的判定定理,可得出BD ⊥平面11AAC C ,即可得出C 项;根据长方体的性质以及线面平行的判定定理,可得出1//A D 平面11CB D ,//BD 平面11CB D ,然后即可判定面面平行,得出D 项.【详解】对于A 项,由长方体的性质可知11//AA CC .又11,AA A B 不垂直,所以11,A B CC 不垂直,故A 错误;对于B 项,由长方体的性质可知11//A B CD ,11A B CD =,所以,四边形11DCB A 是平行四边形,所以,11//A D B C .因为11,A B A D 不平行,所以11,AB BC 不平行,故B 错误;对于C 项,因为AB BC =,根据长方体的性质可知ABCD 是正方形,所以,BD AC ⊥.根据长方体的性质可知,1CC ⊥平面ABCD ,BD ⊂平面ABCD ,所以,1CC BD ⊥.因为AC ⊂平面11AAC C ,1CC ⊂平面11AAC C ,1AC CC C = ,所以,BD ⊥平面11AAC C .因为BD ⊂平面1A BD ,所以平面1A BD ⊥平面11AAC C ,故C 项正确;),AD BD的中点为,G H,连结H分别为,,,AC BC AD BD的中点,CD,且12GE CD=,//HF,且GE HF=.GHFE为平行四边形,GH.平面ABD,EF⊄平面ABD,平面ABD.)由已知可得,在BCD△中,有BD 根据余弦定理可知,。
直线与方程一、选择题1.(2024·惠州学考模拟)直线x =1的倾斜角是( ) A .0 B .45° C .90°D .不存在C [直线x =1与x 轴垂直,故倾斜角为90°.]2.若经过A (m,3),B (1,2)两点的直线的倾斜角为45°,则m 等于( ) A .2 B .1 C .-1D .-2A [由题意知,tan 45°=2-31-m,得m =2.]3.已知直线kx -y +1-3k =0,当k 改变时,全部的直线恒过定点( ) A .(1,3) B .(-1,-3) C .(3,1)D .(-3,-1)C [直线kx -y +1-3k =0变形为y -1=k (x -3),由直线的点斜式可得直线恒过定点(3,1).]4.直线y =kx +b 经过第一、三、四象限,则有( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0D .k <0,b <0B [∵直线经过第一、三、四象限,∴图形如图所示,由图知,k >0,b <0.]5.直线l 的方程x -2y +6=0的斜率和它在x 轴与y 轴上的截距分别为( ) A .12,-6,3B .12,6,3C .2,-6,3D .12,-6,-3A [直线l 的方程x -2y +6=0的斜率为12;当y =0时直线在x 轴上的截距为-6;当x=0时直线在y 轴上的截距为3.故选A .]6.直线x +(1+m )y =2-m 和直线mx +2y +8=0平行,则m 的值为( ) A .1 B .-2 C .1或-2D .-23A [∵直线x +(1+m )y =2-m 和直线mx +2y +8=0平行,∴1×2-(1+m )m =0,解得m =1或-2,当m =-2时,两直线重合.故选A .] 7.若方程Ax +By +C =0表示直线,则A ,B 应满意的条件为( ) A .A ≠0 B .B ≠0 C .A ·B ≠0D .A 2+B 2≠0D [方程Ax +By +C =0表示直线的条件为A ,B 不能同时为0,即A 2+B 2≠0.] 8.若点(4,a )到直线4x -3y =1的距离不大于3,则a 的取值范围是( ) A .[0,10] B .⎣⎡⎦⎤13,313 C .(0,10)D .(]-∞,0∪[)10,+∞A [d =|4×4-3a -1|42+(-3)2=|15-3a |5≤3,|3a -15|≤15,∴-15≤3a -15≤15,0≤a ≤10.]9.直线x +2y -4=0与直线2x -y +2=0的交点坐标是( ) A .(2,0) B .(2,1) C .(0,2)D .(1,2)C [联立⎩⎪⎨⎪⎧ x +2y -4=0,2x -y +2=0,解得⎩⎪⎨⎪⎧x =0,y =2.∴直线x +2y -4=0与直线2x -y +2=0的交点坐标是(0,2).]10.若直线l 1:x -2y +1=0与l 2:2x +ay -2=0平行,则l 1与l 2的距离为( ) A .55B .255C .15D .25B [若直线l 1:x -2y +1=0与l 2:2x +ay -2=0平行,则12=-2a ≠1-2,解得a =-4.故l 1:x -2y +1=0与l 2:x -2y -1=0的距离是d =21+4=255.] 11.经过点(-3,2),倾斜角为60°的直线方程是( ) A .y +2=3(x -3) B .y -2=33(x +3) C .y -2=3(x +3) D .y +2=33(x -3) C [直线的斜率k =tan 60°=3,由点斜式可得直线的方程为y -2=3(x +3),所以选C .]12.过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ) A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0D .x -2y +5=0A [过点A (2,3)且垂直于直线2x +y -5=0的直线的斜率为12,由点斜式求得直线的方程为y -3=12(x -2),化简可得x -2y +4=0,故选A .]13.已知直线l :ax +y -2=0在x 轴和y 轴上的截距相等,则实数a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1A [明显a ≠0.把直线l :ax +y -2=0化为x 2a +y2=1.