热喷涂与喷焊
- 格式:doc
- 大小:54.50 KB
- 文档页数:6
喷涂与喷焊的工艺区别及如何选用喷焊工艺喷涂层和喷焊层与基体金属的结合形成不同,镍包铝通过喷涂焰束加热时发生放热化学反应,在经喷砂除锈达Sa3级,RZ>50μm的碳钢表面形成微冶金结合底层与工作层又产生“锚钩”效应的机械结合涂层,而喷焊层与基体的结合纯属冶金结合涂层。
喷涂材料不同,喷焊要求使用自熔性合金粉末,而喷涂则对粉末的自熔性要求不高,且不一定是自熔性合金粉末,各种自熔性合金粉末既可用于喷焊又可用于喷涂,但喷涂粉末不具备自熔性只能用于喷涂而不能用于喷焊工艺。
工件受热情况不同,喷涂与喷焊过程中,喷前预热温度不同,工件受热影响不同,喷后工件的组织、性能亦不同。
涂层的致密性不同,喷焊层致密,而喷涂层中有少量孔隙。
承受载荷的能力不同,喷涂层一般能承受大面积接触,多在有润滑条件的工作表面,配合面以及其它受力较小的工况条件下使用,喷焊层却能承受较大的冲击力,挤压应力或接触应力等。
下列情况宜选用喷焊工艺⑴各种碳钢、低合金钢的工件表面载荷大,特别是受冲击载荷,要求涂层与基体结合强度在350—450N/mm2的工件,喷焊硬度HRC150≤65,涂层厚度从0.3至数毫米,喷焊层经磨削加工后表面粗糙度可达Ra0.4—0.1μm以上。
⑵在腐蚀介质中使用,要求涂层致密,无孔隙。
⑶工件表面原设计采用淬火、渗碳、渗氮、镀硬铬等工艺,要求表面有很高的硬度。
⑷工件工作环境恶劣,如受强烈的磨粒磨损、冲蚀磨损、气蚀等等。
⑸氧—乙炔焰合金粉末喷焊工艺适应各种碳钢、低合金钢零部件的表面强化或修复,但应注意到零件材质的一些特点,当基体材质的线胀系数与合金喷焊层的线胀系数差别较大时小于12×10-6/℃大于12×10-6/℃,则应慎用此工艺,以免造成裂纹,若基体金属中与氧亲合力大的元素含量较多如钨和钼的含量大于3%,铝、镁、钴、钛、钼等元素总含量大于0.5%或钢中含硫量较多时,也会给喷焊带来困难,这是因为这些材料与氧作用极易生成致密而稳定的氧化膜,阻挡熔融合金对基体的润湿作用,重熔时液态合金会呈珠状象“汗珠”一样地滚落,因此在采用喷焊工艺时,应该注意此工艺对于所喷基体材料的适应性。
喷焊包括喷涂和喷焊两种工艺,所获得的覆盖层分别称为喷涂层和喷焊层。
喷涂与喷焊的区别主要表现在以下几个方面:
1、工件受热情况不同
喷涂无重熔过程,工件表面温度可始终控制在250℃以下。
一般不产生变形和使工件的组织状态发生变化。
而喷焊要使涂层融化,重熔温度可达900℃以上,不仅易引起工件变形,而且多数工件会发生退火或不完全退火。
2、与基材的结合状态不同
喷涂层与基材表面的结合以机械咬合为主,尽管存在微区冶金结合,涂层结合强度不高,一般为30~50 MPa。
喷焊通过涂层熔化与基材表面形成冶金结合,结合强度一般可达343~440MPa。
3、所用粉末不同
粉末火焰喷焊所用粉末必须是自熔性合金粉末,而喷涂所用粉末不受限制。
4、覆盖层结构不同
喷焊层均匀致密,一般认为无孔隙,而喷涂层有孔隙。
5、承载能力不同
喷涂层不能承受冲击载荷和较高的接触应力,适用于各种面接触工件的表面喷涂。
喷焊层可承受冲击载荷和较高的接触应力,可用于线接触场合。
