函数专题(下) 学生版
- 格式:doc
- 大小:544.00 KB
- 文档页数:7
专题02函数概念与基本初等函数Ι(选填压轴题)一、单选题1.(2021·全国)已知函数222,1()11,1x x x f x x x⎧-+≤⎪=⎨->⎪⎩,若对任意x ∈R ,()|2||1|0f x x k x ----≤恒成立,则实数k 的取值范围是()A.1,[1,)2⎛⎤-∞+∞ ⎥⎝⎦ B.11,,42⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭C.11,,84⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭D.(,1][2,)-∞+∞ 2.(2021·全国高三专题练习)设min{,}m n 表示,m n 二者中较小的一个,已知函数2()814f x x x =++,()221,log 42()min x g x x -⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭=(0x >),若1[5,](4)x a a ∀∈-≥-,2(0,)x ∃∈+∞,使得12()()f x g x =成立,则a 的最大值为A.-4B.-3C.-2D.03.(2021·和平·天津一中)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A.[]2,3B.[]1,3C.[]1,4D.[]2,44.(2021·河北·天津二中)已知函数01,()1,1.x f x x x ⎧≤≤⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为A.59,44⎡⎤⎢⎥⎣⎦B.59,44⎛⎤ ⎥⎝⎦C.59,{1}44⎛⎤⎝⎦ D.59,{1}44⎡⎤⎢⎥⎣⎦5.(2021·全国高二课时练习)函数()()2,,x x a k a x a f x e x a a x ⎧----≤⎪=⎨>⎪-⎩,若(]0,x a ∃∈-∞,使得()1,x a ∀∈+∞都有()()10f x f x ≤,则实数k 的取值范围是A.(),1-∞B.[)1,+∞C.(],2-∞D.[)2,+∞6.(2021·奉新县第一中学)已知函数()()f x g x 、是定义在R 上的函数,其中()f x 是奇函数,()g x 是偶函数,且()()22f x g x ax x +=++,若对于任意1212x x <<<,都有()()12122g x g x x x ->--,则实数a 的取值范围是()A.1(,[0,)2-∞-⋃+∞B.(0,)+∞C.1[,)2-+∞D.1[,0)2-7.(2021·全国高一专题练习)函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数,设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00=f ;②()11()f x f x -=-;③1()32x f f x ⎛⎫=⋅ ⎪⎝⎭,则12019f ⎛⎫ ⎪⎝⎭等于()A.116B.132C.164D.11288.(2021·全国高一专题练习)我们把定义域为[0,)+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:(1)对任意的[0,)x ∈+∞,总有()0f x ≥;(2)若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,下列判断正确的是()A.若()f x 为“Ω函数”,则(0)0f =不一定成立B.若()f x 为“Ω函数”,则()f x 在[0,)+∞上一定是增函数C.函数0,,()1,x Q g x x Q ∈⎧=⎨∉⎩在[0,)+∞上是“Ω函数”D.函数2()g x x x =+在[0,)+∞上是“Ω函数”9.(2021·全国)已知函数()y f x =,若给定非零实数a ,对于任意实数x M ∈,总存在非零常数T ,使得()()af x f x T =+恒成立,则称函数()y f x =是M 上的a 级T 类周期函数,若函数()y f x =是[0,)+∞上的2级2类周期函数,且当[0,2]x ∈时()2101()212x x f x f x x ⎧-≤≤⎪=⎨-<<⎪⎩,,,又函数21()2ln 2g x x x x m =-+++.若1[6,8]x ∃∈,2(0,)x ∃∈+∞,使21()()0g x f x -≤成立,则实数m 的取值范围是()A.(﹣∞,112]B.(﹣∞,132]C.[112+∞,)D.[132+∞,)10.(2021·安徽省怀宁县第二中学高三月考(理))已知()'f x 是奇函数()()f x x R ∈的导函数,当(,0]x ∈-∞时,()1f x '>,则不等式(21)(2)3f x f x x --+≥-的解集为A.(3,)+∞B.[3,)+∞C.(,3]-∞D.(,3)-∞11.(2021·重庆北碚·西南大学附中高三月考)已知3142342,3,log 4,log 5a b c d ====,则a b c d,,,的大小关系为()A.b a d c>>>B.b c a d>>>C.b a c d>>>D.a b d c>>>12.(2021·全国高一专题练习)已知函数32()log (31x f x x =+-+,若()()22122f a f a -+-≤-,则实数a 的取值范围是()A.[]3,1-B.[]2,1-C.(]0,1D.[]0,113.(2021·黔西南州同源中学(文))设2log 3a =,3log 4b =,5log 8c =,则A.a b c>>B.a c b>>C.c a b>>D.c b a>>14.(2021·绥德中学高一月考)定义在R 上的函数()f x 满足()()121f x f x +=+,当[)0,1x ∈时,()()()2122x xf x --=,若()f x 在[),1n n +上的最小值为23,则n =A.4B.5C.6D.715.(2021·新密市第一高级中学高二期末(文))已知函数()12019ln 112019x x a xf x a x -+=+-+-,若定义在R 上的奇函数()g x 满足()()11g x g x -=+,且()()211log 255g f f ⎛⎫=+ ⎪⎝⎭,则()2019g =A.2B.0C.1-D.2-二、多选题16.(2021·江苏鼓楼·高二期末)已知定义域为()0,∞+的函数()f x 满足:①()0,x ∀∈+∞,()()55f x f x =;②当(]1,5x ∈时,()5f x x =-,则()A.105f ⎛⎫= ⎪⎝⎭B.m Z ∀∈,()30mf =C.函数()f x 的值域为[)0,+∞D.n Z ∃∈,()512019nf +=17.(2021·湖南岳阳·高三模拟预测)已知函数3()13xxf x =+,设(1,2,3)i x i =为实数,且1230x x x ++=.下列结论正确的是()A.函数()f x 的图象关于点10,2⎛⎫⎪⎝⎭对称B.不等式1(1)2f x ->的解集为{}1x x >C.若1230x x x ⋅⋅<,则()()()12332f x f x f x ++<D.若1230x x x ⋅⋅<,则()()()12332f x f x f x ++>18.(2021·全国)1837年,德国数学家狄利克雷(P.G.Dirichlet,1805-1859)第一个引入了现代函数概念:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数”.由此引发了数学家们对函数性质的研究.下面是以他的名字命名的“狄利克雷函数”:1,()0,R x QD x x Q ∈⎧=⎨∈⎩ð(Q 表示有理数集合),关于此函数,下列说法正确的是()A.()D x 是偶函数B.,(())1x R D D x ∀∈=C.对于任意的有理数t ,都有()()D x t D x +=D.存在三个点112233(,()),(,()),(,())A x D x B x D x C x D x ,使ABC ∆为正三角形19.(2021·湖南华容·)设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有()A.()1.10.9f -=B.函数()f x 为奇函数C.()()11f x f x +=+D.函数()f x 的值域为[)0,120.(2021·浙江)定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间[],a b 的“复区间长度”为()2b a -,已知函数()21f x x =-,则()A.[]0,1是()f x 的一个“完美区间”B.1122⎡+⎢⎥⎣⎦是()f x 的一个“完美区间”C.()f x的所有“完美区间”的“复区间长度”的和为3D.()f x的所有“完美区间”的“复区间长度”的和为3+21.(2021·岳麓·湖南师大附中高二月考)德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数”()1,0,R x Qy f x x C Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为A.函数()f x 是偶函数B.1x ∀,2R x C Q ∈,()()()1212f x x f x f x +=+恒成立C.任取一个不为零的有理数T ,()()f x T f x +=对任意的x ∈R 恒成立D.不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形22.(2021·汕头市第一中学)已知函数f (x )满足:当30x -≤<时,|2|()32x f x +=-,下列命题正确的是()A.若f (x )是偶函数,则当03x <≤时,|2|()32x f x +=-B.若(3)(3)f x f x --=-,则()()1g x f x =-在(6,0)x ∈-上有3个零点C.若f (x )是奇函数,则()()1212,[3,3],14x x f x f x ∀∈--<D.若(3)()f x f x +=,方程2[()](2)()20f x k f x k -++=在[3,3]x ∈-上有6个不同的根,则k 的范围为11k -<<三、填空题23.(2021·全国高三专题练习)定义域为集合{1,2,3,,12}⋅⋅⋅上的函数()f x 满足:①(1)1f =;②|(1)()|1f x f x +-=(1,2,,11x =⋅⋅⋅);③(1)f 、(6)f 、(12)f 成等比数列;这样的不同函数()f x 的个数为________24.(2021·全国高三专题练习)已知函数1(31)0()2ln 0x x f x x x ⎧++≤⎪=⎨⎪>⎩,,,,若存在实数a b c <<,满足()()()f a f b f c ==,则()()()af a bf b cf c ++的最大值是____.25.(2021·江西上高二中高二月考(文))定义在R 上函数()f x 满足()()112f x f x +=,且当[)0,1x ∈时,()121f x x =--,则使得()116f x ≤在[),m +∞上恒成立的m 的最小值是______________.26.(2021·上海徐汇·位育中学)设()1f x x =-,4()g x x =-,若存在121,,,[,4]4n x x x ⋅⋅⋅∈,使得12()()f x f x ++⋅⋅⋅+1121()()()()()()n n n n f x g x g x g x g x f x --+=++⋅⋅⋅++成立,则正整数n 的最大值为________27.(2021·广东潮阳·)函数())22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.28.(2021·全国高一专题练习)下列说法中正确的是______.①函数32y x -=的定义域是{}0x x ≠;②方程()230x a x a +-+=的有一个正实根,一个负实根,则0a <;③函数1lg1xy x-=+在定义域上为奇函数;④函数()log 252a y x =--(0a >,且1a ≠)恒过定点()3,2-;⑤若33x x--=,则33x x -+的值为2.。
中考复习 函数专题一、填空题 1. 如果正比例函数及反比例函数图象都经过点(-2,4),则正比例函数的解析式为 ,反比例函数的解析式为 .2. 抛物线5)2(42++-=x y 的顶点坐标是 ,对称轴是 . 3.二次函数6332-+=x x y 与x 轴有 个交点,交点坐标是 . 4.已知m 是整数,且一次函数2)4(+++=m x m y 的图象不过第二象限,则m= . 5.直线y =3432--x 与两坐标轴围成的三角形面积是 .6.试写出图象位于第二象限与第四象限的一个反比例函数解析式 . 7. 反比例函数xky =的图象经过点(2,-1),则k 的值为 . 8. 双曲线xky =和一次函数y =ax +b 的图象的两个交点分别是A(-1,-4),B(2,m),则a +2b =____________.9. 已知反比例函数2k y x-=,其图象在第一、第三象限内,则k 的值可为 .(写出满足条件的一个k 的值即可)10.在电压一定的情况下,电流I (A )与电阻R (Ω)之间满足如图所示的反比例函数关系,则I 关于R 的函数表达式为 . 二、选择题 11. 直线y=kx+1一定经过点( )A .(1,0)B .(1,k )C .(0,k )D .(0,1)12. 如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,且AB=5,AC=4,AD=x ,AE=y ,则y 与x 的关系式是( )A .y=5xB .y=45x C .y=54x D .y=920x13. y =(x -1)2+2的对称轴是直线 (A .x =-1B .x =1C .y =-1D .y =114. 如图,△ABC 和△DEF 是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B 、C 、E 、F 在同一直线上.现从点C 、E 重合的位置出发,让△ABC 在直线EF 上向右作匀速运动,而△DEF 的位置不动.设两个三角形重合部分的面积为y ,运动的距离为x .下面表示y 与x 的函数关系式的图象大致是( )ABC DyxEDCBA第12题图第12题图第10题图15.点P (a ,b )在第二象限,则点Q(a-1,b+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 16.下列函数中,自变量x 的取值范围选取错误的是( ) A .22x y =中, x 取全体实数 B .11+=x y 中, x 取1-≠x 的实数 C .2-=x y 中, x 取2≥x 的实数 D .31+=x y 中, x 取3-≥x 的实数17.当路程s 一定时,速度v 与时间t 之间的函数关系是( )A .反比例函数B .正比例函数C .一次函数D .二次函数18.若二次函数2y ax c =+,当x 取1212,()x x x x ≠时,函数值相等,则当x 取12x x +时,函数值为( )A .a +cB .a -cC .-cD .c19.抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右侧部分与x 轴交点的坐标是A .(21,0) B .(1,0) C .(2,0) D .(3,0) 20.抛物线2y ax bx c =++的图角如图,则下列结论:①abc >0;②2a b c ++=;③a b c -+<0;④24b ac -<0.其中正确的结论是( )A .①②B .②③C .②④D .③④三、解答题21.某产品每件成本10元,试销阶段每件产品的日销售价x (元)与产品的日销售量y (件)之间的关系如下表:x (元) 15 20 25 30 … y (件)25201510…(1)在草稿纸上描点,观察点的颁布,建立y 与x 的恰当函数模型. (2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?y Ox-1 -2 12 -3 3 -112 -2第19题图第20题图xyECBAOF 第22题图22.如图,在平面直角坐标系中,正方形AOCB 的边长为6,O 为坐标原点,边OC 在x 轴的正半轴上,边OA 在y 轴的正半轴上,E 是边AB 上的一点,直线EC 交y 轴于F ,且S △FAE ∶S 四边形AOCE =1∶3.(1) 求出点E 的坐标; (2)求直线EC 的函数解析式.23.某厂从2001年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:年 度2001 2002 2003 2004 投入技改资金z(万元) 2.5 3 4 4.5 产品成本(万元/件)7.264.54(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2005年已投人技改资金5万元. ① 预计生产成本每件比2004年降低多少万元?② 如果打算在2005年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元(结果精确到0.01万元)?24.已知函数241y x x =-+(1)求函数的最小值;(2)给定坐标系中,画出函数的图象;(3)设函数图象与x 轴的交点为A (x 1,0)、B (x 2,0),求2212x x +的值.第23题图25.某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图所示,其拱形图形为抛物线的一部分,栅栏的跨径AB间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米.(1)以O为原点,OC所在的直线为y轴建立平面直角坐标系,请根据以上的数据,求出抛物线y=ax2的解析式;(2)计算一段栅栏所需立柱的总长度.(精确到0.1米)第25题图26.如图,用长为18 m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.(1)设矩形的一边为x(m),面积为y(m2),求y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,所围苗圃的面积最大,最大面积是多少?第26题图。