∵直线l :ax +y -2=0在x 轴和y 轴上的截距相等,∴2a=2,解得a =1,故选A .]14.点M (4,m )关于点N (n ,-3)的对称点为P (6,-9),则( ) A .m =-3,n =10 B .m =3,n =10 C .m =-3,n =5D .m =3,n =5D [∵M (4,m )关于点N (n ,-3)的对称点为P (6,-9), ∴4+62=n ,m -92=-3;∴n =5,m =3,故选D .] 15.顺次连接A (-4,3),B (2,5),C (6,3),D (-3,0)所构成的图形是( )A .平行四边形B .直角梯形C .等腰梯形D .以上都不对B [k AB =k DC ,k AD ≠k BC ,k AD ·k AB =k AD ·k DC =-1,故构成的图形为直角梯形.] 二、填空题16.已知直线l 1:3x -y +2=0,l 2:mx -y +1=0.若l 1∥l 2,则m = . 3 [∵l 1∥l 2,∴kl 1=kl 2,3=m ,即m =3.]17.直线l 经过点P (1,-1),且它的倾斜角是直线x -y +2=0的倾斜角的2倍,那么直线l 的方程是 .x =1 [∵直线l 经过点P (1,-1),且它的倾斜角是直线x -y +2=0的倾斜角的2倍,直线x -y +2=0的斜率为k =1,倾斜角为45°,∴直线l 过点P (1,-1),倾斜角为90°,∴直线l 的方程为x =1.]18.若点(4,a )到直线4x -3y =0的距离不大于3,则a 的取值范围是 .⎣⎡⎦⎤13,313 [由题意知0≤|4×4-3a |42+(-3)2≤3,解得13≤a ≤313,故a 的取值范围为⎣⎡⎦⎤13,313.] 19.若直线l 1:2x +my +1=0与直线l 2:y =3x -1平行,则直线l 1与l 2之间的距离为 .104 [∵直线l 1:2x +my +1=0与直线l 2:y =3x -1平行,∴-2m =3, ∴m =-23,故直线l 1:6x -2y +3=0,直线l 2:6x -2y -2=0.则直线l 1与l 2之间的距离为|3-(-2)|62+(-2)2=104.] 三、解答题20.已知两直线l 1:x +m 2y +6=0,l 2:(m -2)x +3my +2m =0,当m 为何值时, l 1与l 2 (1)相交; (2)平行; (3)重合.[解] 由题意得,l 1∥l 2⇔⎩⎪⎨⎪⎧1·3m -(m -2)·m 2=0,1·2m -(m -2)·6≠0,可得m =-1或m =0;l 1与l 2相交⇔⎩⎪⎨⎪⎧1·3m -(m -2)·m 2≠0,1·2m -(m -2)·6≠0,得m ≠-1,m ≠0,且m ≠3;l 1与l 2重合⇔⎩⎪⎨⎪⎧1·3m -(m -2)·m 2=0,1·2m -(m -2)·6=0,可得m =3. 综上,(1)当m ≠-1,m ≠0且m ≠3时,l 1与l 2相交; (2)当m =-1或m =0时,l 1与l 2平行; (3)当m =3时,l 1与l 2重合.21.当m 取何值时,直线l 1:5x -2y +3m (3m +1)=0与l 2:2x +6y -3m (9m +20)=0的交点到直线l 3:4x -3y -12=0的距离最短?这个最短距离是多少?[解] 设l 1与l 2的交点为M ,则由⎩⎪⎨⎪⎧5x -2y +3m (3m +1)=0,2x +6y -3m (9m +20)=0,解得M ⎝ ⎛⎭⎪⎫3m ,9m 2+18m 2.设M 到l 3的距离为d ,则d =⎪⎪⎪⎪12m -32(9m 2+18m )-1242+(-3)2=110×⎣⎢⎡⎦⎥⎤27⎝⎛⎭⎫m +592+473.故当m =-59时,距离最短,且d min =4730.。
人教版五年级数学下册期末学业水平(附解析)经典1.小明每天睡眠时间是9小时,占全天时间的( )。
A .38B .34C .912D .15242.一堆煤重5吨,第一次运走它的13,第二次运走13吨,两次运走的煤相比,( )。
A .第一次运走的多B .第二次运走的多C .一样多D .无法比较3.在AB 这条新铺的路上等距离安装路灯(两端都装),并要求在C 处及AC 和BC 的中点处都要安装一盏,至少需要安装( )盏灯。
A .34B .33C .17D .164.大于16,小于14的分数有( )个。
A .0B .1C .2D .无数 5.小兰的妈妈今年a 岁,小兰今年(27a -)岁,再过b 年,两人相差( )岁。
A .27a -B .bC .27D .27b +{}答案}C 【解析】 【分析】先求出妈妈今年和小兰相差多少岁,再根据年龄差不会随时间的变化而变化,进而确定出过b 年后,她们的相差的岁数即可。
【详解】 a -(a -27) =a -a +27 =27(岁)再过b 年两人相差27岁。
故答案选:C 【点睛】本题考查用字母表示数,解决本题的关键是明确年龄差不会随时间的变化而变化。
6.两个质数的和可能是( )。
A .奇数 B .偶数C .奇数或偶数{}答案}C 【解析】质数中有偶数也有奇数,根据奇数+偶数=奇数,奇数+奇数=奇数,进行分析。
【详解】2+3=5,3+5=8,两个质数的和可能是奇数或偶数。
故答案为:C 【点睛】关键是注意最小的质数是2,也是质数中唯一的偶数。
7.下图中,两个正方形面积相等,比较图形中阴影部分的周长和面积()。
A.面积相等,周长不相等B.周长相等,面积不相等C.周长和面积都相等{}答案}A【解析】【分析】图一阴影部分周长等于直径为正方形边长的圆的周长;图二阴影部分周长等于直径为正方形边长的圆的周长再加两个正方形边长;图一阴影部分面积等于正方形面积减去直径为正方形边长的圆的面积;图二阴影部分面积也等于正方形面积减去直径为正方形边长的圆的面积。