综上所述,当工件承载大,尤其是受冲击负荷作用和在腐蚀介质
中使用时,以采用喷焊为宜,当工件不允许有变形发生或不允许改变其原始组织,而且工件不承受或仅承受轻微冲击载荷时,则宜采用喷涂。
目前广泛采用的有粉末火焰喷焊及等离子弧喷焊两种工艺。
喷涂与喷焊的区别喷涂与喷焊的区别1•与基体金属的结合形成不同:喷涂层与零件表面主要为机械结合,结合强度低,约为5MPa 〜50MPa,抗冲击性能差。
喷熔涂层与零件表面为冶金结合, 结合强度高,约为300MPa〜700MPa。
2•喷涂材料不同:喷焊要求使用自熔性合金粉末,而喷涂则对粉末的自熔性要求不高,且不一定是自熔性合金粉末,各种自熔性合金粉末既可用于喷焊又可用于喷涂,但喷涂粉末不具备自熔性只能用于喷涂而不能用于喷焊工艺。
3. 工件受热情况不同:喷涂与喷焊过程中,喷前预热温度不同,工件受热影响不同,喷后工件的组织、性能亦不同。
4. 涂层的致密性不同:喷焊层致密,而喷涂层中有少量孔隙(孔隙率和均匀程度是喷涂的重要检验依据)。
5. 承受载荷的能力不同:喷涂层一般能承受大面积接触,多在有润滑条件的工作表面配合面以及其它受力较小的工况条件下使用,喷焊层却能承受较大的冲击力,挤压应力或接触应力等。
热喷涂定义是这样原一系列过程:以某种形式的热源将喷涂材料加热,受热的材料形成熔融或半熔融状态的微粒,这些微粒以一定的速度冲击并沉积在基体表面上,形成具有一定特性的喷涂层。
喷涂材料喷涂材料有粉、线、带和棒等不同形态,它们的成分是金属、合金、陶瓷、金属陶瓷及塑料等。
粉末材料居重要地位,种类逾百种。
线材与带材多为金属或合金(复合线材尚含有陶瓷或塑料);棒材只有十几种,多为氧化物陶瓷。
喷涂方法以提供热源的不同,可分为燃烧法及电热法。
前者包括燃烧火焰喷涂、爆炸喷涂及高速火焰喷涂(HVOF);后者包括电弧喷涂及等离子喷涂(又分常压等离子喷涂与水稳等离子喷涂)。
喷涂工艺对涂层产生重要影响的是喷涂湿度(严格地说,是熔滴冲击基体表面时的温度)和熔滴冲击表面的速度。
涂层的形成及其评价:喷涂材料经过具有某种热源形式的喷涂设备喷射之后,在到达被喷涂的基体表面之前,其飞行时间只有几千分之一秒或更少。
在如此之短的时间内,它被加热、熔化或半熔化,形成细小而分散的熔滴,冲向基体表面,被击成扁平的叠状小片,先前生成的扁片又被后来者所覆盖,很快就形成由很多扁平罗叠而成的覆盖层,即为喷涂层。
喷涂与喷焊的区别1.与基体金属的结合形成不同:喷涂层与零件表面主要为机械结合,结合强度低,约为5MPa~50MPa,抗冲击性能差。
喷熔涂层与零件表面为冶金结合,结合强度高,约为300MPa~700MPa。
2. 喷涂材料不同:喷焊要求使用自熔性合金粉末,而喷涂则对粉末的自熔性要求不高,且不一定是自熔性合金粉末,各种自熔性合金粉末既可用于喷焊又可用于喷涂,但喷涂粉末不具备自熔性只能用于喷涂而不能用于喷焊工艺。
3. 工件受热情况不同:喷涂与喷焊过程中,喷前预热温度不同,工件受热影响不同,喷后工件的组织、性能亦不同。
4. 涂层的致密性不同:喷焊层致密,而喷涂层中有少量孔隙(孔隙率和均匀程度是喷涂的重要检验依据)。
5. 承受载荷的能力不同:喷涂层一般能承受大面积接触,多在有润滑条件的工作表面,配合面以及其它受力较小的工况条件下使用,喷焊层却能承受较大的冲击力,挤压应力或接触应力等。
