2018-2019年北京市海淀区XX学校七年级上期中数学模拟试卷含解析[精品]
- 格式:doc
- 大小:274.50 KB
- 文档页数:14
初一年级第一学期期末学业水平调研2019.1数 学学校 班级 姓名 成绩一、 选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.如图,用圆规比较两条线段AB 和A ′B ′的长短,其中正确的是A .A ′B ′>AB B .A ′B ′=ABC .A ′B ′<ABD .没有刻度尺,无法确定.2.-5的绝对值是A . 5B .-5C .-15D .5±3.2018年10月23日,世界上最长的跨海大桥 ——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为A .35.510⨯ B .35510⨯ C .45.510⨯ D .4610⨯ 4.下列计算正确的是A .325a b ab +=B .()325a a a--=C .232a a a-=D .()()3212a a a ---=-5.若x =-1是关于x 的方程2x +3=a 的解,则a 的值为A .-5B .5C .-1D .16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′, ∠2的大小是 A .27°40′B .57°40′C .58°20′D .62°20′7.已知AB =6,下面四个选项中能确定...点C 是线段AB 中点的是 A .AC +BC =6 B .AC =BC =3 C .BC =3 D .AB =2AC8.若2x =时42+x mx n -的值为6,则当2x =-时42+x mx n -的值为 A .-6B .0C .6D .269.从图1的正方体上截去一个三棱锥, 得到一个几何体,如图2.从正面看 图2的几何体,得到的平面图形是A B C D 10.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是A .a b +B .a b -C .abD .a b-二、填空题(本大题共16分,每小题2分)11.比较大小:-3 -2.1(填“>”,“<”或“=”). 12.右图中A ,B 两点之间的距离是 厘米(精确到厘米),点B 在点A 的南偏西 °(精确到度).西南东B图1图2从正面看13.下图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是: .14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为 (用含a ,b 的式子表示).15.如图,点O 在直线AB 上,射线OD 平分∠COA ,∠DOF =∠AOE =90°,图中与∠1相等的角有 (请写出所有答案).16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______________________________.17.已知点O 为数轴的原点,点 A ,B 在数轴上,若AO =10,AB =8,且点A 表示的数比 点B表示的数小,则点B 表示的数是______________________________.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠....上代数式所表示数的和.y .已知当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值总不变. (1)a = ;(2)若输入一个整数x ,某些..滚珠相撞,输出y 值恰好为-1,则x = . 三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.计算:(1)()2533-÷-; (2)118(11)24-⨯+-.20.解方程:(1)5812x x +=-; (2)12323x x+-=.21.22a b -=-已知,求代数式223(24)2(32)ab a b ab a b -+--+的值.22.如图,点C 在∠AOB 的边OA 上,选择合适的画图工具按要求画图.(1)反向延长射线OB ,得到射线OD ,画∠AOD 的角平分线OE ; (2)在射线OD 上取一点F ,使得OF=OC ;(3)在射线OE 上作一点P ,使得CP +FP 最小;(4)写出你完成(3)的作图依据: .四、解答题(本大题共11分,23题6分,24题5分)23.如图1,已知点C 在线段AB 上,点M 为AB 的中点,AC =8,CB =2. (1)求CM 的长;(2)如图2,点D 在线段AB 上,若AC =BD ,判断..点M 是否为线段CD 的中点,并说明..理由.图1 图224.洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试 探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S ,则每一行三 个数的和均为S ,而这9个数的和恰好为1到9这9个正整数之和,由此可得S = ;图1【第二步】再设中间数为x ,利用包含中间数x 的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x .请你根据上述探究,列方程求出中间数x 的值.五、解答题(本大题共19分,25~26每题6分,27题7分) 25.已知0k ≠,将关于x 的方程0kx b +=记作方程◇. (1)当2k =,4b -=时,方程◇的解为 ; (2)若方程◇的解为3x =-,写出一组满足条件的k ,b 值:k = ,b = ;(3)若方程◇的解为4x =,求关于y 的方程()320k y b +=-的解.图226.如图,已知点O在直线AB上,作射线OC,点D在平面内,∠BOD与∠AOC互余.(1)若∠AOC:∠BOD=4:5,则∠BOD= ;(2)若∠AOC=α(0°<α≤45°),ON平分∠COD.①当点D在∠BOC内,补全图形,直接写出∠AON的值(用含α的式子表示);②若∠AON与∠COD互补,求出α的值.备用图27.数学是一门充满思维乐趣的学科,现有33⨯的数阵A,数阵每个位置所对应的数都是1,2或3.定义a∗b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3∗2=3.