第 3 题图普通高中学业水平考试数学试卷(附全解析)如果事件A 、B 互斥,那么.球的表面积公式:,体积公式:,其中R 表示球的体积.柱体的体积公式:,其中S 表示柱体的底面面积,h 表示柱体的高.锥体的体积公式:,其中S 表示锥体的底面面积,h 表示锥体的高. 选择题(共51分)一、选择题:本大题共17个小题,每小题3分,共51分.在每小题给出的四个选项中,只有一项符合题目要求,请在答题卡相应的位置上填涂. 1.已知集合{1,2}A =,{0,,3}B m =,若{2}A B =,则实数m =( ) A .-1 B .0 C .2 D .32.已知5sin 13θ=,θ是第二象限的角,则cos θ的值是( ) A .512 B .512- C .1213 D .1213-3.如图,网格纸上小正方形的边长为1,粗实线是某个几何体的三视图,则该几何体的体积为 ( ) A .12 B .8 C .325 D .3234.函数()f x =( ) A .(,0][8,)-∞+∞ B .[0,8] C .(,0)(8,)-∞+∞ D .(0,8) 5.2336log log -的值为( )()()()P A B P A P B =+24S R π=343V R π=V Sh =13V Sh =第 8 题图A .1-B .1C .2-D .2 6.若向量(5,)a m =,(,1)b n =-,//a b 且,则m 与n 的关系是( )A .50mn -=B .50mn +=C .50m n -=D 50m n += 7.如果圆柱的底面半径为2,高为4,那么它的侧面积等于( ) A .24π B .20π C .16π D .12π8.运行右面的程序框图,若输入的x 的值为2,则输出y 的值是( )A .2B .1C .2或1D .2- 9.函数3()f x x x =-的图象( )A .关于原点对称B .关于y 轴对称C .关于直线y x =对称D .关于x 轴对称10.已知1sin 3α=-,则cos2α的值是( )A .79B .79-C .29D .29-11.统计中用相关系数r 来衡量两个变量,x y 之间线性关系的强弱.下列关于r 的描述,错误的是( )A .当r 为正时,表明变量x y 和正相关B .当r 为负时,表明变量x y 和负相关C .如果[0.75,1]r ∈,那么正相关很强D .如果[1,0.1]r ∈--,那么负相关很强12.函数2sin(2)2y x π=+的最小正周期是( ) A .π B .2π C .4πD .2π第 13 题图分数月考次数13.某校高三年级甲、乙两名同学8次月考数学成绩用折线图表示如图,根据折线图,下列说法错误的是( ) A .每次考试,甲的成绩都比乙好 B .甲同学的成绩依次递增 C .总体来看,甲的成绩比乙优秀 D .乙同学的成绩逐次递增14.函数sin cos y x x =-的最大值是( )A .2 BC .0D .1 15.函数()x f x e x =+的零点所在区间是( )A .(2,1)--B .(1,0)-C .(0, 1)D .(1,2) 16.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度大于1的概率为( )A .15B .23C .13D .1217.如图是2002年在北京召开的的第24届国际数学家大会的会标,它源于我国古代数学家赵爽的“弦图”.根据“弦图”(由四个全等的直角三角形和一个小正方形构成,直角三角形的两直角边的长分别为a 和b ),在从图1变化到图2的过程中,可以提炼出的一个关系式为( )A .a b >B .2a b +>C .222a b ab +≥ D.a b +>第 17 题图图2非选择题(共49分)二、 填空题:本大题共5个小题,每小题4分,共20分.请把答案写在答题卡相应的位置上.18.已知a b 与的夹角为60,且||2,||1a b ==,则a b ⋅= . 19.《九章算术》是中国古代的数学专箸,其中的“更相减损术”可以用来求两个数的最大公约数(“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”).据此可求得32和24的最大公约数为 .20.某广告公司有职工150人.其中业务人员100人,管理人员15人,后勤人员35人,按分层抽样的方法从中抽取一个容量为30人的样本,应抽取后勤人员 人.21.若,x y 满足约束条件10100x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最小值为 .22.已知函数1, 202, 02()xx x x f x +-≤<⎧⎨≤≤⎩=,若函数(4), 2()(), 22(4), 2g x x g x f x x g x x +<-⎧⎪=-≤≤⎨⎪->⎩,则(3)(7)g g -+= .云南省普通高中学业水平考试数学答题卡 得分一、选择题:(本大题共17小题,每小题3分,共51分)二、填空题:(本大题共5小题,每小题4分,共20分)18. 19. 20. 21. 22. 三、解答题(本大题共4小题,共29分,解答时应写出文字说明、证明过程或演算步骤。