热喷涂定义是这样原一系列过程:以某种形式的热源将喷涂材料加热,受热的材料形成熔融或半熔融状态的微粒,这些微粒以一定的速度冲击并沉积在基体表面上,形成具有一定特性的喷涂层。
喷涂材料喷涂材料有粉、线、带和棒等不同形态,它们的成分是金属、合金、陶瓷、金属陶瓷及塑料等。
粉末材料居重要地位,种类逾百种。
线材与带材多为金属或合金(复合线材尚含有陶瓷或塑料);棒材只有十几种,多为氧化物陶瓷。
喷涂方法以提供热源的不同,可分为燃烧法及电热法。
前者包括燃烧火焰喷涂、爆炸喷涂及高速火焰喷涂(HVOF);后者包括电弧喷涂及等离子喷涂(又分常压等离子喷涂与水稳等离子喷涂)。
喷涂工艺对涂层产生重要影响的是喷涂湿度(严格地说,是熔滴冲击基体表面时的温度)和熔滴冲击表面的速度。
涂层的形成及其评价:喷涂材料经过具有某种热源形式的喷涂设备喷射之后,在到达被喷涂的基体表面之前,其飞行时间只有几千分之一秒或更少。
在如此之短的时间内,它被加热、熔化或半熔化,形成细小而分散的熔滴,冲向基体表面,被击成扁平的叠状小片,先前生成的扁片又被后来者所覆盖,很快就形成由很多扁平罗叠而成的覆盖层,即为喷涂层。
热喷涂与热喷焊的区别
1、涂层结合机理不同
热喷涂的结合机理是:机械结合、冶金—化学结合、物理结合。
其中以机械结合为主。
喷焊的结合机理是:化学冶金结合,实现原子间的永久连接。
2、工件受热情况不同
喷涂无重熔过程,工件表面温度可始终控制在250℃以下。
一般不产生变形和使工件的组织状态发生变化。
而喷焊要使涂层融化,重熔温度可达900℃以上,不仅易引起工件变形,而且多数工件会发生退火或不完全退火。
3、与基材的结合状态不同
喷涂层与基材表面的结合以机械咬合为主,尽管存在微区冶金结合,涂层结合强度不高,一般为30~50 MPa。
喷焊通过涂层熔化与基材表面形成冶金结合,结合强度一般可达
343~440MPa。
4、喷涂材料不同
喷焊要求使用自熔性合金粉末,而喷涂则对粉末的自熔性要求不高,且不一定是自熔性合金粉末,各种自熔性合金粉末既可用于喷焊又可用于喷涂,但喷涂粉末不具备自熔性只能用于喷涂而不能用于喷焊工艺。
粉末火焰喷焊所用粉末必须是自熔性合金粉末,而喷涂所用粉末不受限制。
5、覆盖层结构不同
喷焊层均匀致密,一般认为无孔隙,而喷涂层有孔隙。
6、承载能力不同
喷涂层不能承受冲击载荷和较高的接触应力,适用于各种面接触工件的表面喷涂。
喷焊层可承受冲击载荷和较高的接触应力,可用于线接触场合。
综上所述,当工件承载大,尤其是受冲击负荷作用和在腐蚀介质中使用时,以采用喷焊为宜,当工件不允许有变形发生或不允许改变其原始组织,而且工件不承受或仅承受轻微冲击载荷时,则宜采用喷涂。
目前广泛采用的有粉末火焰喷焊及等离子弧喷焊两种工艺。
热喷涂与喷焊1.简要说明表面工程概念的含义,常用的表面工程手段或方法有哪些?表面工程是材料表面经预处理后,通过表面涂覆、表面改性或多种表面工程技术复合处理,改变固体金属表面或非金属表面的形态、化学成分、组织结构和应力状态,以获得所需要表面性能的系统工程。
表面工程技术分为三类:表面合金化、表面覆层与覆膜技术和表面处理。
