材料热力学 (5)
- 格式:ppt
- 大小:807.00 KB
- 文档页数:32
材料热力学
材料热力学是研究材料受到热能的影响时热力学特性的一类分
支学科。
它研究材料在温度变化和温度变化环境中的力学特性和热工特性变化,研究各种材料对热影响的热膨胀、强度减弱、热塑性以及尺寸稳定性方面的表现,及材料材料的剩余应力等这两个方面的相互联系。
材料热力学的研究可以帮助我们更好地理解材料的力学性能,从而更加有效地应用到材料设计实践中。
材料热力学的研究对材料设计非常重要,材料热力学研究有助于我们更加准确地预测材料在非常恶劣的热环境中(如火焰、高温、低温)的表现,及材料改性、材料强度提升以及材料耐久性提升等方面。
材料热力学是在热力学基础上发展起来的一门学科,其研究方法也有很多,比如说,热扩散理论、能量流动理论、量子力学模拟、温度梯度分析等。
在这些研究方法的基础上,可以进一步研究材料在温度变化和恶劣环境下表现出来的力学特性、热工性能变化等性能特性,并有助于我们更加精确地预测和利用材料。
材料热力学的应用也非常广泛,比如火灾设计、航空航天材料的设计、石油、化工等冶金类行业、船舶能源利用等都离不开材料热力学。
另外,在节能减排方面也有着巨大的应用,例如热收缩缝,可以有效避免热能的流失,从而节约能源,减少环境污染。
综上所述,材料热力学在材料设计实践中有着非常重要的作用,我们不仅要深入地研究它的理论,还要根据它的不同应用领域,制定适用于特定环境下的理论,进而提高材料的性能,满足不断发展的社
会需求。
虽然材料热力学发展至今,已经经历了几个世纪,但它还有很多有趣的内容可以深入研究,并演变出许多新的应用领域。
材料的热力学性质分析及其应用材料是现代工业生产不可或缺的一项重要资源,它们的性能决定了产品的质量和使用寿命。
热力学是研究物质的热现象和能量转换的科学,它不仅为材料的设计和优化提供了理论支持,而且也为材料的应用提供了可靠的保障。
本文将探讨材料的热力学性质分析及其应用。
一、材料的热力学性质热力学性质指的是材料在吸热或放热过程中所表现出来的特定性质,包括热容、热导率、热膨胀系数、比热、相变热等。
这里我们以金属材料为例,简述一下它们的热力学性质。
1. 热容。
热容指的是当给定质量的物质从一个温度变化到另一个温度时,所需的热量的变化量。
对于金属材料,准确测量其热容是十分重要的,因为它直接关系到材料的热传导性能和相变时的吸放热量。
在实际应用中,人们通常采用热量积分法、直接热测量法和差示扫描量热法等方法来确定金属材料的热容。
2. 热导率。
热导率是材料传导热量的能力,它指的是单位时间内,单位温度差下的热量传导量。
金属材料的热导率通常很高,但不同类型的金属材料热导率也有所差别。
人们可以通过光波法、物质流动法和电阻率法等方法来测量金属材料的热导率。
3. 热膨胀系数。
热膨胀系数是指物质单位温度变化时所发生体积变化的大小。
金属材料的热膨胀系数是较小的,但这种性质对于设计高精度仪器和卫星平台等应用领域来说具有重要意义。
4. 比热。
比热指的是物质在吸收或释放热量时所表现出来的热性质,它是热力学性质研究中的重要参数之一。
金属材料的比热在常温下是较小的,但这种性质对于材料的热工艺加工和机械加工来说具有重大意义。
5. 相变热。
相变热指的是物质相变时所需要吸收或释放的能量。
对于金属材料,相变热通常伴随着材料的相变过程发生。
例如,铝的熔点在660℃左右,当它从固态变为熔融态时,就需要吸收约397焦耳的相变热。
二、材料热力学性质的应用材料热力学性质的应用范围很广,而且已经成为现代工业设计和材料制造的基础。
下面我们来看一些具体的应用:1. 设计高温化学反应器。
材料热力学名词解释
材料热力学是研究材料在不同条件下的热力学性质和相变行为的学科。
以下是一些常见的材料热力学名词解释:
1. 热力学第一定律:能量守恒的原理,即能量不会被创造或消失,只会转化为其他形式。
2. 状态函数:与材料的当前状态有关的物理量,如温度、压力和体积等。
状态函数的值只取决于系统的当前状态,与过程的路径无关。
3. 热力学第二定律:描述了能量转化的方向和过程的不可逆性。
其中最著名的表述是开尔文-普朗克表述,即不可能从单一热