2023年初中学业水平考试试数学及答案详解第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列温度比2-℃低的是()A.3-℃B.1-℃C.1℃D.3℃2.下列交通标志中,是中心对称图形的是()A. B. C. D.3.如图,数轴上点A 对应的数是32,将点A 沿数轴向左移动2个单位至点B,则点B 对应的数是()A.12-B.2- C.72D.124.根据图中三视图可知该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱5.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=()A.40︒B.50︒C.60︒D.70︒6.计算()2322a a -÷的结果是()A.32-a B.42a - C.34a D.44a7.设2a =,则()A.23a << B.34a << C.45a << D.56a <<8.一元二次方程2480x x --=的解是()A.12x =-+,22x =--B.12x =+22x =-C.12x =+,22x =-D.1x =,2x =-9.从马鸣、杨豪、陆畅,江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.112B.18C.16D.1210.《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x 人,y 辆车,可列方程组为()A.2392xy x y ⎧=+⎪⎪⎨⎪+=⎪⎩ B.2392xy x y ⎧=-⎪⎪⎨-⎪=⎪⎩ C.2392xy x y ⎧=+⎪⎪⎨-⎪=⎪⎩ D.2392xy x y ⎧=-⎪⎪⎨⎪-=⎪⎩11.下图是甲、乙两同学五次数学测试成绩的折线图,比较甲、乙的成绩,下列说法正确的是()A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定12.如图,P 是面积为S 的ABCD 内任意一点,PAD △的面积为1S ,PBC 的面积为2S ,则()A.122S S S +>B.122S S S +<C.122S S S +=D.12S S +的大小与P 点位置有关13.计算11x y x y ---的结果为()A.(1)(1)x y x y -+-- B.(1)(1)x yx y --- C.(1)(1)x y x y ---- D.(1)(1)x yx y +--14.如图,在O 中,AB 为直径,80AOC ︒∠=,点D 为弦AC 的中点,点E 为 BC上任意一点,则CED ∠的大小可能是()A.10︒B.20︒C.30︒D.40︒第Ⅱ卷(非选择题共78分)二、填空题(本大题共5小题,每小题3分,共15分)15.不等式210x +<的解集是______.16.若1a b +=,则2222a b b -+-=________.17.点1,2m ⎛⎫- ⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.18.如图,在ABC 中,D,E 为边AB 的三等分点,////EF DG AC ,H 为AF 与DG 的交点.若6AC =,则DH =___________.19.我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点(2,1)A 到以原点为圆心,以1为半径的圆的距离为_____.三、解答题(本大题共7小题,共63分)21121sin 603226︒⎛⎫-+- ⎪⎝⎭.21.2020年是脱贫攻坚年,为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场,经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:根据以上信息,解答下列问题:(1)表中a ______,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫因户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?22.如图.要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足6075α︒︒ ,现有一架长5.5m 的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m 时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin 750.97︒=,cos750.26︒=,tan 75 3.73︒=,sin 23.60.40︒=,cos56.40.40︒=,tan 21.80.40︒=)23.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反I=.比例函数关系.当4R=Ω时,9A(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;/RΩ……/I A……(3)如果以此蓄电池为电源的用电器的限制电流不能超过10A.那么用电器可变电阻应控制在什么范围内?24.已知1O 的半径为1r ,2O 的半径为2r ,以1O 为圆心,以12r r +的长为半径画弧,再以线段12O O 的中点P 为圆心,以1212O O 的长为半径画弧,两弧交于点A,连接1Q A ,2O A ,1O A 交1O 于点B,过点B 作2O A 的平行线BC 交12O O 于点C.(1)求证:BC 是2O 的切线;(2)若12r =,21r =,126O O =,求阴影部分的面积.25.已知抛物线22232(0)y ax ax a a =--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围.26.如图,菱形ABCD 的边长为1,=60ABC ∠︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F,G,AE ,EF 的中点分别为M,N.(1)求证:AF EF =;(2)求MN NG +的最小值;(3)当点E 在AB 上运动时,CEF ∠的大小是否变化?为什么?2023年初中学业水平考试试数学答案详解一、选择题1.A 【解析】根据两个负数,绝对值大的反而小可知-3<-2,所以比-2℃低的温度是-3℃.