【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题07函数的性质——单调性、奇偶性、周期性函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上;②任意两个自变量1x ,2x 且12x x <;③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.(2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质.(3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数关于y 轴对称奇函数如果对于函数()f x 的定义域内任意一个x ,都有) ()(f x f x --=,那么函数()f x 就叫做奇函数关于原点对称判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).3.函数的对称性(1)若函数()y f x a =+为偶函数,则函数()y f x =关于x a =对称.(2)若函数()y f x a =+为奇函数,则函数()y f x =关于点(0)a ,对称.(3)若()()2f x f a x =-,则函数()f x 关于x a =对称.(4)若2(2)()f x f a x b -=+,则函数()f x 关于点()a b ,对称.4.函数的周期性(1)周期函数:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有(()f x T f x +=),那么就称函数()y f x =为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么称这个最小整数叫做()f x 的最小正周期.【方法技巧与总结】1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x 为增函数,1()f x 为减函数;④若()0f x >且()f x 为减函数,1()f x 为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称;函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称.(3)若奇函数()y f x =在0x =处有意义,则有(0)0f =;偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()(01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =+或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.【题型归纳目录】题型一:函数的单调性及其应用题型二:复合函数单调性的判断题型三:利用函数单调性求函数最值题型四:利用函数单调性求参数的范围题型五:基本初等函数的单调性题型六:函数的奇偶性的判断与证明题型七:已知函数的奇偶性求参数题型八:已知函数的奇偶性求表达式、求值题型九:已知()f x =奇函数+M 题型十:函数的对称性与周期性题型十一:类周期函数题型十二:抽象函数的单调性、奇偶性、周期性题型十三:函数性质的综合【典例例题】题型一:函数的单调性及其应用例1.(2022·全国·高三专题练习)若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有()-()-f a f b a b>0成立,则必有()A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增例2.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且对任意两个不相等的实数a ,b 都有()()()0a b f a f b -->⎡⎤⎣⎦,则不等式()()315f x f x ->+的解集为().A .(),3-∞B .()3,+∞C .(),2-∞D .()2,+∞例3.(2022·全国·高三专题练习)()252f x x x =-的单调增区间为()A .1,5⎛⎫+∞ ⎪⎝⎭B .1,5⎛⎫-∞ ⎪⎝⎭C .1,5⎛⎫-+∞ ⎪⎝⎭D .1,5⎛⎫-∞- ⎪⎝⎭例4.(2022·全国·高三专题练习)已知函数1()22xxf x =-.(1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x 的不等式2(log )(1)f x f <.例5.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.【方法技巧与总结】函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.题型二:复合函数单调性的判断例6.(2022·全国·高三专题练习(文))函数y =)A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-,例7.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是()A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-例8.(2022·全国·高三专题练习)函数2231()(2x x f x --=的单调递减区间是()A .(,)-∞+∞B .(,1)-∞C .(3,)+∞D .(1,)+∞【方法技巧与总结】讨论复合函数[()]y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性.一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:1.若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数;2.若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表如下:()u g x =()y f u =[()]y f g x =增增增增减减减增减减减增复合函数单调性可简记为“同增异减”,即内外函数的单性相同时递增;单性相异时递减.题型三:利用函数单调性求函数最值例9.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =()21x f x x =+;③()e e e ex xx x f x ---=+;④()11e x f x -=+.例10.(2022·全国·高三专题练习)定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-.(1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.例11.(2022·全国·高三专题练习)已知函数()(0)2axf x a x =≠-.(1)判断函数()f x 在区间()2,2-上的单调性,并用单调性的定义加以证明;(2)若()33f =,求[]1,1x ∈-时函数()f x 的值域.例12.(2022·山西运城·模拟预测(理))已知a b <,函数()f x 的定义域为I ,若存在[,]a b I ⊆,使得()f x 在[,]a b 上的值域为[,]a b ,我们就说()f x 是“类方函数”.下列四个函数中是“类方函数”的是()①()21f x x =-+;②2()f x x =;③()2f x =+;④1()2xf x ⎛⎫= ⎪⎝⎭.A .①②B .②④C .②③D .③④【方法技巧与总结】利用函数单调性求函数最值时应先判断函数的单调性,再求最值.常用到下面的结论:1.如果函数()y f x =在区间(]a b ,上是增函数,在区间[)b c ,上是减函数,则函数()()y f x x a c =∈,在x b =处有最大值()f b .2.如果函数()y f x =在区间(]a b ,上是减函数,在区间[)b c ,上是增函数,则函数()()y f x x a c =∈,在x b =处有最小值()f b .3.若函数()y f x =在[]a b ,上是严格单调函数,则函数()y f x =在[]a b ,上一定有最大、最小值.4.若函数()y f x =在区间[]a b ,上是单调递增函数,则()y f x =的最大值是()f b ,最小值是()f a .5.若函数()y f x =在区间[]a b ,上是单调递减函数,则()y f x =的最大值是()f a ,最小值是()f b .题型四:利用函数单调性求参数的范围例13.(2022·河南濮阳·一模(理))“1b ≤”是“函数()()22,0log 2,20bx x f x x b x +>⎧=⎨++-<≤⎩是在()2,-+∞上的单调函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例14.(2022·全国·江西科技学院附属中学高三阶段练习(理))已知函数()()e 4,0,2log 1,10,x m m x f x x x ⎧+>⎪=⎨-+-<≤⎪⎩若1x ∀,2x ∈R ,()()12120f x f x x x ->-,且()()2g x f x x =--仅有1个零点,则实数m 的取值范围为()A .11,4e ⎡⎫⎪⎢⎣⎭B .11,4e ⎡⎤⎢⎥⎣⎦C .1,1e ⎡⎫⎪⎢⎣⎭D .1,1e ⎛⎫ ⎪⎝⎭例15.(2022·浙江·高三学业考试)已知函数2()2f x x ax b =-+在区间(-∞,1]是减函数,则实数a 的取值范围是()A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]例16.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围()A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1例17.(2022·全国·高三专题练习)已知函数()f x =0a >且1a ≠)在区间[)1,3上单调递增,则实数a 的取值不可能是()A .13B .12C .23D .56例18.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a的范围是_______.例19.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈,则θ的取值范围是___________.例20.(2022·全国·高三专题练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【方法技巧与总结】若已知函数的单调性,求参数a 的取值范围问题,可利用函数单调性,先列出关于参数a 的不等式,利用下面的结论求解.1.若()a f x >在[]m n ,上恒成立()a f x ⇔>在[]m n ,上的最大值.2.若()a f x <在[]m n ,上恒成立()a f x ⇔<在[]m n ,上的最小值.题型五:基本初等函数的单调性例21.(2022·全国·高三阶段练习(文))下列函数在()1,3上单调递减的是()A .24y x x =-B .12x y -=C .y =D .cos 1y x =+例22.(2022·全国·高三专题练习)下列函数中,定义域是R 且为增函数的是A .xy e -=B .3y x =C .ln y x=D .y x=例23.(2022·全国·高三专题练习)已知()f x 是奇函数,且()()12120f x f x x x ->-对任意12,x x R ∈且12x x ≠都成立,设32a f ⎛⎫= ⎪⎝⎭,()3log 7b f =,()30.8c f =-,则()A .b a c <<B .c a b <<C .c b a<<D . a c b<<例24.(2022·山东·济南一中模拟预测)设函数()232xf x x ⎛⎫=+ ⎪⎝⎭,若()ln 3a f =,()5log 2b f =-,c f =(e 为自然对数的底数),则().A .a b c>>B .c b a>>C .c a b>>D .a c b>>【方法技巧与总结】1.比较函数值大小,应将自变量转化到同一个单调区间内,然后利用函数单调性解决.2.求复合函数单调区间的一般步骤为:①求函数定义域;②求简单函数单调区间;③求复合函数单调区间(同增异减).3.利用函数单调性求参数时,通常要把参数视为已知数,依据函数图像或单调性定义,确定函数单调区间,与已知单调区间比较,利用区间端点间关系求参数.同时注意函数定义域的限制,遇到分段函数注意分点左右端点函数值的大小关系.题型六:函数的奇偶性的判断与证明例25.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减例26.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x=--C .3y x x=--D .3=-+y x x例27.(2022·广东·二模)存在函数()f x 使得对于x R ∀∈都有()()f g x x =,则函数()g x 可能为()A .()sin g x x=B .()22g x x x=+C .()3g x x x=-D .()()x xg x e e-=+例28.(2022·全国·高三专题练习)判断下列函数的奇偶性:(1)f (x )(2)f (x )=(x +(3)f (x ).(4)f (x )=2221,0,21,0;x x x x x x ⎧-++>⎨+-<⎩例29.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②()g x 为奇函数;③()0,x ∀∈+∞,()0>g x ;④任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在()0,+∞上的单调性.【方法技巧与总结】函数单调性与奇偶性结合时,注意函数单调性和奇偶性的定义,以及奇偶函数图像的对称性.题型七:已知函数的奇偶性求参数例30.(2022·北京海淀·二模)若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则()A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-例31.(2022·河南洛阳·三模(理))若函数()()322x xx a f x -=⋅-是偶函数,则=a ()A .-1B .0C .1D .±1例32.(2022·江苏南通·模拟预测)若函数()22x x af x a +=-为奇函数,则实数a 的值为()A .1B .2C .1-D .±1例33.(2022·江西·南昌十中模拟预测(理))已知函数()(1)1x mf x x e=++为偶函数,则m 的值为_________.例34.(2022·全国·高三阶段练习(理))已知函数()()22330x xa a a f x -+=-⋅≠为奇函数,则=a ______.例35.(2022·全国·高三阶段练习(文))已知函数()2221x xa b f x x -+⋅=+为偶函数,则=a ______.例36.(2022·陕西·西安中学模拟预测(文))已知函数)1()e ln e x xf x x ⎛⎫=- ⎪⎝⎭为R 上的偶函数,则实数=a ___________.【方法技巧与总结】利用函数的奇偶性的定义转化为()()f x f x -=±,建立方程,使问题得到解决,但是在解决选择题、填空题时还显得比较麻烦,为了使解题更快,可采用特殊值法求解.题型八:已知函数的奇偶性求表达式、求值例37.(2022·安徽省芜湖市教育局模拟预测(理))设()f x 为奇函数,且0x >时,()e ln xf x x =+,则()1f -=___________.例38.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为()A .3-B .3C .5-D .5例39.(2022·河北衡水·高三阶段练习)已知()f x 是定义在R 上的奇函数,且0x ≤时,()232f x x x m =-+,则()f x 在[]1,2上的最大值为()A .1B .8C .5-D .16-例40.(2022·江西·模拟预测(理))(),()f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25+=--x f x g x x x ,则下列说法错误的是()A .(0)1g =B .()g x 在[]0,1上单调递减C .(1101)-g x 关于直线1101=x 对称D .()g x 的最小值为1例41.(2022·山西吕梁·一模(文))已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()21x f x x =+-,则当0x <时,()f x =()A .21x x ---B .21x x -++C .121x ----D .121x --++例42.(2022·北京·高三专题练习)已知定义在R 上的奇函数()f x 满足()()2f x f x =+,且当()0,1x ∈时,()241xxf x =+.(1)求()1f 和()1f -的值;(2)求()f x 在[]1,1-上的解析式.例43.(2022·全国·高三专题练习)若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{R,1}x x x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式.【方法技巧与总结】抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的解析式.题型九:已知()f x =奇函数+M例44.(2022·重庆一中高三阶段练习)已知()34f x ax =++(a ,b 为实数),()3lg log 102022f =,则()lg lg3f =______.例45.(2022·河南·西平县高级中学模拟预测(理))已知函数()2sin 414x xf x x -=++,且()5f a =,则()f a -=()A .2B .3C .-2D .-3例46.(2022·福建省福州第一中学高二期末)若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为()A .4B .8C .12D .16例47.(2022·上海·高一专题练习)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫⎪⎝⎭B .,123ππ⎛⎫ ⎪⎝⎭C .28,33ππ⎛⎫ ⎪⎝⎭D .416,33ππ⎛⎫ ⎪⎝⎭例48.(2022·河南·温县第一高级中学高三月考(理))若函数()()113e sin 1ex x x f x --⋅--=在区间[]3,5-上的最大值、最小值分别为p 、q ,则p q +的值为().A .2B .1C .6D .3例49.(2022·黑龙江·哈尔滨三中高三月考(理))函数()()211()2x x f x x x e e x --=--+在区间[1,3]-上的最大值与最小值分别为M ,N ,则M N +的值为()A .2-B .0C .2D .4例50.(2022·广东潮阳·高一期末)函数()()22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.例51.(2022·安徽·合肥市第九中学高三月考(理))已知定义域为R 的函数2222020sin ()2x x e e x xf x x λλμ++=++有最大值和最小值,且最大值和最小值的和为6,则λ-μ=___.【方法技巧与总结】已知()f x =奇函数+M ,[,]x a a ∈-,则(1)()()2f x f x M -+=(2)max min ()()2f x f x M +=题型十:函数的对称性与周期性例52.(2022·天津三中二模)设函数()y f x =的定义域为D ,若对任意的12,x x D ∈,且122x x a +=,恒有()()122f x f x b +=,则称函数()f x 具有对称性,其中点(,)a b 为函数()y f x =的对称中心,研究函数1()1tan(1)1f x x x x =+++--的对称中心,求13540432022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()A .2022B .4043C .4044D .8086例53.