表面合金化:包括喷焊、堆焊、离子注入、转化膜技术、扩散渗入、激光熔敷、热渗镀等。
表面覆层与覆膜技术:包括电化学沉积、化学沉积、气相沉积、热喷涂、电镀、化学转化处理、电刷镀、化学镀、气相沉积、涂装、堆焊、金属染色、热浸镀等。
表面处理:包括激光、电子束热处理技术以及喷丸、辊压、孔挤等表面加工硬化技术,表面纳米化加工。
2.什么是热喷涂,主要有哪些具体方法?热喷涂技术是采用气体、液体燃料或电弧、等离子弧、激光等作热源,使金属、合金、金属陶瓷、氧化物、碳化物、塑料以及它们的复合材料等喷涂材料加热到熔融或半熔融状态,通过高速气流使其雾化,然后喷射、沉积到经过预处理的工件表面,从而形成附着牢固的表面层的加工方法。
热喷涂技术依照所采用的热源不同通常可分为:火焰喷涂、电弧喷涂、等离子喷涂和冷喷涂四大类:①火焰喷涂:利用气体燃烧放出的热进行的热喷涂称火焰喷涂。
火焰喷涂最常用的喷涂热源是氧乙炔焰。
根据喷涂材料的形状可分为丝材火焰喷涂和粉末火焰喷涂。
②电弧喷涂:将两根被喷涂的金属丝作为自耗电极,利用其端部产生的电弧作为热源来熔化金属丝材,用压缩空气进行雾化的热喷涂方法。
③等离子喷涂:采用等离子弧为热源,以喷涂粉末材料为主的热喷涂方法。
④冷喷涂:它不使用任何高温火焰来直接加热熔化喷涂粉末。
它采用高压高速的气流驱动喷涂材料粉末来进行喷涂,当固态粉末粒子的速度高于某一临界值时,粒子与基材发生粘合沉积,从而形成涂层。
高压气源产生的高压气体分别用作工作气体和送粉气体,气体加热器分别预热工作气体和送粉气体至100~600℃。
机械设备维修中热喷涂与喷焊技术研究机械设备维护中一个重要的项目就是针对易磨损的零件表面进行维护与修复,相比直接更换而言,利用喷涂(焊)技术对机械部件的表面进行维护与再造可以利用较低的成本恢复零件的性能,对于工厂节能减排和资源节约、建设环境友好型社会具有举足轻重的作用。
热喷涂和喷焊技术是主要的技术类型,技术优势和应用都有较为广阔的前景。
1 热喷涂技术特征1.1 热喷涂概述热喷涂技术是利用电弧等热源,将喷涂材料从固体变为熔融状态,在高压气流的推动下喷涂材料被雾化,直接喷射到机械零件的表面,材料喷射到工件表面上受到阻力影响而形成扁平状,附着到工件表面达到修复磨损表面的目的。
持续的喷涂则可以使得喷涂材料之间相互咬合,进一步形成机械结合,大量的喷涂材料在表面产生堆积,由此形成喷涂层达到维修的目的。
1.2 热喷涂工艺分析1.2.1 工件表面处理:为了保证涂层与零件表面的有效结合,表面必须进行净化和粗化处理,具体的方法则应根据零件材料和涂层材料而定。
净化处理的目的就是去掉零件表面的氧化皮、油渍等污物,关键是要去掉渗入的油脂。
粗化处理则是为了增加涂层材料与基材之间的接触面积,如喷砂、滚花、电拉毛等方式。
1.2.2 预热处理:预热是针对工件进行加热处理,去除水分和湿气,拉近喷涂材料与零件之间的温度差,这样工件材料和喷涂材料的结合强度将得到强化,也可以减少热胀冷缩而导致的涂层材料开裂,通常预热的温度在60°~120°之间。
1.2.3 喷涂操作:在喷涂方法上也有很多种,主要视喷涂材料而定,当然工件的材料特性也必须考虑在内,如果陶瓷层则选用等离子技术;如果是碳化金属陶瓷层,则利用高速火焰喷涂;如果是塑料涂层,则直接利用火焰喷涂。
