固体物理-第4章-晶体中的缺陷和扩散-4
- 格式:ppt
- 大小:4.74 MB
- 文档页数:60
习题测试1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?2.热膨胀引起的晶体尺寸的相对变化量与X射线衍射测定的晶格常数相对变化量存在差异,是何原因?3.KCl晶体生长时,在KCl溶液中加入适量的CaCl溶液,生长的KCl晶体的质量密度比理2论值小,是何原因?4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?5.金属淬火后为什么变硬?6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?7.试指出立方密积和六角密积晶体滑移面的面指数.8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?9.晶体结构对缺陷扩散有何影响?10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?12.一个空位花费多长时间才被复合掉?13.自扩散系数的大小与哪些因素有关?14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?17.离子晶体的导电机构有几种?习题解答1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量与X射线衍射测定的晶格常数相对变化量存在差异,是何原因?[解答]肖特基缺陷指的是晶体内产生空位缺陷但不伴随出现填隙原子缺陷, 原空位处的原子跑到晶体表面层上去了. 也就是说, 肖特基缺陷将引起晶体体积的增大. 当温度不是太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多. X射线衍射测定的晶格常数相对变化量, 只是热膨胀引起的晶格常数相对变化量. 但晶体尺寸的相对变化量不仅包括了热膨胀引起的晶格常数相对变化量, 也包括了肖特基缺陷引起的晶体体积的增大. 因此, 当温度不是太高时, 一般有关系式>.溶液,生长的KCl晶体的质量密度比理3.KCl晶体生长时,在KCl溶液中加入适量的CaCl2论值小,是何原因?[解答]由于离子的半径(0.99)比离子的半径(1.33)小得不是太多, 所以离子难以进入KCl晶体的间隙位置, 而只能取代占据离子的位置. 但比高一价, 为了保持电中性(最小能量的约束), 占据离子的一个将引起相邻的一个变成空位. 也就是说, 加入的CaCl越多, 空位就越多. 又因为的原子量(40.08)与的2溶液引起空位, 将导致KCl 原子量(39.102)相近, 所以在KCl溶液中加入适量的CaCl2晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移, 会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, 离子晶体的热缺陷对导电的贡献只取决于它们的迁移率. 设正离子空位附近的离子和填隙离子的振动频率分别为和, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为和, 负离子空位附近的离子和填隙离子的振动频率分别为和, 负离子空位附近的离子和填隙离子跳过的势垒高度分别为, 则由(4.47)矢可得,,,.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即<,<. 由问题1.已知, 所以有<, <. 另外, 由于和的离子半径不同, 质量不同, 所以一般, .也就是说, 一般. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数,空位机构自扩散系数.自扩散系数主要决定于指数因子, 由问题4.和8.已知, <,<, 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是, 平均来说, 填隙原子要跳步才遇到一个空位并与之复合. 所以一个填隙原子平均花费的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间.由以上两式得>>1.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时, 它才扩散一步, 所需等待的时间是. 但它相邻的一个原子成为空位的几率是, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成.