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则()A .()f x 是偶函数B .()f x 的图象关于直线12x =对称C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称例54.(2022·全国·模拟预测)已知函数()f x 的定义域为R ,且()()()2220222f x f x f +=-+对任意x ∈R 恒成立,又函数()2021f x +的图象关于点()2021,0-对称,且()12022f =,则()2021f =()A .2021B .2021-C .2022D .2022-例55.(2022·新疆·三模(文))已知定义在R 上的偶函数()f x 满足()()6f x f x +=,且当[]0,3x ∈时,()e x f x x =,则下面结论正确的是()A .()()()3ln 3e e f f f <<-B .()()()3e ln 3ef f f -<<C .()()()3e e ln 3f f f <-<D .()()()3ln 3e ef f f <-<例56.(2022·山东·肥城市教学研究中心模拟预测)已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f =则(45)f =()A .2021B .2021-C .2022D .2022-例57.(2022·广东茂名·模拟预测)已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为()A .4B .4-C .0D .6-例58.(2022·江西鹰潭·二模(文))已知()f x 是定义在R 上的奇函数,若32f x ⎛⎫+ ⎪⎝⎭为偶函数且()12f =,则()()()202020212022f f f ++=()A .2-B .4C .4-D .6例59.(2022·江苏·徐州市第七中学高三阶段练习)函数()()()222f x x x x ax b =+++满足:对x R ∀∈,都有()()11f x f x +=-,则函数()f x 的最小值为()A .-20B .-16C .-15D .0例60.(2022·黑龙江·哈尔滨三中三模(理))定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;②函数()1y f x =+的图象关于y 轴对称;③对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为()A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>例61.(2022·陕西·榆林市教育科学研究所模拟预测(理))已知函数()f x 满足()()f x f x -=--,且函数()f x 与()cos 2g x x x =≠-⎛⎫ ⎪⎝⎭的图象的交点为()11,x y ,()22,x y ,()33,x y ,()44,x y ,则()41i ii x y =+=∑()A .-4πB .-2πC .2πD .4π【方法技巧与总结】(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.题型十一:类周期函数例62.(2022·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A .[]2,3B .[]1,3C .[]1,4D .[]2,4例63.(2022·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18f x t t≥-恒成立,则实数t 的取值范围是()A .(](],10,3-∞- B.((,-∞ C .[)[)1,03,-+∞ D.))⎡+∞⎣ 例64.(2022山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为()A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤例65.(2022·湖北·高三月考)已知函数()11,022(2),2x x f x f x x ⎧--≤≤=⎨->⎩,其中R a ∈,给出以下关于函数()f x 的结论:①922f ⎛⎫= ⎪⎝⎭②当[]0,8x ∈时,函数()f x 值域为[]0,8③当4,15k ⎛⎤∈ ⎥⎝⎦时方程()f x kx =恰有四个实根④当[]0,8x ∈时,若()22xf x a +≤恒成立,则1a ≥-)A .1B .2C .3D .4【方法技巧与总结】1.类周期函数若()y f x =满足:()()f x m kf x +=或()()f x kf x m =-,则()y f x =横坐标每增加m 个单位,则函数值扩大k 倍.此函数称为周期为m 的类周期函数.xx类周期函数图象倍增函数图象2.倍增函数若函数()y f x =满足()()f mx kf x =或()(xf x kf m=,则()y f x =横坐标每扩大m 倍,则函数值扩大k倍.此函数称为倍增函数.注意当m k =时,构成一系列平行的分段函数,222311()[1)(1)[)()(1)[)(1)[)n n ng x x m g x m x m m f x g x m x m m g x m x m m --∈⎧⎪-+∈⎪⎪=-+∈⎨⎪⎪⎪-+∈⎩,,,,,,,,.题型十二:抽象函数的单调性、奇偶性、周期性例66.(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤--<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为()A .()3,1-B .()()3,11,1---C .()(),11,1-∞-- D .()(),31,-∞-⋃+∞例67.(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图象关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =-,12b f ⎛⎫=- ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为()A .c b a <<B .b a c <<C .b c a <<D .c a b<<例68.(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x -=,当01x ≤≤时,()1e 1x f x -=-,则方程()11f x x =-在区间[]3,5-上所有解的和为()A .8B .7C .6D .5例69.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)求()()22f xg x -的值;(2)判断并证明函数()f x 的奇偶性.例70.(2022·上海·高三专题练习)定义在(-1,1)上的函数f (x )满足①对任意x 、y ∈(-1,1),都有f (x )+f (y )=f (1x y xy ++);②当x ∈(-1,0)时,有f (x )>0.求证:21111()()()()511312f f f f n n +++>++ .【方法技巧与总结】抽象函数的模特函数通常如下:(1)若()()()f x y f x f y +=+,则()(1)f x xf =(正比例函数)(2)若()()()f x y f x f y +=,则()[(1)]x f x f =(指数函数)(3)若()()()f xy f x f y =+,则()log b f x x =(对数函数)(4)若()()()f xy f x f y =,则()a f x x =(幂函数)(5)若()()()f x y f x f y m +=++,则()(1)f x xf m =-(一次函数)(6)对于抽象函数判断单调性要结合题目已知条件,在所给区间内比较大小,有时需要适当变形.题型十三:函数性质的综合例71.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x=---,则关于t 的不等式()()20f t f t +<的解集为()A .()2,1-B.(-C .()0,1D.(例72.(2022·安徽·六安市裕安区新安中学高三开学考试(文))已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增.若实数a 满足212(log )(lo )g )2(1f a f f a +≤,则a 的最小值是()A .32B .1C .12D .2例73.(2022·河南许昌·高三月考(理))已知函数31()224e e x xf x x x =-++-,其中e 是自然对数的底数,若()2(6)8f a f a -+>,则实数a 的取值范围是()A .(2,)+∞B .(3,2)-C .(,3)-∞-D .(,3)(2,)-∞-⋃+∞例74.(2022·河南·新蔡县第一高级中学高三月考(文))已知函数()3112e 33ex x f x x x =-+-+,其中e是自然对数的底数,若()2(23)6f a f a -+≥,则实数a 的取值范围是()A .(,3][1,)-∞-+∞ B .(,3]-∞-C .[1,)+∞D .[]3,1-例75.(2022·江苏·南京市中华中学高三月考)定义在R 上的函数()f x 满足()(2)f x f x -=,且当1x ≥时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为()A .1-B .23-C .13-D .13例76.(2022·内蒙古·赤峰二中高一月考(理))设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意[]2x a a ∈+,,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是()A.)+∞B.)+∞C .()1-∞,D.⎡⎣例77.(2022·湖南·岳阳一中一模)已知函数221e e ()312x x xf x --=++,若不等式2(4)(2)1f ax f ax -+≤对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]e,0-B .[]2,0-C .[]4,0-D .2e ,0⎡⎤-⎣⎦例78.(2022·全国·模拟预测)已知函数()2121xx f x -=+,若()()e 0x f f ax +<有解,则实数a 的取值范围为()A .()0,∞+B .(),e -∞-C .[]e,0-D .()(),e 0,-∞-⋃+∞例79.(2022·黑龙江·哈师大附中三模(理))已知函数()()1ln e 12x f x x =+-(e 为自然对数的底数),若()()21f a f a ≥-,则实数a 的取值范围是()A .1,3⎛⎤-∞ ⎥⎝⎦B .[1,+∞)C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦【方法技巧与总结】(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.【过关测试】一、单选题1.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x =--C .3y x x =--D .3=-+y x x2.(2022·河南·模拟预测(文))已知0x >,0y >,且2e e sin 2sin x y x y ->-,则()A .2x y<B .2x y>C .x y>D .x y<3.(2022·湖北·房县第一中学模拟预测)已知函数()221e e 1x x f x -=+,不等式()()22f x f x >+的解集为()A .()(),12,-∞-+∞B .()1,2-C .()(),21,-∞-+∞ D .()2,1-4.(2022·浙江浙江·高三阶段练习)已知定义在R 上的奇函数()f x 在0x >时满足32()(1)62f x x x =-++,且()()8f x m f x +≤在[]1,3x ∈有解,则实数m 的最大值为()A .23B .2C .53D .45.(2022·河北·石家庄二中高三开学考试)已知函数(()cos ln 4f x x x π=+⋅+在区间[5,5]-的最大值是M ,最小值是m ,则()f M m +的值等于()A .0B .10C .4πD .2π6.(2022·安徽·蒙城第一中学高三阶段练习(理))已知()f x 为奇函数,且当0x >时()211e xf x x-=+,则曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为()A .240x y ++=B .240x y -+=C .220x y -+=D .220x y ++=7.(2022·河南·模拟预测(理))已知函数()f x 的图象关于原点对称,且()()4f x f x =+,当()0,2x ∈时,()f x =32433log 4f ⎛⎫+= ⎪⎝⎭()A .-11B .-8C .3log 4D .38log 4-8.(2022·江西·南昌市实验中学一模(理))对于函数()y f x =,若存在0x ,使()()00f x f x =--,则称点()()00,x f x 与点()()00,x f x --是函数()f x 的一对“隐对称点”.若函数()2ln ,0,0x x f x mx mx x >⎧=⎨--≤⎩的图像恰好有2对“隐对称点”,则实数m 的取值范围是()A .10,e ⎛⎫ ⎪⎝⎭B .()0,1⋃(1,)+∞C .1,e ⎛⎫+∞ ⎪⎝⎭D .(1,)+∞二、多选题9.(2022·海南·模拟预测)下面关于函数23()2x f x x -=-的性质,说法正确的是()A .()f x 的定义域为(,2)(2,)-∞⋃+∞B .()f x 的值域为RC .()f x 在定义域上单调递减D .点(2,2)是()f x 图象的对称中心10.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是()A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点11.(2022·重庆巴蜀中学高三阶段练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是()A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-12.(2022·河北秦皇岛·二模)已知函数())lg f x x =,()212xg x =+,()()()F x f x g x =+,则()A .()f x 的图象关于()0,1对称B .()g x 的图象没有对称中心C .对任意的[](),0x a a a ∈->,()F x 的最大值与最小值之和为4D .若()3311F x x x -+-<-,则实数x 的取值范围是()(),13,-∞⋃+∞三、填空题13.(2022·山东临沂·二模)已知函数e ()1xmxf x x =+-是偶函数,则m =__________.14.(2022·湖北·房县第一中学模拟预测)已知函数()()ln 0f x x a a a =-+>在21,e ⎡⎤⎣⎦上的最小值为1,则a 的值为________.15.(2022·广东佛山·三模)已知函数()22x x f x a -=+⋅的图象关于原点对称,若3(21)2f x ->,则x 的取值范围为________.16.(2022·陕西宝鸡·二模(文))若函数f (x )同时满足:(1)对于定义域上的任意x ,恒有()()0f x f x +-=;(2)对于定义域上的任意12,x x ,当12x x ≠,恒有()()12120f x f x x x -<-,则称函数f (x )为“理想函数”,下列①()1f x x=,②()=f x ,③()1212xxf x -=+,④22,0(),0x x f x x x ⎧-=⎨<⎩四个函数中,能被称为“理想函数”的有___________.(填出函数序号)四、解答题17.(2022·上海市市西中学高三阶段练习)设a ∈R ,函数2()21x x af x +=+;(1)求a 的值,使得f (x )为奇函数;(2)若3()2a f x +<对任意x ∈R 成立,求a 的取值范围.18.(2022·全国·高三专题练习)已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数;(3)解不等式()()10f x f x -+<.19.(2022·陕西·武功县普集高级中学高三阶段练习(理))设函数()()20,1,R x xf x ka a a a k -=->≠∈,()f x 是定义域为R 的奇函数(1)确定k 的值(2)若()13f =,判断并证明()f x 的单调性;(3)若3a =,使得()()()221f x f x λ≤+对一切[]2,1x ∈--恒成立,求出λ的范围.20.(2022·全国·高三专题练习)定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥;(3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.21.(2022·全国·高三专题练习)定义在R 上的函数()f x ,对任意12,x x R ∈,满足下列条件:①1212()()()2f x x f x f x +=+-②(2)4f =(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由.(2)证明:()()2g x f x =-为奇函数;22.(2022·上海·二模)对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数π()2cos 3f x x ⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”?并说明理由;(2)设1()423x x f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围;(3)若()22log 2,3()2,3x mx x f x x ⎧->⎪=⎨-<⎪⎩为其定义域上的“M 类函数”,求实数m 取值范围.。