故选:A.2.B 【解析】A、不是中心对称图形,故选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故选项错误;D、不是中心对称图形,故本选项错误.故选:B.3.A 【解析】∵将点A 沿数轴向左移动2个单位至点B,则点B 对应的数为:32-2=12-,故选A.4.B 【解析】由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形可得为三棱柱.故选B.5.D 【解析】∵AB=AC,∠A=40°,∴∠B=∠ACB=70°,∵CD∥AB,∴∠BCD=∠B=70°,故选D.6.D 【解析】()2322a a -÷=624a a ÷=44a ,故选D.7.C 【解析】∵4<7<9,∴23<<,∴425<<,即45a <<,故选C.8.B 【解析】∵2480x x --=中,a=1,b=-4,c=-8,∴△=16-4×1×(-8)=48>0,∴方程有两个不相等的实数根,∴x=44322±=±12x =+22x =-故选B.9.C【解析】列表得:所有等可能的情况有12种,其中恰好抽到马鸣和杨豪的情况有2种,恰好抽到马鸣和杨豪的概率是21126=,故选C.10.B 【解析】设有x 人,y 辆车,依题意,得2392x y x y ⎧=-⎪⎪⎨-⎪=⎪⎩,故选B.11.A12.C 【解析】如图,过点P 作AD 的垂线PF,交AD 于F,再延长FP 交BC 于点E,根据平行四边形的性质可知PE⊥BC,AD=BC,∴S 1=12AD×PF,S 2=12BC×PE,∴S 1+S 2=12AD×PF+12BC ×PE=12AD×(PE+PE)=12AD×EF=12S,故选C.13.A 【解析】11x y x y ---=()()()()1111x y y x x y -----=()()11xy x xy y x y --+--=(1)(1)x y x y -+--,故选A.14.B 【解析】连接OD、OE,∵OC=OA,∴△OAC 是等腰三角形,∵80AOC ︒∠=,点D 为弦AC 的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°-x,∠DOE=100°-x+40°,∵OC=OE,∠COE=100°-x,∴∠OEC=()1801004022x x --=+ ,∵OD=OE,∠DOE=100°-x+40°=140°-x,∴∠OED=()1801402022x x --=+ ,∴∠CED=∠OEC-∠OED=402022x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=20°.故选B.二、填空题15.x<12-【解析】移项,得2x<-1,系数化成1得x<12-,16.-1【解析】2222a b b -+-=()()22a b a b b +-+-将1a b +=代入,原式=22a b b -+-=2a b +-=1-2=-117.m<n 【解析】∵直线2y x b =+中,k=2>0,∴此函数y 随着x 的增大而增大,∵12-<2,∴m<n.18.1【解析】∵D,E 为边AB 的三等分点,////EF DG AC ,∴EF:DG:AC=1:2:3∵AC=6,∴EF=2,由中位线定理得到,在△AEF 中,DH 平行且等于112EF =19.1-【解析】根据题意,得点到圆的距离为:该点与圆上各点的连线中,最短的线段长度,连接OA,与圆O 交于点B,知点A 和圆O 上点B 之间的连线最短,∵A(2,1),∵圆O 的半径为1-,∴点(2,1)A 到以原点为圆心,以11-,三、解答题20.21121sin603226︒⎛⎫--⎪⎝⎭212636262⎛⎫-+⨯- ⎪⎝⎭=133 662 +-=31 36 -+21.解:(1)506915812----=(只);频数分布图如下:(2)8300048050⨯=(只);(3)69121581.0 1.2 1.4 1.6 1.8 1.44 5050505050⨯+⨯+⨯+⨯+⨯=(千克),1.4430001564800⨯⨯=(元),∵64800>54000,∴该村贫困户能脱贫.22.解:(1)当∠ABC=75°时,梯子能安全使用且它的顶端最高;在Rt△ABC中,有sin∠ABC=AC AB∴AC=AB•sin∠ABC=5.5×sin75°≈5.3;答:安全使用这个梯子时,梯子的顶端距离地面的最大高度AC 约为5.3m(2)在Rt△ABC 中,有cos∠ABC=BC AB =2.25.5=0.4由题目给的参考数据cos56.40.40︒=,可知∠ABC=56.4°∵56.4°<60°,不在安全角度内;∴这时人不能安全使用这个梯子,答:人不能够安全使用这个梯子.23.(1)解:(1)电流I 是电阻R 的反比例函数,设k I R=,∵当4R =Ω时,9A I =,代入,得:k=4×9=36,∴36I R =;(2)填表如下:函数图像如下:(3)∵I≤10,36I R=,∴3610R ≤,∴R≥3.6,即用电器可变电阻应控制在3.6Ω以上的范围内.24.解:(1)由作图过程,得AP=O 1P=O 2P=12O 1O 2,AO 1=AB+BO 1=12r r +,∴∠PAO 1=PO 1A,∠PAO 2=∠PO 2A,AB=2r ,而∠PAO 1+∠PO 1A+∠PAO 2+∠PO 2A=180°,∴∠PAO 1+∠PAO 2=90°,即AO 2⊥AO 1,∵BC∥AO 2,∴O 1B⊥BC,即BC 与圆O 1相切,过点O 2作O 2D⊥BC,交BC 于点D,可知四边形ABDO 2为矩形,∴AB=O 2D=2r ,而圆O 2的半径为2r ,∴点D 在圆O 2上,即BC 是2O的切线;(2)∵AO 2∥BC,∴△AO 1O 2∽△BO 1C,∴11211AO O O BO O C=,∵12r =,21r =,126O O =,即AO 1=12r r +=3,BO 1=2,∴1362O C=,∴O 1C=4,∵BO 1⊥BC,∴cos∠BO 1C=112142BO CO ==,∴∠BO 1C=60°,=,∴S 阴影=1BO C S △-1BO ES 扇形=2160222360π⨯⨯⨯-=23π25.