源吸热使之完全转变为功而不产生其他影响。
4. 焓:表示了系统内部能量和对外界所做的功之和。
在常压下,焓变可以看作是系统吸收或释放的热量。
5. 熵:描述了系统的无序程度,是一个衡量系统混乱程度的物理量。
熵的增加表示系统的无序程度增加,熵的减小则表示系统的有序性提高。
6. 自由能:描述了系统可用能量,分为内部能和系统对外界所做的功。
自由能的变化可以用来预测系统在恒温恒压条件下是否会进行某个过程。
7. 平衡态:指系统的各种性质在时间上不再发生变化的状态,
即系统的宏观性质保持不变。
8. 相变:材料在一定条件下从一种相态转变为另一种相态的过程,如固态到液态的熔化、液态到气态的汽化等。
9. 等温过程:系统在恒定温度下进行的过程。
10. 等压过程:系统在恒定压力下进行的过程。
以上是一些常见的材料热力学名词解释,对于理解材料热力学和研究材料相变行为具有重要意义。
材料热力学课程教学大纲学分学时:2学分,40学时授课对象:材料加工工程专业第1章热力学第一定律1-1 热和功1-2 热力学第一定律1-3 状态函数和全微分1-4 焓和比热1-5 标准态第2 章热力学第二定律和第三定律2-1 自发过程和不可逆过程2-1 熵及热力学第二定律2-3 平衡态的判据2-4 配置熵(组态熵、混合熵)2-6 固溶体的混合熵2-7 振动熵和磁性熵2-8 Richard和Trouton规则第3章自由能及热力学基本方程3-1 自由能函数3-2 自由能和温度的关系3-3 蒸汽压与自由能3-4 界面自由能3-5 磁性自由能第4章单元系中的相平衡4-1 吉布斯自由能函数4-2 一级相变和二级相变4-3 Clausius-Clapeyron方程4-4 Ehrenfest方程4-5 纯组元中相平衡4-6 超导态、磁性转变及λ相变第5 章多组分系统热力学5-1 偏摩尔量(1)单组分体系的摩尔热力学函数值(2)多组分体系的偏摩尔热力学函数值(3)偏摩尔量的集合公式(4)Gibbs-Duhem公式5-2 化学势(1)化学势的定义(2)多组分体系中的基本公式(3)理想气体的化学势5-3 拉乌尔定律与亨利定律5-4 理想液体混合物(1)理想液体混合物定义(2)理想液体混合物化学势(3)理想液态混合物的混合性质5-5 理想稀溶液(1)溶剂的化学势(2)溶质的化学势5-6 稀溶液的依数性(1)蒸气压下降(2)凝固点降低(3)沸点升高(4)渗透压5-7 真实液态混合物与实际溶液5-8 分配定律第6章二元系的自由能6-1 形成溶液时自由能的变化6-2 理想溶液与非理想溶液性质的比较6-3 规则溶液6-4 多余偏摩尔量6-5 非规则溶液的自由能6-6 混合相的自由能第7章相平衡7-1 单相平衡7-2 多元系复相平衡的条件7-3 相律的推导7-4 二元系中的两相平衡及三相平衡7-5 三元系中的相平衡7-6 二级相变时的相平衡第8章相图热力学8-1 概述8-2 平衡相浓度的计算原理8-3 端际固溶体的溶解度8-4 有限溶解度固相线的计算8-5 亚稳相的溶解度8-6 二元系组元完全互溶的相图第9章相变热力学9-1新相的形成和相变驱动力(1)新相的形成(2)形核能垒9-2 马氏体相变热力学(1)马氏体相变(2)马氏体相变的一般特征(3)铁基合金马氏体相变热力学(4)陶瓷和有色金属中马氏体相变热力学9-3 珠光体转变(共析分解)热力学(1)珠光体转变(2)珠光体转变中的有效驱动力9-4 脱溶分解热力学(1)脱溶时成分起伏和沉淀相形核(2)脱溶驱动力计算9-5 调幅(Spinodal)分解热力学(1)二元调幅分解的热力学条件(2)Cahn-Hilliard方程及其求解(3)调幅分解的实验研究(4)调幅分解与经典形核生长在现象上的差异第10章界面热力学10-1 界面能的体现10-2 界面能的定义10-3 界面能的计算(1)固体和液体表面能的计算(2)固-液界面能的计算(3)晶界能的计算10-4 合金晶界偏析10-5 曲面热力学(1)弯曲界面对平衡条件的影响(2)液滴的蒸气压(3)微小晶粒的熔点参考书目(1)材料热力学徐祖耀(2)材料热力学与动力学徐瑞(3)材料热力学郝士明。