专题13函数基础知识一、知识点1.函数的传统定义:设在某变化过程中有两个变量x,y,如果对于x在某一范围内的每一个确定的值,y都有________的值与它对应,那么就称y是x的________,x叫做自变量.2.函数的表示方法有三种:________法、________法、________法.3.画函数图像的一般步骤:________、________、________.4.求函数自变量的取值范围,一般有三种情况:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,需满足分式的分母不能为0;(3)当函数表达式是二次根式时,需满足被开方数为非负数.二次根式和分式组成的“复合”形式,则要注意使函数表达式中的二次根式与分式均要有意义.二、标准例题例1:下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是() A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数例2:下列各图象中不表示y是x的函数的是( )例3:星期六早晨小明妈妈从家里出发去公园锻炼,她连续、匀速走了60分钟后回家,图中的折线段OA→AB→BC是她出发后所在位置离家的距离S(km)与行走时间t(分钟)之间的关系示意图,则下列图形中可以大致描述小明妈妈行走路线的是()A.B.C.D.例4:如图1,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是容器容积的1(容器各面的厚度忽略不计).现以速度v(单位:cm3/s)均匀地向容器注水,直至4注满为止.图2是注水全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.⑴在注水过程中,注满A所用时间为______s,再注满B又用了_____s;⑵求A的高度h A及注水的速度v;⑶求注满容器所需时间及容器的高度.例5:如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.三、练习1.函数中,自变量的取值范围是( ).A.B.C.D.2.下列各曲线中,能表示y 是x 的函数的是()A.B.C.D.3.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣74.如图是张华放学后回家行进的路程s(m)与时间t(min)的函数图象,观察图象,从中得到如下信息,其中不正确的是()A.学校离张华家1000 m B.张华用了20 min到家C.张华前10 min走了路程的一半D.张华后10 min比前10 min走得快5.如图,某工厂有甲、乙两个大小相同的容器,且中间有管道连通,现要向甲容器注水.若单位时间内的注水量不变,则从注水开始,乙容器水面上升的高度h与注水时间t之间的关系图象可能是()A.B.C.D.6.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④7.如图,在矩形ABCD中,AB=2,BC=3,点P在矩形的边上沿B→C→D→A运动.设点P运动的路程为x,△ABP的面积为y,则y关于x的函数图象大致是()A.B.C.D.8.星期天,小明和爸爸去大剧院看电影.爸爸步行先走,小明在爸爸离开家一段时间后骑自行车去,两人按相同的路线前往大剧院,他们所走的路程s(米)和时间t(分)的关系如图所示.则小明追上爸爸时,爸爸共走了()A.12分钟B.15分钟C.18分钟D.21分钟9.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S 随着时间t变化的函数图象大致是()A.B.C.D.10.函数y=+的自变量x的取值范围是11.江山村的耕地面积是106(m2),这个村人均占有耕地面积x(m2)与人数n的关系是________.12.汽车油箱内存油45L,每行驶100km耗油10L,行驶过程中油箱内剩余油量y L与行驶路程s km的函数关系式是_____.13.将长为20cm,宽为8cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为_____.14.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列四种说法:①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正确的是________(填序号).15.如图描述了某汽车在行驶过程中速度与时间的关系,下列说法中正确的是________.(填序号)①第3分钟时,汽车的速度是40千米/时;②第12分钟时,汽车的速度是0千米/时;③从第3分钟到第6分钟,汽车行驶了120千米;④从第9分钟到第12分钟,汽车的速度从60千米/时减小到0千米/时.16.心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足关系式y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.(1)若用10分钟提出概念,则学生的接受能力y的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.17.如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,写出自变量,因变量;(2) 写出圆柱的体积V与底面半径r的关系式;(3)当圆柱的底面半径由2cm变化到8cm时,圆柱的体积由多少cm3变化到多少cm3.18.已知:函数y=√x+2,求x的取值范围,并在数轴上表示.19.一种树苗,栽种时高度约为80厘米,为研究它的生长情况,测得数据如下表:(1)此变化过程中_____是自变量,_____是因变量;(2)树苗高度h与栽种的年数n的关系式为_____;(3)栽种后_____后,树苗能长到280厘米.20.老师告诉小红:“离地面越高,温度越低”.并给小红出示了下面的表格:根据上表,老师还给小红出了下面几个问题,请你和小红一起来回答(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,请你用关于h的式子表示t;(3)请你利用(2)的结论求①距离地面5千米的高空温度是多少?②当高空某处温度为﹣40度时,求该处的高度.21.某商店为减少A商品的积压,采取降价销售的策略,A商品原价为520元,随着不同幅度的降价,日销量(单位:件)发生相应的变化(如表):(1)从表中可以看出每降价10元,日销量增加多少件?(2)估计降价之前的日销量为多少件?(3)由表格求出日销量y(件)与降价x(元)之间的函数解析式.(4)如果售价为440元时,日销量为多少件?27.圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?(2)圣诞老人在超市逗留了多长时间?(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?22.甲、乙两地相距210千米,一辆货车将货物由甲地运至乙地,卸载后返回甲地.若货车距乙地的距离y(千米)与时间t(时)的关系如图所示,根据所提供的信息,回答下列问题:(1)货车在乙地卸货停留了多长时间?(2)货车往返速度,哪个快?返回速度是多少?23.小红帮弟弟荡秋千(如图1),秋千离地面的高度ℎ(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量ℎ是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,ℎ的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?专题13函数基础知识一、知识点1.函数的传统定义:设在某变化过程中有两个变量x ,y ,如果对于x 在某一范围内的每一个确定的值,y 都有________的值与它对应,那么就称y 是x 的________,x 叫做自变量.2.函数的表示方法有三种:________法、________法、________法. 3.画函数图像的一般步骤:________、________、________. 4.求函数自变量的取值范围,一般有三种情况: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,需满足分式的分母不能为0; (3)当函数表达式是二次根式时,需满足被开方数为非负数.二次根式和分式组成的“复合”形式,则要注意使函数表达式中的二次根式与分式均要有意义. 二、标准例题例1:下面每个选项中给出了某个变化过程中的两个变量x 和y ,其中y 不是x 的函数的选项是( ) A .y :正方形的面积,x :这个正方形的周长 B .y :某班学生的身高,x :这个班学生的学号 C .y :圆的面积,x :这个圆的直径 D .y :一个正数的平方根,x :这个正数 【答案】D 【解析】A. y=(14x)2=116x 2,y 是x 的函数,故A 选项错误;B. 每一个学生对应一个身高,y 是x 的函数,故B 选项错误;C. y=π(12x)2=14πx 2,y 是x 的函数,故C 选项错误;D. y=±√x ,每一个x 的值对应两个y 值,y 不是x 的函数,故D 选项正确. 故答案选:D.总结:本题考查的知识点是函数的概念,解题的关键是熟练的掌握函数的概念 例2:下列各图象中不表示y 是x 的函数的是( )A.A B.B C.C D.D【答案】D【解析】圆不能表示y是x的函数,因为对x的某一部分的取值,y的对应值不唯一,不符合函数的定义,因此答案选D.例3:星期六早晨小明妈妈从家里出发去公园锻炼,她连续、匀速走了60分钟后回家,图中的折线段OA→AB→BC是她出发后所在位置离家的距离S(km)与行走时间t(分钟)之间的关系示意图,则下列图形中可以大致描述小明妈妈行走路线的是()A.B.C.D.【答案】B【解析】观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,可以大致描述蕊蕊妈妈行走的路线是B.故选B..总结:本题考查了函数的图象,由图象分析出大致的运动路径是解题的关键.例4:如图1,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是容器容积的1(容器各面的厚度忽略不计).现以速度v(单位:cm3/s)均匀地向容器注水,直至4注满为止.图2是注水全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.⑴在注水过程中,注满A所用时间为______s,再注满B又用了_____s;⑵求A的高度h A及注水的速度v;⑶求注满容器所需时间及容器的高度.【答案】(1)10s,8s(2)A的高度hA为4 cm,注水速度v为10 cm3/s(3)注满这个容器所需时间24 s,容器的高度为24 cm【解析】(1)看函数图象可知,注满A所用时间为10s,再注满B又用了8s;(2)根据题意和函数图象得,{ℎA=10v2512−ℎA=8v10,解得{ℎA= 4v=10;答:A的高度hA是4cm,注水的速度v是10cm3/s;(3)设C的容积为ycm3,则有,4y=10v+8v+y,将v=10代入计算得y=60,那么容器C的高度为:60÷5=12(cm),故这个容器的高度是:12+12=24(cm),∵B的注水时间为8s,底面积为10cm2,v=10cm3/s,∴B的高度=8×10÷10=8(cm),注满C的时间是:60÷v=60÷10=6(s),故注满这个容器的时间为:10+8+6=24(s).答:注满容器所需时间为24s,容器的高度为24cm.总结:本题考查了识别函数图象的能力,是一道较为简单的题,观察图象提供的信息,再分析高度、时间和容积的关系即可找到解题关键.例5:如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P 运动的路程x=4时,△ABP 的面积为y= ;(3)求AB 的长和梯形ABCD 的面积.【答案】(1)x ,y ;(2)16;(3)AB=8,梯形ABCD 的面积=26.【解析】(1)∵点P 运动的路程为x ,△ABP 的面积为y ,∴自变量为x ,因变量为y .故答案为:x ,y ;(2)由图可得:当点P 运动的路程x=4时,△ABP 的面积为y=16.故答案为:16;(3)根据图象得:BC=4,此时△ABP 为16,∴12AB•BC=16,即12×AB×4=16,解得:AB=8;由图象得:DC=9﹣4=5,则S 梯形ABCD=12×BC×(DC+AB )=12×4×(5+8)=26. 总结:本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.三、练习1.函数中,自变量的取值范围是 ( ). A . B . C . D .【答案】A【解析】由题意得6-x ≥0,解得故选A2.下列各曲线中,能表示 y 是 x 的函数的是( ) A . B . C . D .【解析】解:由函数的定义可知,x与y的对应关系应该是一对一的关系或多对一的关系,据此排除A,B,C,故选D.3.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【答案】C【解析】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C.4.如图是张华放学后回家行进的路程s(m)与时间t(min)的函数图象,观察图象,从中得到如下信息,其中不正确的是()A.学校离张华家1000 m B.张华用了20 min到家C.张华前10 min走了路程的一半D.张华后10 min比前10 min走得快【答案】C【解析】根据函数图象可知:学校离张华家1000m;张华用了20min到家;张华前10min走了路程的不到一半;张华后10min所走的路程比前10min多,所以走得快.5.如图,某工厂有甲、乙两个大小相同的容器,且中间有管道连通,现要向甲容器注水.若单位时间内的注水量不变,则从注水开始,乙容器水面上升的高度h与注水时间t之间的关系图象可能是()A.B.C.D.【答案】D【解析】①先注甲池水未达连接地方时,乙水池中的水面高度没变化;②当甲池中水到达连接的地方,乙水池中水面快速上升;③当乙到达连接处时,乙水池的水面持续增长较慢;④最后超过连接处时,乙水池的水上升较快,但比第②段要慢.故选:D.6.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④【答案】B根据函数图象的意义,①已知甲的速度比乙快,故射线OB表示甲的路程与时间的函数关系;错误;②甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确;④8秒钟后,甲超过了乙,正确;故选:B.7.如图,在矩形ABCD中,AB=2,BC=3,点P在矩形的边上沿B→C→D→A运动.设点P运动的路程为x,△ABP的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】B【解析】解:根据题意和图形可知:点P按B→C→D→A的顺序在边长为1的正方形边上运动,△APB的面积分为3段;当点P在BC上移动时,底边不变高逐渐变大,故面积逐渐变大;当点P在CD上移动时,底边不变,高不变,故面积不变;当点P在AD上时,高不变,底边变小,故面积越来越小直到0为止.故选:B.8.星期天,小明和爸爸去大剧院看电影.爸爸步行先走,小明在爸爸离开家一段时间后骑自行车去,两人按相同的路线前往大剧院,他们所走的路程s(米)和时间t(分)的关系如图所示.则小明追上爸爸时,爸爸共走了()A.12分钟B.15分钟C.18分钟D.21分钟【答案】C【解析】x=80x,小明解析式为:解得:k=180,爸爸的解析式y1=360045b=-1800,即y2=180x-1800,联立两直线解析式可得:80x=180x-1800,解得:x=18,故答案选C.9.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S 随着时间t变化的函数图象大致是()A.B.C.D.【答案】A【解析】设点P单位时间匀速运动的距离为1,由图形可知点P到线段AB的距离即为∆ABP的高,记住ℎ.×AB×t=t,图象是一条向上倾斜的正比例函数图象;当点P在线段AD上时,∆ABP为正三角形,S=12×AB×ℎ=2,图象是一条平行于x轴的常数函数图象;当点P在线段DE上时,S=12当点P 在线段EF 上时,ℎ=AD −EP =2−(t −3)=5−t ,S =12×AB ×ℎ=5−t ,图象是一条向下倾斜的一次函数图象;当点P 在线段FG 上时,ℎ=GB =1,S =12×AB ×ℎ=1,图象是一条平行于x 轴的常数函数图象 当点P 在线段GB 上时,ℎ=GB −GP =1−(t −5)=6−t ,S =12×AB ×ℎ=6−t ,图象是一条向下倾斜的一次函数图象.综上所述只有B 项的图像符合题意. 10.函数y=+的自变量x 的取值范围是【答案】x≤3且x≠2【解析】根据题意得{x−2≠03−x≥0,解得x≤3且x≠2.11.江山村的耕地面积是106(m 2),这个村人均占有耕地面积x(m 2)与人数n 的关系是________.【答案】x =106n 【解析】根据题意得:x =106n . 故答案得:x =106n12.汽车油箱内存油45L ,每行驶100km 耗油10L ,行驶过程中油箱内剩余油量y L 与行驶路程s km 的函数关系式是_____.【答案】y=45﹣0.1s (0≤s≤450)【解析】单位耗油量10÷100=0.1L ,行驶s 千米的耗油量为0.1s ,则行驶过程中油箱内剩余油量:y=45﹣0.1s (0≤s≤450). 故答案为:y=45﹣0.1s (0≤s≤450).13.将长为20cm ,宽为8cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm ,设x 张白纸粘合后的总长度为ycm ,y 与x 的函数关系式为_____.【答案】y=17x+3【解析】由题意可得:y=20x-3(x-1)=17x+3,即:y与x间的函数关系式为:y=17x+3.故答案为:y=17x+3.14.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列四种说法:①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正确的是________(填序号).【答案】①②④【解析】解:①小明中途休息的时间是:60-40=20分钟,故本选项正确;=70(米/分钟),故本选项正确;②小明休息前爬山的速度为280040③小明在上述过程中所走路程为3800米,故本选项错误;’=25(米/分钟),所以小明休息前爬山的平均速度大于小明休息④因为小明休息后爬山的速度是3800−2800100−60前后爬山的平均速度,故本选项正确;故答案为:①②④.15.如图描述了某汽车在行驶过程中速度与时间的关系,下列说法中正确的是________.(填序号)①第3分钟时,汽车的速度是40千米/时;②第12分钟时,汽车的速度是0千米/时;③从第3分钟到第6分钟,汽车行驶了120千米;④从第9分钟到第12分钟,汽车的速度从60千米/时减小到0千米/时.【答案】①②④【解析】从图中可获取的信息是:①第3分时汽车的速度是40千米/时;②从第3分到第6分,汽车的速度是40千米/时;=2千米;③从第3分到第6分,汽车行驶了40×360④从第9分到第12分,汽车的速度从60千米/时减少到0千米/时.故错误的是③.故正确的有:①②④.16.心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足关系式y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.(1)若用10分钟提出概念,则学生的接受能力y的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.【答案】(1)59;(2)用8分钟提出概念与用10分钟提出概念相比,学生的接受能力减弱了;用15分钟提出概念与用10分钟提出概念相比,学生的接受能力增强了.【解析】解:(1)当x=10时,y=-0.1x2+2.6x+43=-0.1×102+2.6×10+43=59.(2)当x=8时,y=-0.1x2+2.6x+43=-0.1×82+2.6×8+43=57.4<59,所以用8分钟提出概念与用10分钟提出概念相比,学生的接受能力减弱了.当x=15时,y=-0.1x2+2.6x+43=-0.1×152+2.6×15+43=59.5>59.所以用15分钟提出概念与用10分钟提出概念相比,学生的接受能力增强了.17.如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,写出自变量,因变量;(2) 写出圆柱的体积V与底面半径r的关系式;(3)当圆柱的底面半径由2cm变化到8cm时,圆柱的体积由多少cm3变化到多少cm3.【答案】(1)半径r体积V;(2)V=4πr2;(3) 圆柱的体积由16πcm3变化到256πcm3.【解析】解:(1)在这个变化过程中,自变量是r,因变量是V.(2)圆柱的体积V与底面半径r的关系式是V=4πr2.(3)当圆柱的底面半径由2变化到8时,圆柱的体积由16πcm3变化到256πcm3.故答案为:(1)r,V;(2)V=4πr2;(3)16π,256π.18.已知:函数y=√x+2,求x的取值范围,并在数轴上表示.【答案】x≥−2,数轴表示见解析.【解析】解:由函数y=√x+2,得x+2≥0,解得x≥−2,把x≥−2表示在数轴上,得19.一种树苗,栽种时高度约为80厘米,为研究它的生长情况,测得数据如下表:(1)此变化过程中_____是自变量,_____是因变量;(2)树苗高度h与栽种的年数n的关系式为_____;(3)栽种后_____后,树苗能长到280厘米.【答案】栽种以后的年数树苗的高度h=80+25n8年【解析】根据题意和表格中数据可知,(1)此变化过程中是自变量栽种以后的年数,树苗的高度是因变量;(2)树苗高度h与栽种的年数n的关系式为h=80+25n;(3)当h=280时,n=8,故栽种后8年后,树苗能长到280厘米。