解:(1)∵22232y ax ax a =--+,∴22(1)32y a x a a =---+,∴其对称轴为:1x =.(2)由(1)知抛物线的顶点坐标为:2(1,23)a a --,∵抛物线顶点在x 轴上,∴2230a a --=,解得:32a =或1a =-,当32a =时,其解析式为:233322y x x =-+,当1a =-时,其解析式为:221y x x =-+-,综上,二次函数解析式为:233322y x x =-+或221y x x =-+-.(3)由(1)知,抛物线的对称轴为1x =,∴()23,Q y 关于1x =的对称点为2(1,)y -,当函数解析式为233322y x x =-+时,其开口方向向上,∵()1,P m y 且12y y <,∴13m -<<;当函数解析式为221y x x =-+-时,其开口方向向下,∵()1,P m y 且12y y <,∴1m <-或3m >.26.解:(1)如图,连接CF,∵FG 垂直平分CE,∴CF=EF,∵四边形ABCD 为菱形,∴A 和C 关于对角线BD 对称,∴CF=AF,∴AF=EF;(2)连接AC,∵M 和N 分别是AE 和EF 的中点,点G 为CE 中点,∴MN=12AF,NG=12CF,即MN+NG=12(AF+CF),当点F 与菱形ABCD 对角线交点O 重合时,AF+CF 最小,即此时MN+NG 最小,∵菱形ABCD 边长为1,∠ABC=60°,∴△ABC 为等边三角形,AC=AB=1,即MN+NG 的最小值为12;(3)不变,理由是:∵∠EGF=90°,点N 为EF 中点,∴GN=FN=EN,∵AF=CF=EF,N 为EF 中点,∴MN=GN=FN=EN,∴△FNG 为等边三角形,即∠FNG=60°,∵NG=NE,∴∠FNG=∠NGE+∠CEF=60°,∴∠CEF=30°,为定值.。
2023年山西省普通高中学业水平考试数学试题
学校:___________姓名:___________班级:___________考号:___________
二、填空题
(1)求证//BM 平面AEF ;(2)求BM 与EF 所成角的余弦值.
21.在ABC 中,,,a b c 分别为内角(1)求ABC 的面积;
参考答案:
由于AB ⊥平面BCD ,故所作垂线与设外接球的半径为R ,而1O 则外接球的半径为1R O O =即当sin 1θ=即BC BD ⊥时,三棱锥的外接球的半径取得最小值此时三棱锥A BCD -的外接球表面积取得最小值:
【点睛】本题考查基底表示向量,考查运算求解能力,是中档题[]()0,1BM x BC x →
→
=∈得111222AN x AC x →
→⎛=+- ⎝17.lg5
【详解】试题分析:令10x =t ,则lg x t =,∴考点:本题考查函数解析式的求法及求值
点评:此类问题常常用换元法求出函数的解析式,然后代入值求解,属基础题18.2024
∵,O M 分别为,AE AC 的中点,由//BF CE ,且2EC FB =∴//OM FB ,且 OM FB =∴四边形OMBF 为平行四边形,故又BM ⊄平面AEF ,OF
则1BF CG ==,FG AF EF =,所以△Rt ACE 中,AE =。
知识点一集合的含义与表示1.集合的含义:把研究对象统称为元素,把一些元素组成的总体叫做集合.2.集合元素的三个特征:确定性、互异性、无序性.3.集合的相等:若A⊆B,且B⊆A,则A=B.4.元素与集合的关系是属于或不属于关系,用符号∈或∉表示.5.常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R6.集合的表示方法:列举法、描述法、图示法.知识点二集合与集合的关系1.子集与真子集定义符号语言图形语言(Venn图)子集如果集合A中的任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集A⊆B(或B⊇A)真子集如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集A B(或B A)2.子集的性质(1)规定:空集是任何集合的子集,也就是说,对任意集合A,都有∅⊆A.(2)任何一个集合A都是它本身的子集,即A⊆A.(3)如果A⊆B,B⊆C,则A⊆C.(4)如果A B,B C,则A C.3.子集个数的计算若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个.知识点三集合的运算1.交集自然语言符号语言图形语言由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集A∩B={x|x∈A,且x∈B}2.并集自然语言符号语言图形语言由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集A∪B={x|x∈A,或x∈B}3.交集与并集的性质交集的运算性质并集的运算性质A∩B=B∩A A∪B=B∪AA∩A=A A∪A=AA∩∅=∅A∪∅=AA⊆B⇔A∩B=A A⊆B⇔A∪B=B4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U.5.补集文字语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言∁U A={x|x∈U,且x∉A}图形语言题型一集合的运算例1(1)若集合A={x|1≤3x≤81},B={x|log2(x2-x)>1},则A∩B等于() A.(2,4] B.[2,4]C.(-∞,0)∪(0,4] D.