13.2.2 探索三角形全等的条件(SAS)
- 格式:ppt
- 大小:1.24 MB
- 文档页数:20
(第4题)13.2.2全等三角形的判定(SAS )学习目标:掌握SAS 的内容,会运用SAS 来识别两个三角形全等;通过识别全等三角形的识别的学习,初步认识事物之间的因果关系与相互制约关系,学习分析事物本质的方法;经历如何总结出全等三角形识别方法,体会如何探讨、实践、总结,培养学生的合作能力。
一、自主学习1.思考:如果两个三角形有三组对应相等的元素(边或角),那么会有哪几种可能的情况?2.思考:如果“两边及一角”条件中的角是两边的夹角,比如三角形两条边分别为3cm 和4cm ,它们的夹角为45︒,你能画出这个三角形吗?你画的与同伴画的一定全等吗?换两条线段和一个角试试,你发现了什么?3..边角边理:如果两个三角形有______________及其_____________分别对应相等,那么这两个三角形____________.4.用两条线段和一个角画三角形,能画______种不同的三角形.所以在用边角边公理判定两三角形是否全等时,这个角必须是两边的_______角.二、合作探究例1:如图,△ABC 中,AB =AC ,AD 平分∠BAC ,试说明△ABD ≌△ACD .变式训练(1)求证: ∠B =∠C . (2)求证:BD=CD (3)求证:AD ⊥BC练一练:如图,在△AEC 和△ADB 中,已知AE=AD ,AC=AB 。
请说明△AEC ≌ △ADB 的理由。
解:在△AEC 和△ADB 中 AE =____(已知)____= _____(公共角)_____= AB ( )∴ △_____≌△______( )例2.点M 是等腰梯形ABCD 底边AB 的中点,求证: △AMD ≌△BMC练习:已知:AD =BC ,∠ADC =∠BCD .求证: ∠BDC =∠ACD .三、展示提升: 1.如图,已知:在ABC △和DCB △中,AC DB =,若不增加任何字母与辅助线,要使ABC DCB △△≌,则还需增加一个条件是 . (见下图)2. 如图,线段AC 与BD 交于点O ,且OA =O C, 请添加一个条件,使△OAB ≅△OCD ,这个条件是D C B AA B C D F EDEACB 图1E DCBAOEDCBA图2OEDCBA图3______________________.3. 如图,AB AC = ,要使ABE ACD △≌△,应添加的条件是____________ .(添加一个条件即可)4.如图,A ,B ,C ,D 在同一直线上,AB CD =,DE AF ∥,若要使ACF DBE △≌△,则还需要补充一个..条件: . 5.如图,AB AD =,AC AE =,12∠=∠,求证:BC DE =6.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF . 求证:AB ∥CD四、检测反馈 1、(2006·烟台市)如图1,CD 是Rt △ABC 斜边上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( )A 、25°B 、30°C 、45°D 、60°2、(2005·广东)如图2,已知CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 交于点O ,且AO 平分∠BAC ,那么图中全等的三角形共______________对。
sas全等三角形判定定理
SAS(边-角-边)全等三角形判定定理指如果两个三角形的其中两条边和它们之间所夹的角度相等,则这两个三角形是全等的。
具体来说,如果两个三角形中的一条边和它所对的角度分别相等,而另一条边也相等,则这两个三角形是全等的。
例如,若已知两个三角形ABC和DEF,满足AB=DE,BC=EF,∠BAC=∠EDF,则可判定这两个三角形全等。
其中AB和DE为S,∠BAC和∠EDF为A,BC和EF为S,由此可得SAS全等三角形判定定理。
这个定理可以用来解决各种问题,包括建筑设计、测绘学、航空航天工程等领域的空间问题。
13章2课已知△ABC
三角形全等的条件探索:
1、只给定一条边时:
'''A B C ,使A 'DA E A =∠;
、在射线'A D 上截取'A B AC =;
''B C .
ABC ≌DEF .
ABC 和DEF 中,
AB DE
B E B
C EF =∠=∠= ABC ≌DEF (SAS )
SAS )判定方法的易错点
'DB E B ∠=∠;
、在射线'B D 上截取''B A BA =;
'为圆心,以AC 长为半径画弧,此时只要∠弧线一定和射线'B E 交于两点C ABC
也就是说:两边及其中一边的对角对应相等的两个三角形不一题型一:全等三角形的判定(【例1】已知:如图,A
B '
【例3】已知:AD是ABC
∆
题型二:三角形全等的条件补充
ASA
图2
1、如图,已知
、如图,E为上一点,
、如图,点A、E、F、C在一直线上,、如图,已知线段AC,
1、如图,AB
在ABC
=
∆中,AB AC
,连接
、如图,AB AC
=,点。