可以看出, 自扩散系数与原子的振动频率, 晶体结构(晶格常数), 激活能()三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间后变成填隙原子, 又平均花费时间后被空位复合重新进入正常晶格位置, 其中是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间.因为>>,所以填隙原子自扩散系数近似反比于. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?[解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷,这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.17.离子晶体的导电机构有几种?[解答]离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. 离子晶体中有4种缺陷: 填隙离子, 填隙离子, 空位, 空位. 也就是说, 离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变成了空位. 离子晶体中, 空位附近都是负离子, 空位附近都是正离子. 由此可知,空位的移动实际是负离子的移动, 空位的移动实际是正离子的移动. 因此, 在外电场作用下, 填隙离子和空位的漂移方向与外电场方向一致, 而填隙离子和空位的漂移方向与外电场方向相反.。
第四章 晶格结构中的缺陷4.1 试证明,由N 个原子组成的晶体,其肖托基缺陷数为sB k T s n Ne μ−=其中s μ是形成一个空位所需要的能量。
证明:设由N 个原子组成的晶体,其肖托基缺陷数为s n ,则其微观状态数为!()!s !s s N P N n n =− 由于s μ个空位的出现,熵的改变[]!ln lnln ()ln()ln ()!!B s B B s s s s s s N S k P k k N N N n N n n n N n n Δ===−−−−− 晶体的自由能变化为 []ln ()ln()ln s s s s B s s s F n T S n k T N N N n N n n n μμ=−Δ=−−−−−s要使晶体的自由能最小B ()ln 0s s s sT n F u k T n N ⎡⎤⎛⎞∂Δ=+=⎜⎟⎢⎥∂−⎣⎦⎝⎠n 整理得s B k T s s n e N n μ−=− 在实际晶体中,由于,s n N <<s s s n n N N n ≈−,得到 sB k T s n Ne μ−=4.2 铜中形成一个肖托基缺陷的能量为1.2eV ,若形成一个间隙原子的能量为4eV ,试分别计算1300K 时肖托基缺陷和间隙原子数目,并对二者进行比较。
已知,铜的熔点是1360K 。
解:(王矜奉4.2.4)根据《固体物理学》4-8式和4-10式,肖托基缺陷和间隙原子数目分别为 s B k T s n Neμ−= 11B k T n Ne μ−= 得19231.21.61051.38101300 2.2510sB k T s n Ne NeN μ−−××−−−××===× 191231.2410161.381013001 3.2110B k T n Ne Ne N μ−−××−−−××===×4.3 设一个钠晶体中空位附近的一个钠原子迁移时,必须越过0.5eV 的势垒,原子振动频率为1012Hz 。
固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
第三章晶体中的缺陷第一节概述一、缺陷的概念大多数固体是晶体,晶体正是以其特殊的构型被人们最早认识。
因此目前(至少在80年代以前>人们理解的“固体物理”主要是指晶体。
当然这也是因为客观上晶体的理论相对成熟。
在晶体理论发展中,空间点阵的概念非常重要。
空间点阵中,用几何上规则的点来描述晶体中的原子排列,并连成格子,这些点被称为格点,格子被称为点阵,这就是空间点阵的基本思想,它是对晶体原子排列的抽象。
空间点阵在晶体学理论的发展中起到了重要作用。
可以说,它是晶体学理论的基础。
现代的晶体理论基于晶体具有宏观平移对称性,并因此发展了空间点阵学说。
严格地说对称性是一种数学上的操作,它与“空间群”的概念相联系,对它的描述不属本课程内容。
但是,从另一个角度来理解晶体的平移对称性对我们今后的课程是有益的。
所谓平移对称性就是指对一空间点阵,任选一个最小基本单元,在空间三维方向进行平移,这个单元能够无一遗漏的完全复制所有空间格点。
考虑二维实例,如图3-1所示。
图3-1 平移对称性的示意图在上面的例子中,以一个基元在二维方向上平移完全能复制所有的点,无一遗漏。
