∴AM=BN
2020/4/1
20
在△AMD与△BND中
AM=BN ∠A=∠B AD=BD
(已证) (已证) (已知)
∴△AMD≌△BND(SAS) ∴DM=DN.
2020/4/1
21
全等三角形与其他图形的综合
• 如图,四边形ABCD、DEFG都是正方形,连接AE、CG. 求证:(1)AE=CG;(2)AE⊥CG. 证明:(1)∵四边形ABCD、DEFG都是正方形,
2020/4/1
17
3.如图,点E、F在AC上,AD//BC,AD=CB,AE=CF.
求证:△AFD≌△CEB.
证明: ∵AD//BC,
A
∴ ∠A=∠C,
E
∵AE=CF,
∴AE+EF=CF+EF,
D F
即 AF=CE.
B
C
在△AFD和△CEB中,
AD=CB (已知),
∠A=∠C (已证),
AF=CE (已证),
A
△ABC和△ABD满
足AB=AB ,AC=AD,
∠B=∠B,但△ABC
与△ABD不全等. B
C
D
2020/4/1
14
画一画:
画△ABC 和△DEF,使∠B =∠E =30°, AB =DE
=5 cm ,AC =DF =3 cm .观察所得的两个三角形是
否全等?
M
D
C
A
B
结论 有两边和其中一边的对角分别相等的两个
(2)设AE与DG相交于M, AE与CG相交于N, 在△GMN和△DME中, 由(1)得∠CGD=∠AED 又∵∠GMN=∠DME, ∠DEM+∠DME=90° ∴∠CGD+∠GMN=90° ∴∠GNM=90°,∴AE⊥CG.