1.2.4 喷涂后维护:在完成涂层涂覆后应进行防腐处理,主要是防止腐蚀介质深入到涂层内而对基材产生影响。
用于防腐的材料主要有石蜡、环氧树脂、硅树脂等,也可利用氧化物作为防腐剂。
1.简要说明表面工程概念的含义,常用的表面工程手段或方法有哪些?表面工程是材料表面经预处理后,通过表面涂覆、表面改性或多种表面工程技术复合处理,改变固体金属表面或非金属表面的形态、化学成分、组织结构和应力状态,以获得所需要表面性能的系统工程。
表面工程技术分为三类:表面合金化、表面覆层与覆膜技术和表面处理。
表面合金化:包括喷焊、堆焊、离子注入、转化膜技术、扩散渗入、激光熔敷、热渗镀等。
表面覆层与覆膜技术:包括电化学沉积、化学沉积、气相沉积、热喷涂、电镀、化学转化处理、电刷镀、化学镀、气相沉积、涂装、堆焊、金属染色、热浸镀等。
表面处理:包括激光、电子束热处理技术以及喷丸、辊压、孔挤等表面加工硬化技术,表面纳米化加工。
2.什么是热喷涂,主要有哪些具体方法?热喷涂技术是采用气体、液体燃料或电弧、等离子弧、激光等作热源,使金属、合金、金属陶瓷、氧化物、碳化物、塑料以及它们的复合材料等喷涂材料加热到熔融或半熔融状态,通过高速气流使其雾化,然后喷射、沉积到经过预处理的工件表面,从而形成附着牢固的表面层的加工方法。
热喷涂技术依照所采用的热源不同通常可分为:火焰喷涂、电弧喷涂、等离子喷涂和冷喷涂四大类:①火焰喷涂:利用气体燃烧放出的热进行的热喷涂称火焰喷涂。
火焰喷涂最常用的喷涂热源是氧乙炔焰。
根据喷涂材料的形状可分为丝材火焰喷涂和粉末火焰喷涂。
②电弧喷涂:将两根被喷涂的金属丝作为自耗电极,利用其端部产生的电弧作为热源来熔化金属丝材,用压缩空气进行雾化的热喷涂方法。
③等离子喷涂:采用等离子弧为热源,以喷涂粉末材料为主的热喷涂方法。
④冷喷涂:它不使用任何高温火焰来直接加热熔化喷涂粉末。
它采用高压高速的气流驱动喷涂材料粉末来进行喷涂,当固态粉末粒子的速度高于某一临界值时,粒子与基材发生粘合沉积,从而形成涂层。
高压气源产生的高压气体分别用作工作气体和送粉气体,气体加热器分别预热工作气体和送粉气体至100~600℃。
气体一般使用氮气或氦气。
喷枪的喷嘴为收缩-扩散式的拉瓦尔喷嘴。
工作气体和载粉气体混和后进入喷嘴,1.5~3.5MPa压力的气流通过喷嘴后成为超音速气流,粒子速度约为200~1200m/s。
3.总体说明热喷涂的涂层特点(组织结构、结合机理等)?(一)涂层结构特点:1)涂层层状结构:由大量相互平行的碟形粒子互相粘结而成;2)涂层的多孔结构:粒子碰撞、变形和冷凝等过程的时间极短;3)涂层中存在氧化物夹杂:其数量取决于热源,材料和喷涂条件;4)涂层的各向异性:层状结构→各向异性;5)涂层残余应力;6)涂层的结构是被微细氧化物和孔洞分隔的系列薄片材料的堆积层;7)涂层经过适当的处理后,其结构会发生变化。
例如:涂层经过重熔处理,就消除了涂层中的氧化物夹杂和孔隙,层状结构成为均质结构,涂层与基体表面的结合状态也发生了变化。
(二)涂层的结合机理涂层的结合包括涂层与基体表面的结合及涂层中粒子与粒子的结合。
前者的结合强度称为结合力;后者的结合强度称为内聚力。
