命题方向二 解不等式
典例6 已知奇函数f(x)在(-∞,0)上是减函数,若f(-2)=0,则xf(x)<0的解集为
(B) A.(-2,0)∪(0,2) C.(-1,0)∪(2,+∞)
B.(-∞,-2)∪(2,+∞) D.(-∞,-2)∪(0,2)
解析 由题意得函数f(x)的大致图象如下,
因为xf(x)<0,所以函数f(x)的图象应在第二、四象限,所以不等式的解集为 (-∞,-2)∪(2,+∞),故选B.
规律总结 函数图象的识辨可从以下方面入手 1.由函数的定义域判断图象的左右位置;由函数的值域判断图象的上下位置; 2.由函数的单调性判断图象的变化趋势; 3.由函数的奇偶性判断图象的对称性; 4.由函数的周期性判断图象的循环往复; 5.由特殊点排除不符合要求的图象.
2-1
(1)函数y=
2
2x3 x 2-
规律总结 利用函数图象的直观性求解相关问题,关键在于准确作出函数图象,根据函数 解析式的特征和图象的直观性先确定函数的相关性质,特别是函数图象的对 称性,然后解决相关问题.
3-1 已知函数f(x)为R上的偶函数,当x≥0时, f(x)单调递减,若f(2a)>f(1-a),则a
的取值范围是 ( C )
解析
lg x(x 1),
(1)y=-lg x(0 x
1)
的图象如图①.
(2)将y=2x的图象向左平移2个单位长度即可得到y=2x+2的图象,如图②.
(3)y= x 2 =1+ 3 ,先作出y= 3 的图象,再将其图象向右平移1个单位长度,向上
x-1 x-1
x
平移1个单位长度,即得到y= x 2 的图象,如图③.