(-∞,-1)∪[0,4](2)(2018年4月学考)已知集合P={x|0≤x<1},Q={x|2≤x≤3}.记M=P∪Q,则() A.{0,1,2}⊆M B.{0,1,3}⊆MC.{0,2,3}⊆M D.{1,2,3}⊆M(3)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.答案(1)A(2)C(3){7,9}解析(1)∵A={x|1≤3x≤81}={x|0≤x≤4},B={x|log2(x2-x)>1}={x|x2-x>2}={x|x<-1或x>2},∴A∩B={x|2<x≤4}=(2,4].(2)由题意知,M=P∪Q=[0,1)∪[2,3],故选C.(3)∵U={1,2,3,4,5,6,7,8,9,10},∴∁U A={4,6,7,9,10},∴(∁U A)∩B={7,9}.感悟与点拨(1)集合的运算问题可先对集合进行化简,然后结合数轴或Venn图计算.(2)运算过程中要注意集合间的特殊关系的使用,灵活运用这些关系,会使运算简化.跟踪训练1(1)已知集合P={x∈R||x|<2},Q={x∈R|-1≤x≤3},则P∩Q等于() A.[-1,2) B.(-2,2)C.(-2,3] D.[-1,3](2)已知集合M={0,1,2},N={x|-1≤x≤1,x∈Z},则()A.M⊆N B.N⊆MC.M∩N={0,1} D.M∪N=N(3)已知集合A={3,a},B={a,b},若A∩B={2},则A∪B等于()A.{2,3} B.{3,4}C.{2,2,3} D.{2,3,4}答案(1)A(2)C(3)D解析(3)∵A={3,a},B={a,b},且A∩B={2},∴a=2,即a=4,A={3,2},b=2,即B={2,4},则A∪B={2,3,4},故选D.题型二对Venn图的考查例2如图,I为全集,M,P,S是I的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S答案C解析图中的阴影部分是M∩P的子集,阴影部分也是集合S的补集的子集,即是∁I S的子集,则阴影部分所表示的集合是(M∩P)∩∁I S,故选C.感悟与点拨对Venn图的考查主要是识图、用图.首先要理解图形的含义,将图形问题转化成符号运算;其次根据集合的相关运算求解.跟踪训练2如图所示的Venn图中,A,B是非空集合,定义A*B表示阴影部分的集合.若A={x|0≤x≤2},B={y|y>1},则A*B=________________.答案{x|0≤x≤1或x>2}解析A∩B={x|1<x≤2},A∪B={x|x≥0},由图可得A*B=∁(A∪B)(A∩B)={x|0≤x≤1或x>2}.题型三根据集合的运算求参数(或参数范围)例3设集合A={x||x-a|<1,x∈R},集合B={x|1<x<5,x∈R}.若A∩B=∅,则实数a的取值范围是()A.{a|0≤a≤6} B.{a|a≤2或a≥4}C.{a|a≤0或a≥6} D.{a|2≤a≤4}答案C解析因为集合A={x|a-1<x<a+1},所以要使A∩B=∅,则只需a+1≤1或a-1≥5.所以a≤0或a≥6,故选C.感悟与点拨(1)如有必要,则先对集合进行化简.(2)如有必要,根据运算性质进行讨论.如A∩B=∅,可分A=∅,A≠∅讨论.(3)用好数轴或Venn图.跟踪训练3 (1)若集合A ={x |ax 2-3x +2=0}的子集只有两个,则实数a =________. (2)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )·(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________. 答案 (1)0或98(2)-1 1解析 (1)∵集合A 的子集只有两个, ∴A 中只有一个元素. 当a =0时,x =23,符合要求;当a ≠0时,Δ=(-3)2-4a ×2=0, ∴a =98.故a =0或98.(2)A ={x |-5<x <1}, 又B ={x |(x -m )(x -2)<0}, A ∩B =(-1,n ), 如图,∴m =-1,n =1.一、选择题1.设A ={x ∈Z ||x |≤2},B ={y |y =x 2+1,x ∈A },则B 中的元素个数是( ) A .5 B .4 C .3 D .2答案 C解析 将A 用列举法表示得到A ={x ∈Z ||x |≤2}={-2,-1,0,1,2},B ={y |y =x 2+1,x ∈A }={5,2,1},所以B 中的元素个数是3.2.已知集合M ={x ∈Z |-3<x ≤1},则集合M 的真子集的个数为( ) A .12 B .14 C .15D .16答案C解析M={-2,-1,0,1},所以集合M的真子集个数为24-1=15.3.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)等于() A.[2,3]B.(-2,3]C.[1,2) D.(-∞,-2]∪[1,+∞)答案B解析∵Q={x∈R|x2≥4}={x∈R|x≥2或x≤-2},即有∁R Q={x∈R|-2<x<2},则P∪(∁R Q)=(-2,3].4.已知集合A ={x |-1≤x ≤1},B ={x |x 2-5x +6≥0},则下列结论中正确的是( ) A .A ∩B =B B .A ∪B =A C .A ⊆B D .∁R A =B答案 C解析 由x 2-5x +6≥0,解得x ≥3或x ≤2. 又集合A ={x |-1≤x ≤1},∴A ⊆B , 故选C.5.设集合M ={x |log 2(x -1)>0},集合N ={x |x ≥-2},则N ∩(∁R M )等于( ) A .{x |x ≤-2} B .{x |-2<x ≤2} C .{x |-2≤x ≤3} D .