(1)对于数阵A,2∗3的值为;若2∗3=2∗x,则x的值为;(2)若一个33⨯的数阵对任意的a,b,c均满足以下条件:条件一:a∗a=a;条件二:()a b c a c**=*;则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:_______(填“是”或“否”);②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.七年级第一学期期末调研2019.1数学参考答案11. < 12. 2, 58 (答56,57,59,60均算正确) 13. 答案不唯一,如:32x14. 42b a -15. C O D ∠ ,EOF ∠(写对1个得1分,全对得2分) 16. (2700)590x x -+=17. -2或18(写对1个得1分,全对得2分)18. (1) -2; (2) 2(每空1分)三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.(每小题4分)解:(1)原式=59(3)-÷- …………………………………………………………………2分 =53+=8………………………………………………………………………………4分(2)原式=15(8)(8)1(8)24-⨯+-⨯--⨯=4810--+ ………………………………………………………………………3分=2-…………………………………………………………………………………4分 (若是先做括号,则括号内加减法正确得3分,最后一步也正确,得4分)20. (每小题4分)解:(1)5812x x +=-5218x x +=- ……………………………………………………………………2分77x =- ……………………………………………………………………3分 1x =- ……………………………………………………………………4分(2)12323x x+-= 解:3(1)2(23)x x +=- ……………………………………………………………………1分3346x x +=- ……………………………………………………………………2分 91x = ……………………………………………………………………………3分19x = ……………………………………………………………………………4分21.(本小题4分)解:原式22612364ab a b ab a b =-+-++ …………………………………………2分84a b =-+ ……………………………………………………………………3分 ∵22a b -=-,∴原式844(2)4(2)8a b a b =-+=--=-⨯-=.……………………………………4分22.(本小题4分) (1)-(3)如图所示:正确画出OD ,OE ……………………1分 正确画出点F …………………………2分 正确画出点P …………………………3分(4) 两点之间,线段最短 . …………………………4分四.解答题(本大题共11分,23题6分,24题5分) 23.(本小题6分) (1)解:方法一: ∵8AC =,2CB =,∴10AB AC CB =+=,…………………………………………………………………1分 ∵点M 为线段AB 的中点,∴152BM AB ==. .………….………………………………………………………2分 ∴523CM BM CB =-=-=..…………….…………………………………………3分或者∴853CM AC AM =-=-=.…………….……………………………………………3分(2)解:点M 是线段CD 的中点,理由如下: 方法一:∵8BD AC ==,…………………………………………………………………………4分 ∴由(1)可知,853DM DB MB =-=-=. ……………………………………………5分 ∴3DM MC ==,∴由图可知,点M 是线段CD 的中点. ……………………………………………6分 方法二:∵AC BD =,∴AC DC BD DC -=-,∴AD CB =. ………………………………………………………………………………4分 ∵点M 为线段AB 的中点,B∴AM MB =,………………………………………………………………………………5分 ∴AM AD MB CB -=-,∴DM MC =∴由图可知,点M 是线段CD 的中点. …………………………………………………6分24.(本小题5分)解:(1)15S =. ………………………………………………………………………………2分(2)由计算知:123...945++++=, ………………………………………………3分依题意可列方程:415345x ⨯-=, ……………………………………………4分解得:5x =. ……………………………………………………………………5分(注:过程中体现出45,得第3分.)25.(本小题6分)解:(1)2x =. ……………………………………………………………………………1分(2)答案不唯一,如:1k =,3b =.(只需满足3b k =即可) …………………2分(3)方法一:依题意:40k b +=, …………………………………………………………3分∵0k ≠, ∴4b k=-. ………………………………………………………………………4分 解关于y 的方程:32b y k +=, ∴324y +=-. …………………………………………………………………5分解得:2y =-. …………………………………………………………………6分方法二:依题意:40k b +=, …………………………………………………………3分∴4b k =-.解关于y 的方程:(32)(4)0k y k +--=,……………………………………4分360ky k +=,∵0k ≠,∴360y +=. …………………………………………………………5分解得:2y =-. …………………………………………………………6分26.(本小题6分)解:(1)50BOD ∠=︒ ………………………………………………………1分(2)①补全图形如下:……………………………………………………2分 45AON α∠=+︒….…………………………………………………………………3分 ②情形一:点D 在BOC ∠内.此时,45AON α︒∠=+,90COD ︒∠=,依题意可得:4590180α︒︒++=︒,解得:45α︒=. ……………………………………………………………………………4分 情形二:点D 在BOC ∠外.