这种情况,我们说具有平移对称性。
这样的晶体称为“理想晶体”或“完整晶体”。
图3-2 平移对称性的破坏如果我们对上述的格点进行稍微局部破坏,那么情况如何?请注意以下的复制过程,如图3-2所示。
从图中我们看出:因为局部地方格点的破坏导致平移操作无法完整地复制全部的二维点阵。
这样的晶体,我们就称之为含缺陷的晶体,对称性破坏的局部区域称为晶体缺陷。
晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。
事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。
既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。
幸运的是,缺陷的存在只是晶体中局部的破坏。
作为一种统计,一种近似,一种几何模型,我们仍然继承这种学说。
第四章晶体中的缺陷与扩散晶体缺陷的基本类型热缺陷的统计理论晶体中的扩散离子晶体的点缺陷及导电性4-1晶体缺陷的基本类型晶体缺陷(晶格的不完整性):晶体中任何对完整周期性结构的偏离就是晶体的缺陷。
按缺陷的几何形状和涉及范围将缺陷分为:点缺陷、线缺陷和面缺陷。
一、点缺陷点缺陷是在格点附近一个或几个晶格常量范围内的一种晶格缺陷,如空位、填隙原子、杂质等。
由于空位和填隙原子与温度有直接的关系,或者说与原子的热振动有关,因此称他们为热缺陷。
1.弗仑克尔缺陷和肖特基缺陷弗仑克尔缺陷:当晶格中的原子脱离格点后,移到间隙位置形成填隙原子时,在原来的格点位置处产生一个空位,填隙原子和空位成对出现,这种缺陷称为弗仑克尔缺陷。
肖特基缺陷:当晶体中的原子脱离格点位置后不在晶体内部形成填隙原子,而是占据晶体表面的一个正常位置,并在原来的格点位置产生一个空位,这种缺陷称为肖特基缺陷。
2.杂质原子在材料制备中,有控制地在晶体中引入杂质原子,若杂质原子取代基质原子而占据格点位置,则成为替位式杂质。
当外来的杂质原子比晶体本身的原子小时,这些比较小的外来原子很可能存在于间隙位置,称它们为填隙式杂质。
填隙式杂质的引入往往使晶体的晶格常量增大。
3.色心能吸收可见光的晶体缺陷称为色心。
完善的晶体是无色透明的,众多的色心缺陷能使晶体呈现一定颜色,典型的色心是F心。
把碱卤晶体在碱金属的蒸气中加热,然后使之聚冷到室温,则原来透明的晶体就出现了颜色,这个过程称为增色过程,这些晶体在可见光区各有一个吸收带称为F带,而把产生这个带的吸收中心叫做F心。
4.极化子电子吸引邻近的正离子,使之内移。
排斥邻近的负离子,使之外移,从而产生极化。
电子所在处出现了趋于束缚这电子的势能阱,这种束缚作用称为电子的“自陷”作用。
产生的电子束缚态称为自陷态,同杂质所引进的局部能态有区别,自陷态永远追随着电子从晶格中一处移到另一处,这样一个携带着周围的晶格畸变而运动的电子,可看作一个准粒子(电子+晶格的畸变),称为极化子。
第四章晶体缺陷与缺陷运动§4.1 晶体缺陷的基本类型§4.2 位错缺陷的性质、晶体滑移的本质§4.3 热缺陷数目的统计平衡理论§4.4 热缺陷的运动、产生和复合§4.5 晶体中的扩散过程§4.6 离子晶体中的点缺陷与导电性前言理想晶体的主要特征是原子(或分子)的严格规则排列、周期性实际晶体中的原子排列会由于各种原因或多或少地偏离严格的周期性,存在着偏离了理想晶体结构的区域,于是就形成了晶体的缺陷。
晶体中虽然存在各种各样的缺陷,但实际在晶体中偏离平衡位置的原子数目很少(相对于晶体原子总数),在最严重的情况下,一般不会超过原子总数的万分之一,因而实际晶体结构从整体上看还是比较完整的。
缺陷——偏离了晶体周期性排列的局部区域。
前言(续)晶体中缺陷的种类很多,它们分别影响着晶体的力学、热学、电学、光学等各方面的性质。
然而,尽管在晶体中缺陷的数目很少,它们的产生和发展、运动和相互作用、以及合并和消失,对晶体的性能有重要的影响。
因此,晶体缺陷是固体物理中一个重要的研究领域,它对于研究和理解一些不能用完整晶体理论解释和理解的现象具有重要的意义。
例如:塑性与强度、扩散、相变、再结晶、离子电导以及半导体的缺陷导电等现象。
§4.1 晶体缺陷的基本类型一、点缺陷点缺陷——发生在一个或几个晶格常数范围内的缺陷。
如:空位、填隙原子、杂质原子等。
这些空位、填隙原子是由热起伏原因而产生的,所以又称为热缺陷。
晶体中存在的缺陷种类很多,但由于晶体中的晶体结构具有规律性,因此晶体中实际出现缺陷的类型也不是无限制的。
根据晶体缺陷在空间延伸的线度,晶体缺陷可分为点缺陷、线缺陷、面缺陷和体缺陷。