{x |-2≤x ≤2} 答案 D解析 ∵M ={x |x >2}, ∴∁R M ={x |x ≤2},∴N ∩(∁R M )={x |-2≤x ≤2}.6.已知全集U ={0,1,2,3,4,5,6,7,8},集合A ={0,1,3,5,8},B ={2,4,5,6,8},则(∁U A )∩(∁U B )等于( ) A .{5,8} B .{7} C .{0,1,3} D .{2,4,6} 答案 B解析 方法一 因为U ={0,1,2,3,4,5,6,7,8},集合A ={0,1,3,5,8},B ={2,4,5,6,8},所以∁U A ={2,4,6,7},∁U B ={0,1,3,7},所以(∁U A )∩(∁U B )={7},故选B.方法二 因为 A ∪B ={0,1,2,3,4,5,6,8},所以(∁U A )∩(∁U B )=∁U (A ∪B )={7},故选B. 方法三图中的阴影部分表示(∁U A )∩(∁U B ),故选B.7.已知集合A ={x |-1<x <2},B ={x |x >log 2m },若A ⊆B ,则实数m 的取值范围是( ) A .(0,4] B.⎝⎛⎦⎤12,1 C.⎝⎛⎦⎤0,12 D.⎝⎛⎦⎤-∞,12答案 C解析 ∵A ={x |-1<x <2},B ={x |x >log 2m },A ⊆B , ∴log 2m ≤-1,∴m ∈⎝⎛⎦⎤0,12.故选C. 8.已知集合P ={0,1},M ={x |x ⊆P },则集合M 的子集个数为( ) A .16 B .32 C .8 D .64答案 A解析 ∵集合P ={0,1},∴M ={x |x ⊆P }={∅,{0},{1},{0,1}}, 含有4个元素的集合的子集个数为24=16.故选A.9.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则右图中阴影部分表示的集合的真子集的个数为( )A .3B .4C .7D .8答案 C解析 ∵A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意知,题图中阴影部分表示的集合为A ∩B ={1,2,3},所以其真子集有7个. 10.已知全集U ={-1,1,3},集合A ={a +2,a 2+2},且∁U A ={-1},则a 的值是( ) A .-1 B .1 C .3 D .±1 答案 A解析 因为全集U ={-1,1,3},集合A ={a +2,a 2+2},且∁U A ={-1}, 所以1,3是集合A 中的元素,方法一 所以⎩⎪⎨⎪⎧ a +2=1,a 2+2=3或⎩⎪⎨⎪⎧a +2=3,a 2+2=1,由⎩⎪⎨⎪⎧a +2=1,a 2+2=3,得a =-1.由⎩⎪⎨⎪⎧a +2=3,a 2+2=1,得a 无解,所以a =-1,故选A. 方法二 因为a 2+2≥2,所以⎩⎪⎨⎪⎧a 2+2=3,a +2=1,所以a =-1,故选A. 二、填空题11.已知集合A ={x |x 2-3x <0,x ∈N *},则用列举法表示集合A =________. 答案 {1,2}解析 由集合A ={x |x 2-3x <0,x ∈N *}可得, 集合A ={x |0<x <3,x ∈N *}={1,2}.12.已知集合A ={x |x 2≥16},B ={m },若A ∪B =A ,则实数m 的取值范围是________________. 答案 (-∞,-4]∪[4,+∞)解析 ∵集合A ={x |x 2≥16}={x |x ≤-4或x ≥4}, B ={m },且A ∪B =A ,∴B ⊆A , ∴m ≤-4或m ≥4,∴实数m 的取值范围是(-∞,-4]∪[4,+∞).13.若集合A ={x |0≤x ≤2},B ={x |x <0或x >1},则图中阴影部分所表示的集合为___________.答案 {x |x ≤1或x >2}解析 如图,设U =A ∪B =R ,A ∩B ={x |1<x ≤2}, ∴阴影部分为∁U (A ∩B )={x |x ≤1或x >2}.14.设全集U ={x ∈Z |-2≤x ≤4},A ={-1,0,1,2,3},若B ⊆∁U A ,则集合B 的个数是________. 答案 4解析 全集U ={x ∈Z |-2≤x ≤4}={-2,-1,0,1,2,3,4},A ={-1,0,1,2,3},∁U A ={-2,4}, ∵B ⊆∁U A ,则集合B =∅,{-2},{4},{-2,4}, 因此满足条件的集合B 的个数是4.15.已知集合A ={x ||x -2|<a },B ={x |x 2-2x -3<0},若B ⊆A ,则实数a 的取值范围是________. 答案 [3,+∞)解析 由|x -2|<a ,可得2-a <x <2+a (a >0), ∴A =(2-a,2+a )(a >0). 由x 2-2x -3<0,解得-1<x <3. B =(-1,3).∵B ⊆A ,则⎩⎪⎨⎪⎧2-a ≤-1,2+a ≥3,解得a ≥3.16.若x ∈A ,1x ∈A ,则称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为________. 答案 15解析 子集只有1个元素的有{-1},{1},共2个;子集有2个元素的有{-1,1},⎩⎨⎧⎭⎬⎫13,3,⎩⎨⎧⎭⎬⎫12,2,共3个;子集有3个元素的有⎩⎨⎧⎭⎬⎫-1,13,3,⎩⎨⎧⎭⎬⎫-1,12,2,⎩⎨⎧⎭⎬⎫1,13,3,⎩⎨⎧⎭⎬⎫1,12,2,共4个;子集有4个元素的有⎩⎨⎧⎭⎬⎫-1,1,13,3,⎩⎨⎧⎭⎬⎫-1,1,12,2,⎩⎨⎧⎭⎬⎫2,12,13,3,共3个;子集有5个元素的有⎩⎨⎧⎭⎬⎫-1,2,12,13,3,⎩⎨⎧⎭⎬⎫1,2,12,13,3,共2个;子集有6个元素的有⎩⎨⎧⎭⎬⎫-1,1,2,12,13,3,共1个.综上可知,满足题意的集合共有15个.。