学科教师辅导讲义【点拨】上述所给出的两种解法,均体现了一种转化与化归的数学思想方法,实际上,也给出了对求形如sin cos a x by c x d+=+值域的两种通法,另外,若以后学过《解析几何》之后,利用斜率的概念,还可以给出本题的另外一种数形结合的解题方法。
2、数形结合思想数形结合的思想,就是把问题的数量关系和空间形式结合起来考察的思想,根据解决问题的需要,可以把数量关系的问题转化为图形的性质问题去讨论,或者把图形的性质问题转化为数量关系的问题来研究,简言之“数形互相取长补短”。
例2、定义在R 上的函数()f x 满足()()2f x f x =+,当[]3,5x ∈时,()24f x x =--,则( ) A 、sincos 66f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ B 、()()sin1cos1f f > C 、22cossin 33f f ππ⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭D 、()()cos2sin 2f f > 【分析】由()()2f x f x =+知()f x 是以2T =为周期的函数,又Q []3,5x ∈时,()24f x x =--,可知,当[]3,4x ∈,()2f x x =-;当(]4,5x ∈时,()6f x x =-+,如第一个图所示,知()f x 在[]1,0-上是增函数,在[]0,1上是减函数,由第二个图可知0cos2sin 2<<3、换元思想方法在求函数的定义域、周期、单调区间时,都可能用到了整体换元的思想方法。
例3、求函数()()43sin 43cos 16y x x =---的最值。
【分析】将函数式展开发现出现sin cos ,sin cos x x x x +,从而可以运用代数换元,转化为二次函数问题。
第四讲函数常考知识复习讲义I本章知识思维导图 2 II典型例题 3题型一:求具体函数与抽象函数的定义域 3题型二:求函数的解析式 4题型三:求函数的值域 5题型四:函数的单调性 6题型五:函数的奇偶性 8题型六:函数性质的综合应用 10题型七:幂函数 12题型八:函数的实际应用 14 III数学思想方法 19①分类讨论思想 19②转化与化归思想 19③数形结合思想 20I本章知识思维导图II典型例题题型一:求具体函数与抽象函数的定义域【例1】(2024·广东深圳·高一校考期中)函数y=9-x2x的定义域是.【例2】(2024·上海松江·高一校考期末)函数y=xx2-1的定义域为(用区间表示).【例3】(2024·河南新乡·高一校联考期末)函数f x =8x2-x2-1的定义域为.【例4】(2024·新疆乌鲁木齐·高一校考期中)若函数f x 的定义域为-1,2,则函数f3+2x的定义域是.【例5】(2024·高一课时练习)已知函数f(x+1)的定义域是[-2,2],则函数f(x)的定义域是.【例6】(2024·吉林长春·高一长春市解放大路学校校考阶段练习)已知函数f x 的定义域为0,+∞,则函数F x =f x+2+3-x的定义域为.【例7】(2024·全国·高一专题练习)已知函数f x+1的定义域为1,2,则f2x的定义域为.【例8】(2024·全国·高一专题练习)已知函数f x 的定义域为-1,1则y=f x+1x2-2x-3的定义域为【例9】(2024·全国·高一专题练习)已知函数f2x的定义域为12,2,则函数f x2的定义域为.【例10】(2024·全国·高一专题练习)函数f3x+1的定义域为1,7,则函数f x 的定义域是.【例11】(2024·河南郑州·高一校考阶段练习)已知函数f(x)是一次函数且f(f(x))+2f(x)=-x-2,则函数f(x)的解析式为.【例12】(2024·全国·高一专题练习)已知f x 是二次函数.且f x+1+f x-1=2x2-4x.则f x =.【例13】(2024·四川眉山·高一校考阶段练习)已知f x+1=2x2+3,则f x =.【例14】(2024·高一课时练习)已知函数f x+1=x,则函数f x 的解析式是.【例15】(2024·全国·高一专题练习)已知f1x=x1-x2,则f x =.【例16】(2024·江苏盐城·高一统考期中)已知函数f(x)满足f3-2x=x2-x,则f(x)=.【例17】(2024·全国·高一专题练习)已知f1+1 x=1x-1,则f x =.【例18】(2024·上海·高一专题练习)已知函数f x 满足2fx-1x+f x+1x=1+x,其中x∈R且x≠0,则函数f x 的解析式为【例19】(2024·高一课时练习)已知函数y=f(x)满足f(x)=2f1x+x,则f(x)的解析式为.【例20】(2024·全国·高一专题练习)求下列函数的值域.(1)f x =2x+41-x;(2)f x =5x+4x-2;(3)f x =x2-2x-3,x∈-1,4(4)y=x2+x+1x【例21】(2024·高一课时练习)求下列函数的值域.(1)y=5x+4x-1;(2)y=x-1-2x;(3)y=2--x2+4x.【例22】(2024·高一课时练习)求下列函数的值域.(1)y=16-x2;(2)y=x2-4x+61≤x≤5;(3)y=xx+1;(4)y=2x+41-x.【例23】(2024·全国·高一课堂例题)求下列函数的值域:(1)y=x+1,x∈1,2,3,4,5;(2)y=x2-2x+3,x∈0,3;(3)y=2x+1x-3x>4;(4)y=2x-x-1;(5)y=x2-2x+4x-2x>2;(6)y=2xx2+3x+4x<0;(7)y=2x2+2x+5x2+x+1.【例24】(2024·高一校考课时练习)求下列函数的值域:(1)y =2x +1x -3,(2)y =x +4xx >0 ,(3)y =-2x 2+x +3,(4)y =x +41-x题型四:函数的单调性【例25】(2024·高一课时练习)定义域为(-2,0)∪(0,2)的函数f (x )在区间(-2,0)上是增函数,在区间(0,2)上是减函数,则:(1)函数y =-f (x )的单调递增区间是;单调递减区间是;(2)函数y =-f (x +1)的单调递增区间是;单调递减区间是.【例26】(2024·山东·高一山东省实验中学校考阶段练习)函数y =7+6x -x 2的单调递增区间为.【例27】(2024·全国·高一专题练习)已知函数f x =x +1x -52x >0 ,则f x 的递减区间是.【例28】(2024·黑龙江齐齐哈尔·高一校联考期中)函数f x =xx -1,x ≤0-x 2-a +1 x +2a ,x >0在R 上单调递减,则实数a 的取值范围是.【例29】(2024·全国·高一课堂例题)已知函数f x 在0,+∞ 上单调递减,对任意x ∈0,+∞ ,均有f x ⋅f f x +2x =13,记g x =f x +4x 2,x ∈0,+∞ ,则函数g x 的最小值为.【例30】(2024·安徽安庆·高一安庆市第七中学校考期中)若f x =x 2-ax +2a 在区间1,+∞ 上是增函数,则实数a 的取值范围是.【例31】(2024·全国·高一专题练习)设函数f x =x +1,x <a a x -2 2,x ≥a,若f x 存在最大值,则实数a 的取值范围为.【例32】(2024·全国·高一专题练习)函数f (x )=x +1x-a +a 在区间[1,2]上的最大值为5,则a =.【例33】(2024·湖北武汉·高一校联考期中)函数f x 是定义在0,+∞ 上的增函数,若对于任意正实数x ,y ,恒有f xy =f x +f y ,且f 3 =1,则不等式f x +f x -8 <2的解集是.【例34】(2024·全国·高一专题练习)已知函数y =f x 的定义域为R ,对任意的x 1、x 2,且x 1≠x 2都有f x 1 -f x 2 x 1-x 2 >0成立,若f x 2+1 >f t 2-t -1 对任意x ∈R 恒成立,则实数t 的取值范围是.【例35】(2024·全国·高一假期作业)定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则f (-1)与f (3)的大小关系是.【例36】(2024·全国·高一课堂例题)证明函数f x =x +1xx >0 在区间0,1 上递减,在区间1,+∞ 上递增,并指出函数在区间0,+∞ 上的最值点和最值.【例37】(2024·全国·高一专题练习)已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x>0时,f (x )>1.求证:函数f (x )在R 上是增函数.【例38】(2024·河北邯郸·高一校考期末)已知定义在(0,+∞)上的函数f (x )满足:①对任意的x ,y ∈(0,+∞),都有f (xy )=f (x )+f (y );②当且仅当x >1时,f (x )<0成立.(1)求f (1);(2)用定义证明f (x )的单调性;【例39】(2024·天津·高一统考期中)已知函数f(x)=x2+a2ax+b是奇函数,且f1 =2.(1)求f x 的解析式;(2)判断f x 在区间0,1上的单调性并说明理由.题型五:函数的奇偶性【例40】(2024·新疆巴音郭楞·高一八一中学校考期中)已知f x =11+x(x∈R,且x≠-1),g x =x2+2x∈R.(1)求f g2的值;(2)判断函数g x =x2+2x∈R的奇偶性;(3)证明函数g x =x2+2在0,+∞上是增函数.【例41】(2024·湖南株洲·高一株洲二中校考阶段练习)已知定义在-1,1上的奇函数f x =ax-bx2+1,且f-12=-25.(1)求函数f x 的解析式;(2)判断f x 的单调性(并用单调性定义证明);(3)解不等式f(3t)+f(2t-1)<0.【例42】(2024·全国·高一随堂练习)判断下列函数是否具有奇偶性:(1)f(x)=5x+3;(2)f(x)=5x;(3)f(x)=2x2+1;(4)f(x)=x2+6x+9;(5)f(x)=1x2+2x4;(6)f(x)=x+1x3.【例43】(2024·全国·高一期中)已知函数f(x)=2x-ax,且f(2)=92.(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,并证明.【例44】(2024·甘肃白银·高一校考期中)已知函数f x =x2-ax+4,g x =x+b ax2+2.(1)若f x+1在b-1,b+1上为偶函数,求a,b的值;(2)设g x 的定义域为-1,1,在(1)的条件下:①判断函数g x 在定义域上的单调性并证明;②若g t-1+g2t<0,求实数t的取值范围.【例45】(2024·全国·高一期中)已知定义在(-∞,0)∪(0,+∞)上的函数f(x)满足:①∀x,y∈(-∞,0)∪(0, +∞),f(x⋅y)=f(x)+f(y);②当x>1时,f(x)>0,且f2 =1.(1)试判断函数f x 的奇偶性;(2)判断函数f x 在0,+∞上的单调性;(3)求函数f x 在区间[-4,0)∪(0,4]上的最大值;(4)求不等式f(3x-2)+f(x)≥4的解集.【例46】(2024·江西南昌·高一南昌市八一中学校考阶段练习)已知函数y=f x 是定义在R上的奇函数,当x>0时,f x =x2-ax,其中a∈R(1)求函数y=f x 的解析式;(2)若函数y=f x 在区间0,+∞不单调,求出实数a的取值范围.【例47】(2024·黑龙江牡丹江·高一牡丹江市第二高级中学校考期末)设函数f x 是增函数,对于任意x,y∈R都有f x+y=f x +f y .(1)写一个满足条件的f x 并证明;(2)证明f x 是奇函数;(3)解不等式12f x2-f x >12f3x.题型六:函数性质的综合应用【例48】(多选题)(2024·黑龙江齐齐哈尔·高一校联考期中)函数f(x)=x+1,g(x)=(x+1)2,用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)},则下列说法正确的是()A.M(2)=3B.∀x≥1,M(x)≥4C.M(x)有最大值D.M(x)最小值为0【例49】(多选题)(2024·江苏南通·高一统考期末)奇函数f x 与偶函数g x 的定义域均为R,在区间a,ba<b上都是增函数,则()A.0∉a,bB.f x 在区间-b,-a上是增函数,g x 在区间-b,-a上是减函数C.f x g x 是奇函数,且在区间a,b上是增函数D.f x -g x 不具有奇偶性,且在区间a,b上的单调性不确定【例50】(多选题)(2024·福建福州·高一校联考期中)已知连续函数f x 对任意实数x恒有f(x+y)=f(x)+ f(y)-1,当x>0时,f x >1,f1 =2,则()A.f0 =1B.f x 在-4,4上的最大值是4C.f x 图像关于-1,0中心对称D.不等式f3x2-2f x <f3x-2的解集为0,5 3【例51】(多选题)(2024·江西赣州·高一统考期中)世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子”美誉的高斯提出了取整函数y=x ,x 表示不超过x的最大整数,例如1,1=1,-1,1=-2.已知函数f x =x-x ,则()A.f x 在R上是增函数B.f-3 2=12C.f x 为奇函数D.f x 的值域为0,1【例52】(多选题)(2024·全国·高一专题练习)已知定义域为R的函数f x 满足:∀x,y∈R,f x+y+f x-y=f x f y ,且f1 =1,则下列结论成立的是()A.f0 =2B.f x 为偶函数C.f x 为奇函数D.f2 =-1【例53】(多选题)(2024·全国·高一专题练习)设函数f x 是定义在0,+∞上的函数,并且满足下面三个条件:①对正数x,y都有f xy=f x +f y ;②当x>1时,f x >0;③f8 =3.则下列说法不正确的是()A.f1 =1B.f14=-2C.不等式f x +f x-3<2的解集为x|-1<x<4D.若关于x的不等式f kx+f3-x≤2恒成立,则k的取值范围是0,16 9【例54】(多选题)(2024·重庆长寿·高一统考期末)若函数f x 在定义域内D内的某区间M是增函数,且f xx在M上是减函数,则称f x 在M上是“弱增函数”,则下列说法正确的是()A.若f x =x4则不存在区间M使f x 为“弱增函数”B.若f x =x+x-1则存在区间M使f x 为“弱增函数”C.若f x =x5+x3+x则f x 为R上的“弱增函数”D.若f x =x2+4-ax+a在区间0,2上是“弱增函数”,则a=4【例55】(2024·福建漳州·高一校考期中)已知定义在区间0,+∞上的函数f x =t x+4 x-5(t>0).(1)若函数f x 分别在区间0,2,2,+∞上单调,试求t的取值范围;(直接写出答案)(2)当t=1时,在区间1,4上是否存在实数a,b,使得函数f x 在区间a,b上单调,且f x 的取值范围为ma,mb,若存在,求出m的取值范围;若不存在,说明理由.【例56】(2024·全国·高一期中)已知函数f x =ax2-x+2a-1a>0(1)设f x 在区间1,2的最小值为g a ,求g a 的表达式;(2)设h x =f xx,若函数h x 在区间1,2上是增函数,求实数a的取值范围.【例57】(2024·高一单元测试)已知偶函数f(x)的定义域是{x|x≠0}的一切实数,对定义域内的任意x1,x2都有f(x1⋅x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1.(1)证明:f(x)在(0,+∞)上是单调递增函数;(2)解不等式f(2x-1)<2.题型七:幂函数【例58】(2024·全国·高一专题练习)已知幂函数f x =x-m2-2m+3-2<m<2,m∈Z满足:①f x 在0,+∞上为增函数,②对∀x∈R,都有f-x-f x =0,求同时满足①②的幂函数f x 的解析式,并求出x∈1,4时,f x 的值域.【例59】(2024·浙江金华·高一校考期中)已知点2,2在幂函数f(x)的图像上.(1)求f(x)的解析式;(2)若函数g(x)=f(x)+ax+3,x∈1,+∞是否存在实数a,使得g(x)最小值为5?若存在,求出a的值;若不存在,说明理由【例60】(2024·全国·高一假期作业)已知幂函数f x =m2-6m+10x-n2+4n n>1,n∈Z,m∈R的图象关于y轴对称,且在0,+∞上单调递增.(1)求m和n的值;(2)求满足不等式2a+3-m3<a-1-n2的a的取值范围.【例61】(2024·江苏南通·高一海安高级中学校考期中)已知幂函数f x =m 2-5m +7 x m -1为奇函数.(1)求实数m 的值;(2)求函数g x =14f x +1+12-f x -14<x <2 的最小值.【例62】(2024·黑龙江七台河·高一勃利县高级中学校考期中)已知幂函数y =x m 2-2m -3(m ∈N ∗)关于y 轴对称,且在0,+∞ 上单调减函数.(1)求m 的值;(2)解关于a 的不等式a +1 2m3<3-2a 2m3.【例63】(2024·广西柳州·高一柳铁一中校联考阶段练习)已知幂函数f x =k 2+k -1 x 2-k 1+k ,且f 2 <f 3 .(1)求函数f x 的解析式;(2)试判断是否存在正数m ,使得函数g x =1-f x +2mx 在区间0,1 上的最大值为5,若存在,求出m 的值,若不存在,请说明理由.