1)机械结合:熔融状态的喷涂粒子在与基本表面碰撞时,其变形粒子与基体表面的凹凸粗糙面机械地咬合,这种结合被称为“抛锚效应”,例如等离子或氧乙炔喷涂陶瓷材料时,涂层和基体的结合就属于机械结合。
2)物理结合:涂层与基体表面的粘附是由范德瓦耳斯力(存在于中性分子或原子之间的一种弱的电性吸引力)所引起的。
3)化学或显微冶金结合:当基体表面被高温微粒熔化和与它们发生反应而形成金属间化合物时,其涂层和基体表面的结合称为化学结合。
当喷涂粒子与基体表面原子形成互相扩散时,就称为显微冶金结合。
一般来说,涂层与基体表面的结合以机械结合为主。
4.说明热喷涂的主要工艺过程?热喷涂工艺通常包括:表面预处理、预热、喷涂、涂层后处理等。
(一)表面预处理表面预处理分为:净化处理(Cleaning Treatment)、粗化处理(Roughing Treatment)净化处理常用的几种方法:1)溶剂清洗法: 常用的溶剂有汽油、煤油、柴油、丙酮、酒精、三氯乙烯、四氯化碳等。
清洗的方法有浸泡和擦刷法、喷淋脱脂法。
2)蒸气清洗法:常用的溶剂一般为三氯乙烯、四氯化碳等。
3)碱洗法:碱洗法是将工件表面放到氢氧化钠或碳酸钠等碱性溶液中,待工件表面的油脂溶解后,再用水冲洗干净。
4)加热脱脂法:将疏松工件表面加热到250~450℃的温度,使油脂渗出表面,挥发烧掉,然后再加以清除。
粗化处理的目的:增加涂层和基材表面之间的接触面;使净化处理的表面更加活化,提高涂层的结合强度;改变涂层中残余应力的分布。
常用方法:喷砂、机械加工法、电拉毛及喷涂自粘结材料作结合底层等。
1)喷砂处理(Grit Blasting)目的:(a) 清除表面的污物;(b) 使表面获得一定的粗糙度;(c) 能使工件表面产生残余压应力,可提高工件表面的疲劳强度;(d) 能使工件表面活化,有助于提高喷涂层的结合强度。
常用的磨料及粒度:刚玉砂、激冷铁砂、带棱角的钢砂、碳化硅砂、金刚砂等。
喷砂粗化时砂粒粒度多是将粗(20目左右)、细(40目左右)两种砂粒混合使用。
喷砂的方式:射吸式、压力式、离心式三种。
2)机械加工法(Machining)a) 原理:采用机械切削和凿、滚压等方法对喷涂表面进行粗化预处理,多用于轴类零件。
对于平面部件,也采用开槽处理。
b) 粗化方法:车毛螺纹、车沟槽-滚花及平面开槽等,但对于承受疲劳载荷的轴类零件不宜采用车螺纹粗化。
c) 应用:适用于可进行切削加工的钢材和有色金属基材。
在需要制备较厚的涂层或需要适应较苛刻的载荷条件时,采用先机械加工粗化,然后,再喷砂的方法能获得良好的效果。
3)电拉毛粗化(Electrical Discharge Roughing)a) 原理:电拉毛是采用镍条作电极接在电源的一端,工件接另一端,当作为电极的镍条在工件上划擦时,在接触处产生电火花,因电热造成局部熔化,镍条熔粘在工件表面。
这样反复划擦,便在工件上形成覆盖有熔化金属层的粗糙表面。
b) 应用:电拉毛适用于工件硬度较高又不能采用喷砂或机械加工的工件表面的粗化处理。
由于电拉毛产生了放电痕对基材的切割作用,工件的疲劳寿命会下降。
4)喷涂粘结底层a) 原理: 某些材料能在光滑表面上形成具有一定粘结强度、洁净、粗糙、活性高的涂层,再在其上面喷涂其它性能的涂层,这种作为过渡层的涂层一般称为粘结底层,喷涂粘结底层用的材料称为自粘结材料。