几种重要的点缺陷:1)弗仑克尔缺陷和肖脱基缺陷原子(或离子)在格点平衡位置附近振动,由于存在这样的热振动的能量涨落,使得当某一原子能量大到某一程度时,原子就会克服平衡位置势阱的束缚,脱离格点,而到达邻近的原子空隙中,当它失去多余动能后,就会被束缚在那里,这样产生一个暂时的空位和一个暂时的填隙原子,当又经过一段时间后,填隙原子会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去或跳到晶体边界上去。
1。
以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比。
[解答]设原子的半径为R, 体心立方晶胞的空间对角线为4R,晶胞的边长为,晶胞的体积为,一个晶胞包含两个原子, 一个原子占的体积为,单位体积晶体中的原子数为;面心立方晶胞的边长为,晶胞的体积为, 一个晶胞包含四个原子,一个原子占的体积为,单位体积晶体中的原子数为。
因此,同体积的体心和面心立方晶体中的原子数之比为=0。
272。
2.解理面是面指数低的晶面还是指数高的晶面?为什么?[解答]晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大。
因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面。
3。
基矢为, , 的晶体为何种结构? 若+, 又为何种结构?为什么?[解答]有已知条件,可计算出晶体的原胞的体积。
由原胞的体积推断,晶体结构为体心立方. 按照本章习题14,我们可以构造新的矢量,,。
对应体心立方结构. 根据14题可以验证, 满足选作基矢的充分条件.可见基矢为,,的晶体为体心立方结构。
若+,则晶体的原胞的体积,该晶体仍为体心立方结构.4.若与平行, 是否是的整数倍? 以体心立方和面心立方结构证明之.[解答]若与平行, 一定是的整数倍. 对体心立方结构,由(1.2)式可知,, ,=h+k+l=(k+l)(l+h)(h+k)=p=p(l1 +l2 +l3), 其中p是(k+l)、(l+h)和(h+k)的公约(整)数。
对于面心立方结构, 由(1.3)式可知,,,,=h+k+l=(—h+k+l)+(h—k+l)+(h+k—l)=p'=p’(l1+l2 +l3),其中p’是(—h+k+l)、(-k+h+l)和(h-k+l)的公约(整)数.5. 晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基矢、和重合,除O点外,OA、OB和OC上是否有格点? 若ABC面的指数为(234),情况又如何?[解答]晶面族(123)截、和分别为1、2、3等份,ABC面是离原点O最近的晶面,OA的长度等于的长度,OB的长度等于的长度的1/2,OC的长度等于的长度的1/3,所以只有A点是格点. 若ABC面的指数为(234)的晶面族, 则A、B和C都不是格点。
固体物理学基础晶体缺陷与缺陷态晶体是由原子、离子或分子的周期性排列构成的具有规则几何形状的固体物质。
在晶体中存在着各种各样的缺陷,这些缺陷对于晶体的性质和行为具有重要影响。
在本文中,我们将探讨晶体的缺陷以及与之相关的缺陷态。
一、晶体缺陷的分类晶体缺陷可以分为点缺陷、面缺陷和体缺陷三类。
其中,点缺陷是指晶体中出现的原子、离子或分子的局部位置异常,包括空位、间隙原子、替位原子和杂质原子等。
面缺陷是指晶体中的原子、离子或分子的排列在某一平面上出现了异常,比如晶体表面的步缺陷和堆垛层错。
体缺陷是指晶体中的原子、离子或分子排列出现了三维范围的异常,比如晶体内部的位错和晶界等。
二、晶体缺陷的形成机制晶体缺陷的形成可以通过多种机制实现。
在晶体的生长过程中,由于原子、离子或分子的扩散、沉积等过程中的非均匀性,会导致晶格的畸变,从而形成晶体缺陷。
此外,一些外界因素,如温度、压力和辐射,也可以引起晶体缺陷的形成。
例如,高温下的热震,会导致晶格的重排和变形,从而形成位错等缺陷。
三、晶体缺陷的性质和影响晶体缺陷对于晶体的性质和行为具有重要影响。
首先,晶体缺陷可以影响晶体的机械性质。
例如,在金属晶体中,位错是导致材料塑性变形的主要因素之一。
其次,晶体缺陷还可以影响晶体的导电性能。
在半导体中,掺杂杂质原子引入的缺陷会改变材料的导电行为。
此外,晶体缺陷还可以影响晶体的光学性质和热学性质等。
四、晶体缺陷态的产生与应用晶体中的缺陷可以形成一些电子态或离子态,称为缺陷态。
缺陷态对于晶体的物理和化学性质起着重要作用。
例如,在半导体材料中,空穴和电子缺陷态会影响材料的载流子浓度和导电性质。
此外,缺陷态还可以用于一些应用。
例如,在光学材料中引入掺杂原子产生的缺陷态可以改变材料的吸收和发射光谱特性,从而实现荧光材料或激光材料的设计与制备。
结论晶体缺陷是晶体物理学中一个重要的研究方向。
缺陷的形成机制、性质以及与之相关的缺陷态都对晶体的性质和行为产生着深远的影响。