【例64】(2024·广东佛山·高一佛山市顺德区乐从中学校考期中)已知幂函数f x =m 2-2m -2 x m 在0,+∞ 上单调递增.(1)求f x 的解析式;(2)若f x >3x 2+k -1 x 在1,3 上恒成立,求实数k 的取值范围.【例65】(2024·浙江杭州·高一校联考期中)已知幂函数f (x )=x -3n 2+9(n ∈N )为偶函数,且在区间(0,+∞)上单调递增(1)求函数y =f (x )的解析式;(2)设函数g (x )=3f (x )+2tx +3,求函数y =g (x )在区间[2,6]上的最小值G (t ).【例66】(2024·福建漳州·高一福建省华安县第一中学校考阶段练习)已知幂函数f x =2m2-5m+3x m是定义在R上的偶函数.(1)求f x 的解析式;(2)在区间-1,1上,f x 的图象总在函数y=kx-2图象的上方,求实数k的取值范围.【例67】(2024·重庆沙坪坝·高一重庆八中校考期中)已知幂函数f x =m2-5m+7x m-1,且f x =f-x.(1)求函数f x 的解析式;(2)若g x =f xf x +1,a,b均为正数且g a +g b =1,求f a +f b 的最小值.题型八:函数的实际应用【例68】(2024·全国·高一专题练习)党的十九大报告明确要求继续深化国有企业改革,培育具有全球竞争力的世界一流企业.某企业抓住机遇推进生产改革,从单一产品转为生产A、B两种产品,根据市场调查与市场预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②(注:所示图中的横坐标表示投资金额,单位为万元).(1)分别求出A、B两种产品的利润表示为投资的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少?【例69】(2024·全国·高一专题练习)某企业为进一步增加市场竞争力,计划在2024年利用新技术生产某款新手机,通过市场调研发现,生产该产品全年需要投入研发成本250万元,每生产x(千部)手机,需另外投入成本R x 万元,其中R x =10x2+100x+800,0<x<50504x+10000x-2-6450,x≥50,已知每部手机的售价为5000元,且生产的手机当年全部销售完.(1)求2024年该款手机的利润y关于年产量x的函数关系式;(2)当年产量x为多少时,企业所获得的利润最大?最大利润是多少?【例70】(2024·全国·高一专题练习)党的二十大报告提出“积极稳妥推进碳达峰碳中和”,降低能源消耗,建设资源节约型社会.日常生活中我们使用的LED灯具就具有节能环保的作用,它环保不含汞,可回收再利用,功率小,高光效,长寿命,有效降低资源消耗.经过市场调查,可知生产某种LED灯需投入的年固定成本为3万元,每生产x万件该产品,需另投入变动成本W(x)万元,在年产量不足6万件时,W x =12x2+x,在年产量不小于6万件时,W x =7x+81x-37.每件产品售价为6元.假设该产品每年的销量等于当年的产量.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式.(注:年利润=年销售收入-固定成本-变动成本)(2)年产量为多少万件时,年利润最大?最大年利润是多少?【例71】(2024·全国·高一专题练习)某学校为了支持生物课程基地研究植物的生长规律,计划利用学校空地建造一间室内面积为900m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与内墙各保留1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3m 宽的通道,如图.设矩形温室的室内长为x (单位:m ),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式;(2)求S 的最大值,并求出此时x 的值.【例72】(2024·江苏镇江·高一扬中市第二高级中学校考开学考试)党中央、国务院对节能减排高度重视,各地区、各部门认真贯彻党中央、国务院关于“十三五”节能减排的决策部署,把节能减排作为转换发展方式,经济提质增效,建设生态文明的重要抓手,取得重要进展.新能源汽车环保、节能、以电代油,减少排放,既符合我国国情,也代表了汽车产业发展的方向.为了响应国家节能减排的号召,2020年常州某企业计划引进新能源汽车生产设备,通过市场分析:全年需投入固定成本2500万元.每生产x (百辆)新能源汽车,需另投入成本C x 万元,且C x =10x 2+500x ,0<x <40901x +10000x-4300,x ≥40.由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2020年的利润L x (万元)关于年产量x (百辆)的函数关系式;(利润=销售-成本)(2)当2020年产量为多少百辆时,企业所获利润最大?并求出最大利润.【例73】(2024·浙江衢州·高一校考阶段练习)2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产.已知该厂家生产某种产品的年固定成本为200万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=12x2+20x(万元).当年产量不小于80千件时,C(x)=51x+10000x-600(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少?【例74】(2024·高一课时练习)新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A公司扩大生产提供x0≤x≤10(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到t=k⋅6-12 x+4(万件),其中k为工厂工人的复工率(0.5≤k≤1).A公司生产t万件防护服还需投入成本20+9x+50t(万元).(1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数(政府补贴x万元计入公司收入);(2)对任意的x∈0,10(万元),当复工率k达到多少时,A公司才能不产生亏损?(精确到0.01).【例75】(2024·山西晋城·高一晋城市第一中学校校考阶段练习)新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A公司扩大生产提供x(x∈[0,10])(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到t=k⋅ (万件),其中k为工厂工人的复工率(k∈[0.5,1]).A公司生产t万件防护服还需投入成本6-12x+4(20+9x+50t)(万元).(1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数(政府补贴x万元计入公司收入);(2)在复工率为k时,政府补贴多少万元才能使A公司的防护服利润达到最大?III 数学思想方法①分类讨论思想【例76】设函数f (x )=x +2,g (x )=x 2-x -1.用M (x )表示f (x ),g (x )中的较大者,记为M (x )=max{f (x ),g (x )},则M (x )的最小值是()A.1B.3C.0D.-54【例77】已知幂函数f (x )=(m 2-2m -2)x 2-m 满足f (2)<f (3),则函数g (x )=2x +m -x -m 的值域为()A.-258,+∞ B.[-3,+∞)C.[-1,+∞)D.[1,+∞)【例78】若定义在R 的奇函数f (x )在0,+∞ 单调递增,且f (-3)=0,则满足xf (x +1)≤0的x 的取值范围是()A.[-2,0]∪[1,4]B.[-4,-1)∪[0,2]C.[-4,-1]∪[0,2]D.[-4,-1]∪[3,+∞)【例79】已知函数f x =x 2-2ax +2,x ≤1x +9x-3a ,x >1的最小值为f 1 ,则a 的取值范围是()A.[1,3]B.3,+∞C.0,3D.-∞,1 ∪3,+∞【例80】已知函数f (x )=|x 2+bx |(b ∈R ),当x ∈[0,1]时,f (x )的最大值为M b ,则M b 的取值范围是()A.[1,+∞)B.[3-22,+∞)C.[4-23,+∞)D.[5-25,+∞)②转化与化归思想【例81】定义在R 上的奇函数f (x )在[0,+∞)上单调递减,且f (-2)=1,则满足-1≤f (x -1)≤1的x 的取值范围是()A.[-2,2]B.[-2,1]C.[-1,3]D.[0,2]【例82】已知函数f x =3x+1,x≤1x2-1,x>1,若n>m,且f(n)=f(m),设t=n-m,则t的最大值为()A. 1B.5-1C.1712 D.43【例83】若定义在R的奇函数f(x)在-∞,0单调递减,且f2 =0,则满足xf(x-1)≥0的x的取值范围是()A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]【例84】设a=0.40.6,b=0.60.8,c=0.80.4,则()A.a>b>cB.c>b>aC.c>a>bD.b>a>c【例85】已知函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是()A.[160,+∞)B.(-∞,40]C.(-∞,40]∪[160,+∞)D.(-∞,20]∪[80,+∞)【例86】函数f(x)=3+2x-x2的单调递增区间是()A.(-∞,1]B.[1,+∞)C.[1,3]D.[-1,1]③数形结合思想【例87】已知函数f(x)为奇函数,x>0时为增函数且f2 =0,则{x|f(x-2)>0}=.()A.{x|0<x<2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<-2或x>2}【例88】已知定义在R上的偶函数f(x)满足:①对任意的x 1,x2∈0,+∞,且x1≠x2,都有f(x1)-f(x2)x1-x2>0成立;②f(-2)=0.则不等式f(x)x>0的解集为()A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)∪(0,2)D.(-∞,-2)∪(2,+∞)21数学是打开科学大门的钥匙//邦达数学高一讲义宝剑锋从磨砺出【例89】已知函数f (x )=-x 2+4x ,x ∈[m ,5]的值域是[-5,4],则实数m 的取值范围是()A.(-∞,-1)B.(-1,2]C.[-1,2]D.[2,5]【例90】奇函数f (x )在-∞,0 上单调递减,且f 2 =0,则不等式f (x )>0的解集是.()A.(-∞,-2)∪(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)∪(0,2)D.(-2,0)∪(2,+∞)【例91】如图,直线l 和圆C ,当l 从l 0开始在平面上绕点O 按逆时针方向匀速转到(转到角不超过90{^°})时,它扫过的圆内阴影部分的面积S 是时间t 的函数,这个函数的图像大致是()A.B.C.D.【例92】已知函数y =f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的图像如图所示,则不等式xf (x )>0的解集为()22越努力越幸运//邦达数学高一讲义梅花香自苦寒来A.(-2,-1)∪(1,2)B.(-2,-1)∪(0,1)∪(2,+∞)C.(-∞,-2)∪(-1,0)∪(1,2)D.(-∞,-2)∪(-1,0)∪(0,1)∪(2,+∞)。
考点17导数与函数的单调性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用【知识点】1.函数的单调性与导数的关系条件恒有结论f ′(x )>0f (x )在区间(a ,b )上________f ′(x )<0f (x )在区间(a ,b )上________函数y =f (x )在区间(a ,b )上可导f ′(x )=0f (x )在区间(a ,b )上是________2.利用导数判断函数单调性的步骤第1步,确定函数的 ;第2步,求出导数f ′(x )的;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解【核心题型】题型一 不含参函数的单调性确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.【例题1】(2023·全国·模拟预测)已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为( )A .()2,3B .()3,4C .(),3-¥D .()3,+¥【变式1】(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为( )A .(),e -¥-B .()e,0-C .(),0¥-D .()1,0-【变式2】(2024·四川巴中·一模)已知奇函数()f x 的导函数为()f x ¢,若当0x <时()2af x x x=-,且()10f ¢-=.则()f x 的单调增区间为 .【变式3】(2024·河南开封·三模)已知函数()33ln f x x x =-,()f x ¢为()f x 的导函数.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()()()9g x f x f x x¢=--的单调区间和极值.题型二 含参数的函数的单调性(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点【例题2】(多选)(23-24高三上·海南省直辖县级单位·阶段练习)函数()322f x x ax x=++(R a Î)的大致图象可能为( )A .B .C .D .【变式1】(2024·天津·二模)已知()()ln R f x x ax x a =+×Î,(1)当2a =时,求()f x 在点()()e e f ,处的切线方程;(2)讨论()f x 的单调性;(3)若函数()f x 存在极大值,且极大值为1,求证:()2e xf x x -£+.【变式2】(2024·陕西商洛·三模)已知函数()()2212ln 2f x a x x ax a =--ÎR .(1)求函数()f x 的单调区间;(2)当0a >时,若函数()2e e 2x x g x a =+和()22h x a x =的图象在()0,1上有交点,求实数a 的取值范围.【变式3】(2024·全国·模拟预测)已知函数()(2)ln f x a x a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()9ln f x a >.(参考数据:ln 20.693»)题型三 函数单调性的应用由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0 (或f ′(x )<0)在该区间上存在解集命题点1 比较大小或解不等式【例题3】(2024·四川成都·模拟预测)若函数()f x 对任意的x ÎR 都有()()f x f x ¢<恒成立,则2(2)f 与2e (ln 2)f 的大小关系正确的是( )A .2(2)f >2e (ln 2)fB .2(2)f =2e (ln 2)fC .2(2)f <2e (ln 2)f D .无法比较大小【变式1】(2023·全国·模拟预测)比较11101011a =-,ln1.2b =,0.115ec =的大小关系为( )A .a c b >>B .b c a >>C .b a c>>D .a b c>>【变式2】(23-24高三上·湖南衡阳·期末)已知函数()()21e ln 12xf x x a x =--+.(1)证明:当1a £时,()1f x ≥对[)0,x Î+¥恒成立.(2)若存在()1212,x x x x ¹,使得()()12f x f x =,比较()()1211x x ++与2e e a的大小,并说明理由.【变式3】(23-24高三上·河北保定·阶段练习)已知函数()()2ln 12x f x x =++.(1)当[)0,x Î+¥时,比较()f x 与x 的大小;(2)若函数()2cos 2x g x x =+,且()()2e 10,0a f g b a b æö=->>ç÷èø,证明:()()211f b g a +>+.命题点2 根据函数的单调性求参数【例题4】(2023·全国·模拟预测)若对任意的1x ,2(,)x m Î+¥,且12x x <,122121ln ln 2x x x x x x -<-,则实数m 的取值范围是( )A .1,e e æöç÷èøB .1,e e éùêúëûC .1,e ¥éö+÷êëøD .1,e æö+¥ç÷èø【变式1】(23-24高三上·广东汕头·期中)设()0,1a Î,若函数()(1)x xf x a a =++在()0,¥+递增,则a 的取值范围是( )A.B.ö÷÷øC.ö÷÷øD.æççè【变式2】(多选)(23-24高三上·河南·阶段练习)已知函数()2ln f x x ax x =--,下列命题正确的是( )A .若1x =是函数()f x 的极值点,则1a =B .若()10f =,则()f x 在[]0,2x Î上的最小值为0C .若()f x 在()1,2上单调递减,则1a ≥D .若()()l ln x x f x -≥在[]1,2x Î上恒成立,则2a ≥【变式3】(23-24高三上·山东青岛·期末)若函数2()e 1x f x a x =+-在(0,)+¥上单调递增,则a 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·全国·高考真题)已知函数()e ln x f x a x =-在区间()1,2上单调递增,则a 的最小值为( ).A .2e B .eC .1e -D .2e -2.(23-24高三上·山西大同·阶段练习)设()af x x a x=-+在()1,+¥上为增函数,则实数a 取值范围是( )A .[)0,¥+B .[)1,+¥C .[)2,-+¥D .[)1,-+¥3.(2024·云南楚雄·一模)若a b >,则函数()2()y a x a x b =--的图象可能是( )A .B .C .D .4.(2024高三下·全国·专题练习)已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数12,x x 使得1()0>f x ,且2()0f x >,则实数a 的取值范围为( )A .[ln 3,2)B .(0,2ln 3]-C .(0,2ln 3)-D .[2ln 3,2)-5.(2024·全国·模拟预测)已知8sin 15a =,3ln 2b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .a c b>>C .b a c>>D .c b a>>二、多选题6.(2023·全国·模拟预测)已知函数()33f x x x =-,则( )A .函数()()()'g x f x f x =× 是偶函数B .y x =-是曲线()y f x =的切线C .存在正数(),a f x 在(),a a -不单调D .对任意实数a ,()(f a f a £+7.(23-24高三上·江西宜春·期中)下列函数中,是奇函数且在区间()0,1上是减函数的是( )A .