b) 常用的自粘结材料:Ni-Al和Mo;Ni-Cr、NiCrAl合金或MCrAlY(M:Ni、Co、Fe)。
c) 底层厚度:一般在0.08~0.12mm范围内较合适。
(二)预热( Preheating)1.目的:消除工作表面的水分和湿气;提高喷涂粒子与工件接触时的界面温度;减少因工件热膨胀造成的涂层应力,避免涂层开裂,提高涂层与基材的结合强度。
2.预热温度:取决于工件的大小、形状和材质及喷涂材料的热膨胀系数。
一般情况下预热温度控制在60~120℃之间。
3.预热的方法:采用氧乙炔火焰加热,也可以用电炉、高频炉加热。
(三)喷涂( Spraying)1.制备好的工件表面要在尽量短的时间(2h-4h) 内进行喷涂。
2.喷涂工艺参数要根据涂层种类、喷枪性能和工件的具体情况而定, 对于不同的喷涂方法都有相应的喷涂参数。
3.控制喷涂参数的目的是为了提高喷涂速率,增加涂层的致密度,提高涂层的结合强度,得到高质量的涂层。
(四)涂层的后处理( Post-treating)1.喷涂后得到的涂层有时不能直接使用。
2.对于防腐涂层,为了防止介质进入涂层到达基材需进行封孔处理。
封孔剂应根据工作环境介质的性质、成本等因素来考虑。
3.对于承受高应力载荷或冲击磨损的工件,要对喷涂层进行重熔处理,使疏松多孔与基材主要靠机械结合的涂层变为与基体是冶金结合的致密喷熔层。
4.有尺寸精度要求的工件要进行机械加工,由于喷涂层本身的一些特性,决定了它与一般金属材料不同的加工特点。
所以,必须选用合理的加工方法和相应的工艺参数,才能保证机械加工的顺利进行和所要求的尺寸精度。
5.热喷涂与喷焊的区别是什么?1、涂层结合机理不同热喷涂的结合机理是:机械结合、冶金—化学结合、物理结合。
其中以机械结合为主。
喷焊的结合机理是:化学冶金结合,实现原子间的永久连接。
2、工件受热情况不同喷涂无重熔过程,工件表面温度可始终控制在250℃以下。
一般不产生变形和使工件的组织状态发生变化。
而喷焊要使涂层融化,重熔温度可达900℃以上,不仅易引起工件变形,而且多数工件会发生退火或不完全退火。
3、与基材的结合状态不同喷涂层与基材表面的结合以机械咬合为主,尽管存在微区冶金结合,涂层结合强度不高,一般为30~50 MPa。
喷焊通过涂层熔化与基材表面形成冶金结合,结合强度一般可达343~440MPa。
4、喷涂材料不同喷焊要求使用自熔性合金粉末,而喷涂则对粉末的自熔性要求不高,且不一定是自熔性合金粉末,各种自熔性合金粉末既可用于喷焊又可用于喷涂,但喷涂粉末不具备自熔性只能用于喷涂而不能用于喷焊工艺。
粉末火焰喷焊所用粉末必须是自熔性合金粉末,而喷涂所用粉末不受限制。
5、覆盖层结构不同喷焊层均匀致密,一般认为无孔隙,而喷涂层有孔隙。
6、承载能力不同喷涂层不能承受冲击载荷和较高的接触应力,适用于各种面接触工件的表面喷涂。
喷焊层可承受冲击载荷和较高的接触应力,可用于线接触场合。
综上所述,当工件承载大,尤其是受冲击负荷作用和在腐蚀介质中使用时,以采用喷焊为宜,当工件不允许有变形发生或不允许改变其原始组织,而且工件不承受或仅承受轻微冲击载荷时,则宜采用喷涂。
目前广泛采用的有粉末火焰喷焊及等离子弧喷焊两种工艺。