第一章单组元材料热力学名词解释:1 可逆过程2 Gibbs自由能最小判据3 空位激活能4 自发磁化:5 熵:6 热力学第一定律热力学第二定律7 Richard定律填空题1 热力学第二定律指出:一个孤立系统总是由熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。
2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。
5 纯Fe的A3的加热相变会导致体积缩小6 Gibbs-Helmholtz方程表达式是7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化论述题1 根据材料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应?2 试根据单元材料的两相平衡原理推导克拉伯龙(Clapeyron)方程。
3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。
4 试画出磁有序度、磁性转变热容及磁性转变(指铁磁-顺磁转变)自由能与温度的关系曲线。
计算题1已知纯钛α/β的平衡相变温度为882O C,相变焓为4142J•mol-1,试求将β-Ti过冷到800O C时,β→α的相变驱动力2若某金属形成空位的激活能为58.2KJ•mol-1,试求在700O C下,该金属的空位浓度。
3纯Bi在0.1MPa压力下的熔点为544K。
增加压力时,其熔点以3.55/10000K•MPa-1的速率下降。
另外已知融化潜热为52.7J•g-1,试求熔点下液、固两相的摩尔体积差。
(Bi的原子量为209g•mol-1.第二章二组元相名词解释:溶体:以原子或分子作为基本单元的粒子混合系统所形成的结构相同,性质均匀的相理想溶体:在宏观上,如果组元原子(分子)混合在一起后,既没有热效应也没有体积效应时所形成的溶体。
混合物:由结构不同的相或结构相同而成分不同的相构成的体系 化合物:两种或两种以上原子组成的具有特定结构的新相 溶解度:溶体相在与第二相平衡时的溶体成分(浓度),固溶体在与第二相平衡时的溶解度也成为固溶度。
材料热力学的概念和特点材料热力学是研究物质在不同温度、压力和组分条件下热平衡状态以及与热力学性质相关联的科学分支。
它是研究材料在宏观层面上的热性质、热变化规律和热力学性能的基础,也是研究材料热力学行为的重要工具。
材料热力学的概念:1. 热平衡状态:热平衡状态是指物质达到平衡状态后,各部分温度相等,并保持恒定。
这是一个基本的热力学概念,通过热平衡状态可以研究材料的热性质和热力学性能。
2. 热力学性质:热力学性质是指物质在热运动过程中表现出的性质,包括热容、热导率、热膨胀系数等。
这些性质可以通过热力学实验和计算进行研究,为材料的设计、合成和应用提供理论依据。
3. 热力学变化:材料在不同温度、压力和组分条件下会发生各种热力学变化,如相变、化学反应、溶解等。
研究这些变化规律可以揭示材料的内在机制,优化材料的制备工艺和性能。
材料热力学的特点:1. 宏观描述:材料热力学是宏观热学的基础,它研究的是大量的物质,所以可以用统计手段进行描述和计算。
这种宏观描述有助于理解和预测材料的性质和变化规律。
2. 状态函数:材料热力学研究的是平衡状态下的物质性质,所以它的基本规律是通过状态函数的变化来描述和计算。
状态函数是与热力学状态相关的函数,如内能、焓、熵等。
这些函数的变化可以用来描述材料的能量、热效应和热平衡状态。
3. 热平衡:材料热力学研究的是热平衡状态下的物质性质和变化规律,所以热平衡是材料热力学的基本概念和核心要求。
只有在热平衡状态下,物质才能满足热力学规律和方程式。
4. 热力学定律:材料热力学是建立在热力学定律的基础上的,如零法则、第一定律、第二定律和第三定律。
这些定律为研究材料热力学行为提供了基本原理和数学方程。
5. 应用广泛:材料热力学广泛应用于材料设计、材料合成、材料加工和材料性能研究等领域。
它可以预测材料的相变行为、热力学性质和热力学稳定性,为材料的开发和应用提供了重要的理论指导。
总结起来,材料热力学研究物质在不同温度、压力和组分条件下的热平衡状态以及与热力学性质相关的科学分支。