()exf x =B .()sin f x x =-C .()1f x x=D .3()2f x x x=-三、填空题8.(2024·云南大理·模拟预测)函数()12ln f x x x =--的最大值为.9.(2024·全国·模拟预测)已知函数()2e e e x x x g x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题10.(2024·江西南昌·一模)已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.11.(2024·江苏盐城·模拟预测)已知函数()2ln f x ax x x =--.(1)讨论()f x 的单调性;(2)若不等式()0f x ≥恒成立,求a 的取值范围.综合提升练一、单选题1.(2023·贵州毕节·一模)给出下列命题:①函数2()2x f x x =-恰有两个零点;②若函数()4a af x x x =-+在(1,)+¥上单调递增,则实数a 的取值范围是[1,)-+¥;③若函数()f x 满足()(1)4f x f x +-=,则12918101010f f f æöæöæö+++=ç÷ç÷ç÷èøèøèøL ;④若关于x 的方程20x m -=有解,则实数m 的取值范围是(0,1].其中正确的是( )A .①③B .②④C .③④D .②③2.(2023·江西·模拟预测)已知函数()32f x ax bx cx d =+++的大致图象如图所示,则( )A .0,0,0a b c >><B .0,0,0a b c ><<C .0,0,0a b c ><>D .a 0,b 0,c 0<>>3.(2024·云南昆明·模拟预测)已知函数()()()1e x f x x a =-+在区间()1,1-上单调递增,则a 的最小值为( )A .1e -B .2e -C .eD .2e 4.(2024·全国·模拟预测)已知函数2()4e e 2e x x xf x x =--,()f x ¢为()f x 的导函数,()()e xf xg x ¢=,则( )A .()g x 的极大值为24e 2-,无极小值B .()g x 的极小值为24e 2-,无极大值C .()g x 的极大值为4ln22-,无极小值D .()g x 的极小值为4ln22-,无极大值5.(2024·全国·模拟预测)已知13,,ln2e 14a b c ===-,则它们之间的大小关系是( )A .a b c <<B .a c b <<C .c a b<<D .c b a<<6.(2023·贵州遵义·模拟预测)若函数()2e x axf x -=在区间()1,3上单调递增,则a 的可能取值为( )A .2B .3C .4D .57.(2024·全国·模拟预测)若22ln 2e a -=,12e b =,ln 24c =,则a ,b ,c 的大小顺序为( )A .a c b<<B .c a b <<C .a b c <<D .b a c<<8.(2023·吉林通化·模拟预测)已知函数()e ln xf x a x =-有两个大于1的零点,则a 的取值范围可以是( )A .(]0,1B .1e 1,e æùçúèûC .1ee ,e æùçúèûD .)e 12e e ,e +éë二、多选题9.(22-23高三上·云南昆明·阶段练习)已知函数21e 1xx y x -=×-,则( )A .函数的极大值点为=0x B .函数的极小值点为=0x C .函数在(1,)+¥上单调递增D .函数在31,2æöç÷èø上单调递减10.(2023·云南昆明·模拟预测)已知函数3()f x x mx n =--,其中,m n ÎR ,下列选项中,能使函数()y f x =有且仅有一个零点的是( )A .1m =-,1n =B .0m =,1n =C .3m =,2n =D .3m =,3n =-11.(2023·山东泰安·一模)已知函数()()()ln f x x x ax a =-ÎR 有两个极值点1x ,2x ()12x x <,则( )A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-三、填空题12.(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为 .13.(2023·湖南·模拟预测)已知函数()sin esin a xf x a x =-,对于任意12,x x ÎR ,都有()()12e 2f x f x -£-,则实数a 的取值范围为 .14.(2023·广东广州·模拟预测)已知函数()()()222e 22e 0x xf x a x a x a =--->恰有两个零点,则=a .四、解答题15.(2024·全国·模拟预测)已知函数2()ln f x x ax bx =+-.(1)当1a =,3b =时,求()f x 的单调区间;(2)若函数()f x 在2x =处取得极值ln 2,求曲线()y f x =在点(1,(1))f 处的切线方程.16.(2024·全国·模拟预测)已知函数()2()e x f x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()4ln 2f x a ≥+.17.(2024·全国·模拟预测)已知函数()()21ln 12f x x x a x =+++,a ÎR .(1)讨论()f x 的单调性;(2)证明:当1a <-时,()21a f x +>.18.(2024·青海·模拟预测)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.19.(2023·全国·模拟预测)已知函数()e xf x ax b =+-,其中e 为自然对数的底数.(1)若()f x 在区间(]1,2上不是单调函数,求a 的取值范围.(2)当0x ≥时,()2112f x x b ≥+-恒成立,求a 的取值范围.拓展冲刺练一、单选题1.(2024·全国·模拟预测)下列函数是奇函数且在()0,¥+上单调递减的是( )A .()32xxf x -=+B .()2222x xxxf x ---=+C .()3f x x x=-D .()(12log f x x =2.(2024·全国·模拟预测)已知函数()32()log 2(0a f x x ax x a a =-+->且1)a ¹在区间(1,)+¥上单调递减,则a 的取值范围是( )A .20,3æùçúèûB .2,13éö÷êëøC .(1,2]D .[2,)+¥3.(2024·甘肃兰州·三模)函数()21ln f x x ax x =-++-,若()f x 在0,12æöç÷èø是减函数,则实数a 的取值范围为( )A .(,2]-¥B .(,2)-¥C .(,3]-¥D .(3),-¥4.(2024·全国·模拟预测)已知 2.012.0111110312,ln ,1001011021001015a b c æöæö=++==+ç÷ç÷èøèø,则( )A .a b c <<B .c b a <<C .<<b c aD .<<c a b二、多选题5.(2024·云南昆明·模拟预测)已知函数()321f x x ax ax =+-+,则下列说法正确的是( )A .若()f x 为R 上的单调函数,则3a <-B .若2a =时,()f x 在()1,1-上有最小值,无最大值C .若()1f x -为奇函数,则0a =D .当0a =时,()f x 在1x =处的切线方程为310x y --=6.(2024·云南曲靖·一模)下列不等式正确的是( )A .πe e π>B .1ln 0.99-<C .15sin 15<D .11sin 3π<三、填空题7.(2024·全国·模拟预测)已知1a >,0b >,1c >,且e e ln a b a b --==a ,b ,c 的大小关系为 .(用“<”连接)8.(2023·安徽·二模)若不等式2ln 23x ax a -£-对(0,)"Î+¥x 恒成立,则实数a 的取值范围为 .四、解答题9.(2024·湖南衡阳·二模)已知函数()()321f x ax bx a =++ÎR ,当2x =时,()f x 取得极值3-.(1)求()f x 的解析式;(2)求()f x 在区间[]1,3-上的最值.10.(2024·陕西西安·三模)已知函数1()ln ()m f x mx x m x-=--ÎR ,函数1π()ln ,[0,cos 2g x x x q q =+Î在区间[1,)+¥上为增函数.(1)确定q 的值,求3m =时曲线()y f x =在点(1,(1))f 处的切线方程;(2)设函数()()()h x f x g x =-在,()0x Î+¥上是单调函数,求实数m 的取值范围.11.(2024·辽宁丹东·一模)已知函数()ln 1f x x mx =++.(1)讨论函数()f x 的单调性;(2)当1m =时,数列{}n a 满足11a =,1()n n a f a +=①求证:12n n a -£;②求证:22223111(1)(1(1e na a a +++<L .。
1专题23二次函数的概念、图像与基本性质题型一二次函数的定义1.如果函数22(2)27my m x x -=-+-是二次函数,则m 的取值范围是()A .2m =±B .2m =C .2m =-D .m 为全体实数2.下列函数中是二次函数的是()A .222(1)2y x x =--B .235s t t =--+C .2y ax bx c=++D .22y x x -=-3.函数||1(1)55m y m x x +=++-是二次函数,则m =.4.已知函数22()(1)22y m m x m x m =-+-+-.(1)若这个函数是二次函数,求m 的取值范围.(2)若这个函数是一次函数,求m 的值.(3)这个函数可能是正比例函数吗?为什么?5.在函数①2y ax bx c =++,②22(1)y x x =--,③2255y x x=-,④22y x =-+中,y 关于x 的二次函数是.(填写序号)2题型二二次函数的图像与性质6.二次函数241y x x =++的图象的对称轴是()A .2x =B .4x =C .2x =-D .4x =-7.抛物线22(1)6y x =-+的顶点坐标是()A .(2,6)B .(1,6)C .(2,1)D .(1,6)-8.如果0a <,0b >,0c >,那么二次函数2y ax bx c =++的图象大致是()A .B .C .D .9.对于二次函数22(3)y x =-+的图象,下列说法正确的是()A .开口向上B .对称轴是直线3x =-C .当4x >-时,y 随x 的增大而减小D .顶点坐标为(2,3)--10.已知1(A x ,1)y ,2(B x ,2)y 是22(0)y ax x c a =-+≠上的两点,则下列命题正确的是()A .若120x x >>时,12y y c >>,则开口一定向下B .若120x x <<时,12y y c >>,则开口一定向上C .若120x x >>时,12y c y >>,则开口一定向上D .若120x x <<时,12y y c >>,则开口一定向下11.在平面直角坐标系中,抛物线22221y x mx m m =-+++的顶点一定不在()A .第一象限B .第二象限C .第三象限D .第四象限12.二次函数2y ax bx c =++的图象如图所示,则下列结论正确的是()A .0abc >B .0a b c ++=C .420a b c -+<D .240b ac -<313.已知函数2|3|y x =-的大致图像如图所示,如果方程2|3|(x m m -=为实数)有4个不相等的实数根,则m 的取值范围是.14.若直线(y b b =为实数)与函数2|43|y x x =-+的图象至少有三个公共点,则实数b 的取值范围是()A .01b < B .10b -< C .13b D .12b < 15.我们定义两个不相交的函数图象在竖直方向上的最短距离为这两个函数的“和谐值”.抛物线223y x x =-+与直线2y x =-的“和谐值”为()A .3B .114C .52D .216.二次函数22(0)y ax ax c a =-+>的图象过1(3,)A y -,2(1,)B y -,3(2,)C y ,4(4,)D y 四个点,下列说法一定正确的是()A .若120y y >,则340y y >B .若140y y >,则230y y >C .若240y y <,则130y y <D .若340y y <,则120y y <17.若点1(1,)A y -,2(2,)B y ,3(3,)C y 在抛物线228y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是()A .321y y y <<B .213y y y <<C .132y y y <<D .312y y y <<18.已知二次函数2()(0)y a x m a =->的图象经过点(1,)A p -,(3,)B q ,且p q <,则m 的取值范围是()A .1m - B .1m <C .11m -< D .1m >19.若二次函数2||y a x bx c =++的图象过不同的五点(,)A m n ,(3,)B m n -,1(0,)C y,D 2)y ,3(2,)E y ,则1y ,2y ,3y 的大小关系是()A .123y y y <<B .231y y y <<C .321y y y <<D .132y y y <<20.已知二次函数(2)()2y x m x m =+--+,点1(A x ,1)y ,2(B x ,212)()y x x <是其图象上两点,()A .若122x x +>,则12y y >B .若122x x +<,则12y y >C .若122x x +>-,则12y y >D .若122x x +<-,则12y y <421.在平面直角坐标系中,抛物线2y x =的图象如图所示.已知A 点坐标为(1,1),过点A 作1//AA x 轴交抛物线于点1A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A ,过点3A 作34//A A OA 交抛物线于点4A ⋯,依次进行下去,则点99A的坐标为.题型三函数图像的平移、对称22.将抛物线22(1)3y x =--向右移动2个单位,再向下移动3个单位,得到的抛物线的解析式为()A .22(1)y x =+B .22(1)6y x =+-C .22(3)y x =-D .22(3)6y x =--23.把二次函数23y x =的图象先向左平移3个单位长度,再向下平移5个单位长度,得到的图象的解析式为()A .23(3)5y x =-+B .23(3)5y x =++C .23(3)5y x =--D .23(3)5y x =+-24.在平面直角坐标系中,抛物线(2)(4)y x x =+-经变换后得到抛物线(2)(4)y x x =-+,则下列变换正确的是()A .向左平移6个单位B .向右平移6个单位C .向左平移2个单位D .向右平移2个单位25.如图,在平面直角坐标系中,抛物线213y x =经过平移得到抛物线2y ax bx =+,其对称轴与两段抛物线所围成的阴影部分的面积为23,则a 、b 的值分别为()A .13,43B .13,23-C .13,43-D .13-,43526.在平面直角坐标系中,有两条抛物线关于原点中心对称,且它们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为28y x x m =++,则m 的值为()A .13-或19-B .13-或19C .13或19D .13或19-27.在同一平面直角坐标系中,若抛物线2(22)69y x m n x n =--+-+与22(5)y x m n x m =+-+关于x 轴对称,则22m n +的值为()A .13B .18C .24D .3628.已知一个二次函数的图象经过点(2,2),顶点为(1,1)--,将该函数图象向右平移,当他再次经过点(2,2)时,所得抛物线表达式为()A .21(5)13y x =--+B .21(5)13y x =--C .21(4)103y x =+-D .23(7)1y x =--29.关于抛物线21(1)y x =+与22(1)y x =-,下列说法不正确的是()A .图象1y 与2y 的开口方向相同B .1y 与2y 的图象关于y 轴对称C .图象2y 向左平移2个单位可得到1y 的图象D .图象1y 绕原点旋转180︒可得到2y 的图象30.如图,已知点(3,0)A ,(1,0)B ,两点(3,9)C -,(2,4)D 在抛物线2y x =上,向左或向右平移抛物线后,C ,D 的对应点分别为C ',D '.当四边形ABC D ''的周长最小时,抛物线的解析式为.。
专题6.1 函数-重难点题型【苏科版】MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分的面积ycm2与MA的长度xcm之间的关系式,并指出其中的常量与变量.【变式1-1】.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n个图形的棋子数y=(用含n的代数式表示),其中变量是.【变式1-2】按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.(1)题中有几个变量?(2)你能写出两个变量之间的关系吗?【变式1-3】在烧开水时,水温达到100△就会沸腾,下表是某同学做“观察水的沸腾”实验时记录的数据:(1)上表反映了哪两个量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间推移2分钟,水的温度如何变化?(4)时间为8分钟,水的温度为多少?你能得出时间为9分钟时,水的温度吗?(5)根据表格,你认为时间为16分钟和18分钟时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?【题型2 判断函数关系】【例2】(2021春•海淀区期末)如图,有一个球形容器,小海在往容器里注水的过程中发现,水面的高度h、水面的面积S及注水量V是三个变量.下列有四种说法:△S是V的函数;△V是S的函数;△h是S的函数,△S是h的函数.其中所有正确结论的序号是()A.△△B.△△C.△△D.△△【变式2-1】(2021春•开福区校级月考)下列式子中,y不是x的函数的是()A.y=x2B.y=|x|C.y=2x+1D.y=±√x(x≥0)【变式2-2】(2021春•邯郸期末)下列不能表示y是x的函数的是()A.x051015y3 3.54 4.5B.C.D.x1357y2﹣140.2【变式2-3】(2021春•贵港期末)下列各曲线中能表示y不是x的函数的是()A.B.C.D.【题型3 函数的关系式】【例3】(2020春•兰州期末)如图所示,在一个边长为12cm的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果小正方形的边长为xcm,图中阴影部分的面积为ycm2,请写出y与x的关系式;(3)当小正方形的边长由1cm变化到5cm时,阴影部分的面积是怎样变化的?【变式3-1】(2021春•宁津县期末)如图,△ABC的边BC长12cm,乐乐观察到当顶点A 沿着BC边上的高AD所在直线上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC的面积y(cm2)与x(cm)的关系式是.【变式3-2】(2021春•垦利区期末)一辆汽车油箱内有油56升,从某地出发,每行驶1千米,耗油0.08升,如果设油箱内剩油量为y(升),行驶路程为x(千米),则y随x的变化而变化(1)在上述变化过程中,自变量是;因变量是.(2)用表格表示汽车从出发地行驶100千米、200千米、300千米、400千米时的剩油量.请将表格补充完整:行驶路程x (千米)100200300400油箱内剩油量y (升)40 24(3)试写出y 与x 的关系式 .(4)这辆汽车行驶350千米时剩油多少升?汽车剩油8升时,行驶了多少千米?【变式3-3】如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm . (1)观察图形填写下表: 链条节数(节) 2 3 4 链条长度(cm )(2)如果x 节链条的总长度是y ,求y 与x 之间的关系式;(3)如果一辆某种型号自行车的链条(安装前)由80节这样的链条组成,那么这根链条完成链接(安装到自行车上)后,总长度是多少cm ?【题型4 求函数的值】【例4】(2020春•万州区期末)若定义f (x )=3x ﹣2,如f (﹣2)=3×(﹣2)﹣2=﹣8.下列说法中:△当f (x )=1时,x =1;△对于正数x ,f (x )>f (﹣x )均成立;△f (x ﹣1)+f (1﹣x )=0;△当且仅当a =2时,f (a ﹣x )=a ﹣f (x ).其中正确的是 .(填序号)【变式4-1】(2021•碑林区校级模拟)变量x ,y 的一些对应值如下表:x … ﹣2﹣1 0 1 23… y…14111419…根据表格中的数据规律,当x =﹣5时,y 的值是( ) A .15B .125C .−15D .−125【变式4-2】(2021•达州)如图是一个运算程序示意图,若开始输入x 的值为3,则输出y 值为 .【变式4-3】(2008•防城港)已知x为实数.y、z与x的关系如表格所示:根据上述表格中的数字变化规律,解答下列问题:(1)当x为何值时,y=430?(2)当x为何值时,y=z?x y z………330×3+702×1×8430×4+702×2×9530×5+702×3×10630×6+702×4×11………【题型5 函数的图象】【例5】(2021•三元区校级开学)火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:△火车的长度为120米;△火车的速度为30米/秒;△火车整体都在隧道内的时间为25秒;△隧道长度为750米.其中正确结论的个数有()A.1个B.2个C.3个D.4个【变式5-1】(2021春•番禺区校级期中)小新骑车去学校,骑了一会后车子出了故障,修了一会,然后继续骑车去学校.如果用横坐标表示时间t,纵坐标表示路程s,下列各图能较好地反映s与t之间函数关系的是()A.B.C.D.【变式5-2】(2021春•任城区期末)小华和小明是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校,如图是他们从家到学校已走的路程S (米)和所用时间t(分钟)的关系图,则下列说法中错误的是()A.小明家和学校距离1200米B.小华乘公共汽车的速度是240米/分C.小华乘坐公共汽车后7:50与小明相遇D.小明从家到学校的平均速度为80米/分【变式5-3】(2021•沙坪坝区校级开学)夏季是雷雨高发季节,为缓解暴雨带来的洪灾问题,某村在道路内侧新建了一个排水渠排水(横截面如图),某天突发暴雨,排水渠开始积水,水位上涨,暴雨停歇后,排水渠继续排水至积水全部排出,假设排水速度为5v,进水速度为7v,下列图象中,能反映以上过程排水渠中水位高度h与时间t的关系的大致图象是()A.B.C.D.【题型6 动点问题的函数图象】【例6】(2021春•济南期中)如图1,在长方形ABCD中,点P从B点出发沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后又恢复为每秒m个单位匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图2所示,则m、a、b的值分别是()A.m=1,a=5,b=11B.m=1,a=4,b=12C.m=1.5,a=5,b=12D.m=1,a=4,b=11【变式6-1】(2021春•怀安县期末)如图,平行四边形ABCD中,AB=4,BC=3,△DCB =30°,动点E从B点出发,沿B﹣C﹣D﹣A运动至A点停止,设运动的路程为x,△ABE 的面积为y,则y与x的函数图象用图象表示正确的是()A.B.C.D.【变式6-2】(2021春•平顶山期末)如图△,四边形ABCD是长方形,动点E从B出发,以1厘米/秒的速度沿着B→C→D→A运动至点A停止.记点E的运动时间为t(秒),△ABE的面积为S(平方厘米),其中S与t的函数关系如图△所示,那么下列说法错误的是()A.AB=3厘米B.长方形ABCD的周长为10厘米C.当t=3秒时,S=3平方厘米D.当S=1.5平方厘米时,t=6秒【变式6-3】(2021春•南海区期末)如图,在正方形ABMF中剪去一个小正方形CDEM,动点P从点A出发,沿A→B→C→D→E→F的路线绕多边形的边匀速运动到点F时停止,则△APF的面积S随着时间t变化的图象大致是()A.B.C.D.。
专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.83(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1B.23-1C.32D.1-35(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.46(新高考天津卷)已知函数f x =sin3ωx +π3 ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.327(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x8(新课标全国Ⅱ卷)对于函数f (x )=sin2x 和g (x )=sin 2x -π4,下列说法正确的有()A.f (x )与g (x )有相同的零点B.f (x )与g (x )有相同的最大值C.f (x )与g (x )有相同的最小正周期D.f (x )与g (x )的图像有相同的对称轴9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tan α+tan β=4,tan αtan β=2+1,则sin (α+β)=.10(全国甲卷数学(文))函数f x =sin x -3cos x 在0,π 上的最大值是.2024年高考真题汇总一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.22(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.783(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.4(2024·山东济宁·三模)已知函数f (x )=(3sin x +cos x )cos x -12,若f (x )在区间-π4,m 上的值域为-32,1,则实数m 的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π125(2024·江西景德镇·三模)函数f x =cos ωx x ∈R 在0,π 内恰有两个对称中心,f π =1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若f α +g α =35,则cos 4α+π3=()A.725B.1625C.-925D.-19256(2024·安徽马鞍山·三模)已知函数f (x )=sin2ωx +cos2ωx (ω>1)的一个零点是π2,且f (x )在-π6,π16 上单调,则ω=()A.54 B.74C.94D.1147(2024·山东临沂·二模)已知函数f x =sin 2x +φ ϕ <π2图象的一个对称中心为π6,0 ,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称8(2024·广东广州·二模)已知函数f(x)=2sin(ωx+φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f(x)的图象向右平移θ(θ>0)个单位后所得曲线关于y轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π29(2024·四川雅安·三模)已知函数f x =sinωx+3cosωx(ω>0),则下列说法中正确的个数是()①当ω=2时,函数y=f x -2logπx有且只有一个零点;②当ω=2时,函数y=f x+φ为奇函数,则正数φ的最小值为π3;③若函数y=f x 在0,π3上单调递增,则ω的最小值为12;④若函数y=f x 在0,π上恰有两个极值点,则ω的取值范围为136,256 .A.1B.2C.3D.410(2024·河北保定·二模)已知tanα=3cosαsinα+11,则cos2α=()A.-78B.78C.79D.-7911(2024·河北衡水·三模)已知sin(3α-β)=m sin(α-β),tan(2α-β)=n tanα,则m,n的关系为()A.m=2nB.n=m+1m C.n=mm-1D.n=m+1m-112(2024·辽宁沈阳·三模)已知tan α2=2,则sin2α2+sinα的值是()A.25B.45C.65D.8513(2024·贵州黔东南·二模)已知0<α<β<π,且sinα+β=2cosα+β,sinαsinβ-3cosαcosβ=0,则tanα-β=()A.-1B.-32C.-12D.12二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-30815(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-1219(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数D.h x 在区间0,2π 上的图象过3个定点21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为1222(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.25(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.。
一、 知识梳理【反函数】1. 反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=. 2. 反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; ③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. 3. 反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.【对数函数及性质】函数 名称 对数函数(指数函数的反函数)定义 函数log (0a y x a =>且1)a ≠叫做对数函数图象1a >01a <<教学内容定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x=时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.对数的运算(1)几个重要的对数恒等式 : log 10a =,log 1a a =,log b a a b =. (2)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (3)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 【函数变换与周期性】平移变换(“左加右减” 或 “正左负右”)①函数(),(0)y f x a a =+>的图象是把函数()y f x =的图象沿x 轴向左移a 个单位得到; ②函数(),(0)y f x a a =+<的图象是把函数()y f x =的图象沿x 轴向右移||a 个单位得到 ③函数(),(0)y f x a a =+>的图象是把函数()y f x =的图象沿y 轴向上移a 个单位得到;xyO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=④函数()(0)y f x a a =+<的图象是把函数()y f x =的图象沿y 轴向下移||a 个单位得到 对称变换①函数)(x f y =与函数)(x f y -=的图象关于直线0x =对称; 函数)(x f y =与函数)(x f y -=的图象关于直线0y =对称; 函数)(x f y =与函数)(x f y --=的图象关于坐标原点对称;②若函数)(x f y =对于一切,R x ∈都有()()f x a f a x +=-,则)(x f y =的图象关于直线a x =对称。
若函数)(x f y =对于一切,R x ∈都有()()f x a f b x +=-,则)(x f y =的图象关于直线2a bx +=对称。
③函数)(x a f y +=与函数)(x a f y -=的图象关于直线0x =对称。
函数)(x a f y +=与函数()y f b x =-的图象关于2b ax -=对称 ④)(x f y =→)(x f y = 图像? ⑤)(x f y =→)(x f y = 图像?函数周期性基本概念:周期、最小正周期基本性质:(1) ()y f x =对x R ∈时,()()f x a f x a +=- 或(2)()(0)f x a f x a -=>恒成立,则()y f x =是周期为2T a =的周期函数;(2)若()y f x =是偶函数,其图像又关于直线x a =对称,则()f x 是周期为2||T a =的周期函数; (3)若()y f x =奇函数,其图像又关于直线x a =对称,则()f x 是周期为4||T a =的周期函数; (4)若()y f x =关于点(a,0),(b,0)对称,则()y f x =是周期为2||T a b =-的周期函数;(5)()y f x =的图象关于直线,()x a x b a b ==≠对称,则函数()y f x =是周期为2||T a b =-的周期函数;(6)()y f x =对x R ∈时,()()f x a f x +=- (或1()()f x a f x +=-,则()y f x =是周期为2T a =的周期函数;【复合函数】1. 复合函数[()]f g x 的定义、定义域、值域:2. 复合函数的奇偶性:【奇奇为奇,有偶为偶】若函数()g x ,()f x ,[()]f g x 的定义域都是关于原点对称的,则()u g x =,()y f u = 都是奇函数时,[()]y f g x =是奇函数;()u g x =,()y f u =都是偶函数,或者一奇一偶时,[()]y f g x =是偶函数。
3. 复合函数的单调性:【同增异减】二、课堂训练1. 函数211y x =++(0)x <的反函数是( )A. 22y x x =-(0)x <B. 22y x x =--(0)x <C.22y x x =-(2)x >D.22y x x =--(2)x >2. 函数x b y a +=,(01,10a b <<-<<)的图像为( )3. 定义在区间),1[∞+上的函数)(x f 满足:①)(2)2(x f x f =;②当42≤≤x 时,|3|1)(--=x x f ,则集合)}34()({f x f x S ==中的最小元素是…………………( ) A .2 B .4 C .6 D .84. 设a 为大于1的常数,函数⎩⎨⎧≤>=+00log )(1x ax x x f x a ,若关于x 的方程0)()(2=⋅-x f b x f 恰有三个不同的实数解,则实数b 的取值范围是 .5. 已知函数()f x 和()g x 的图像关于原点对称,且2()f x x x =+ (1)求函数()y g x =的解析式;(2)若()()()3h x g x m f x =-⋅+在[]1,1-上是增函数,求实数m 的取值范围.xyOxyOxyOxyO A BCD6. 有以下命题:①若函数f (x )既是奇函数又是偶函数,则f (x )的值域为{0}; ②若函数f (x )是偶函数,则f (|x |)=f (x );③若函数f (x )在其定义域内不是单调函数,则f (x )不存在反函数;④若函数f (x )存在反函数f ﹣1(x ),且f ﹣1(x )与f (x )不完全相同,则f (x )与f ﹣1(x )图象的公共点必在直线y=x 上;其中真命题的序号是 .(写出所有真命题的序号)7. 已知函数()()()220log 01x x f x x x ⎧≤⎪=⎨<≤⎪⎩的反函数是()1f x -,则12f -1⎛⎫= ⎪⎝⎭____________8. 已知函数2log 02()25()239x x x f x x <<⎧⎪=⎨+≥⎪⎩,,.若函数()()g x f x k =-有两个不同的零点,则实数k 的取值范围是____________.9. 设函数()2xf x =,函数()g x 的图像与函数()f x 的图像关于y 轴对称.(1)若()4()3f x g x =+,求x 的值;(2)若存在[]0,4x ∈,使不等式3)2()(≥--+x g x a f 成立,求实数a 的取值范围.第 4 次课后作业学生姓名:一、设函数()y f x =的定义域是R ,对于以下四个命题:(1) 若()y f x =是奇函数,则(())y f f x =也是奇函数; (2) 若()y f x =是周期函数,则(())y f f x =也是周期函数; (3) 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;(4) 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x=-也有零点.其中正确的命题共有 (A) 1个(B) 2个(C) 3个(D) 4个二、若函数1log log )(222+-=x x x f (2≥x )的反函数为)(1x f -,则)3(1-f= .三、已知定义在R 上的函数()f x 满足:①()(2)0f x f x +-=;②()(2)0f x f x ---=;③ 在[1,1]-上表达式为21,[1,0]()1,(0,1]x x f x x x ⎧=∈-⎪=⎨-∈⎪⎩,则函数()f x 与122,0()log ,0x x g x x x ⎧≤⎪=⎨>⎪⎩的图像在区间[3,3]-上的交点的个数为四、函数21()(2)1xx f x x x ⎧≤⎪=⎨->⎪⎩,如果方程()f x b =有四个不同的实数解1x 、2x 、3x 、4x ,则1234x x x x +++= .五、20. 已知函数()9233x x f x a =-⋅+;(1)若1a =,[0,1]x ∈,求()f x 的值域; (2)当[1,1]x ∈-时,求()f x 的最小值()h a ;(3)是否存在实数m 、n ,同时满足下列条件:①3n m >>;②当()h a 的定义域为[,]m n 时,其值域为22[,]m n ,若存在,求出m 、n 的值,若不存在,请说明理由;。