在0°α<≤45°的条件下,补全图形如下: 此时,45AON ︒∠=,…………………………………………………………………5分90+2COD α︒∠=,依题意可得:45902180α︒︒++=︒B AB A解得:22.5α︒=.………………………………………………………………………6分 综上,α的取值为45︒或22.5︒.27.(本小题7分)解:(1)2;………………………………………………………………………… 1分1,2,3 …………………………………………………………………………2分 (注:只答1,2不扣分)(2)①是; …………………………………………………………………………3分②∵122*=,∴21(12)1*=**∵()a b c a c **=*∴(12)111**=*∵a a =a∴111*=∴211*=. …………………5分(3) 不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的,,a b c 有: ()()a c a b c b a c b c *=**=**=*,这说明数阵每一列的数均相同.∵111*=,222*=,333*=,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴12=2*,21=1*,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵. ……………………………………7分 方法二:由条件二可知,a b *只能取1,2或3,由此可以考虑a b *取值的不同情形. 例如考虑12*:情形一:121*=.若满足交换律,则211*=,再次计算12*可知:12(21)2222*=**=*=,矛盾;情形二:122*=由(2)可知, 211*=,1221*≠*,不满足交换律,矛盾;*=情形三:123*=,若满足交换律,即213*可知:再次计算22*=**=*=**=*=,22(21)232(12)2123*=矛盾.与222综上,不存在满足交换律的“有趣的”数阵. ……………………………………7分。
北京101中学2018-2019学年上学期初中七年级期中考试数学试卷一、选择题:本大题共10小题,每题3分,共30分。
把你的选项前的字母填入答题纸中相应的表格内1.近年来,跑马拉松成为不少人喜爱的运动。
伦敦马拉松组委会在官网上抛出了一个重磅消息:2019年伦敦马拉松,一共有414168名跑友报名,这是马拉松比赛的报名人数首次突破四十万人大关。
将它用科学记数法可表示为()A. B. C. D.【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将414168用科学记数法可表示为,故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.一个数的倒数是-,这个数是()A. -3B. 3C. -D.【答案】A【解析】【分析】根据倒数的定义作答.【详解】若一个数的倒数是-,,则这个数是-3,故选A.【点睛】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.如果a与-1互为相反数,则|a+2|等于()A. 2B. -2C. 3D. -3【答案】C【解析】【分析】首先根据a与-1互为相反数,可得a=1;然后根据绝对值的含义和求法,求出|a+2|等于多少即可.【详解】∵a与-1互为相反数,∴a=1,∴|a+2|=|1+2|=|3|=3.故选C.【点睛】此题主要考查了相反数的含义和求法,以及绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.4.设x是有理数,那么下列各式中一定表示正数的是()A. 2008xB. x+2008C. |2008x|D. |x|+2008【答案】D【解析】根据任何一个数的绝对值都为非负数,再进行选择即可.解:A、当x≤0时,2008x<0,故A错误;B、当x≤﹣2008时,x+2008≤0,故B错误;C、当x=0时,2008x=0,故C错误;D、|x|≥0,则|x|+2008>0,故D正确,故选D.5.下列说法正确的是()A. 0是绝对值最小的有理数B. 相反数不小于本身的数是负数C. 数轴上原点两侧的数互为相反数D. 两个数比较,绝对值大的反而小【答案】A【解析】根据绝对值的意义、性质,绝对值等于本身的数是正数和0,两个负数比较大小,绝对值大的反而小即可解答.【详解】A、0是绝对值最小的有理数,正确;B、绝对值等于本身的数是正数和0,故错误;C、数轴上在原点两侧且到原点的距离相等的数互为相反数,故错误;D、两个负数比较大小,绝对值大的反而小,故错误;故选A.【点睛】本题考查了绝对值,解决本题的关键是熟记绝对值的性质.6.下面运算正确的是()A. B.C. D.【答案】B【解析】【分析】根据同类项的定义及合并同类项的方法进行判断即可.【详解】A、C不是同类项,不能合并;B、正确;D、原式=.故选B.【点睛】本题考查的知识点为:同类项的定义:所含字母相同,相同字母的指数相同.合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.7. 实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A. ab>0B. a+b<0C.D. a-b<0【答案】C试题分析:数轴上的点从左到右就是从小到大的顺序,原点的左侧是负数,右侧是正数,由题,由实数a,b在数轴上的对应点得:a<b<0,|a|>|b|,A选项∵a<b<0,∴ab>0,故选项正确;B选项∵a<b<0,∴a+b<0,故选项正确;C选项∵a<b<0,∴>1,故选项错误;D选项∵a<b<0,∴a﹣b<0,故选项正确,故选C.考点:数轴.8.若代数式的值为6,则的值为()A. 22B. 10C. 7D. 无法确定【答案】A【解析】【分析】由代数式的值为6求出的值,将的值代入计算即可求出值.【详解】∵=6,即=18,∴=18+4=22.故选A.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.9.若方程(m2-1)x2-mx-x+2=0是关于x的一元一次方程,则代数式|m-1|的值为()A. 0B. 2C. 0或2D. -2【答案】A【解析】试题分析:根据一元一次方程的定义知m2﹣1=0,且﹣m﹣1≠0,据此可以求得代数式|m﹣1|的值.解:由已知方程,得(m2﹣1)x2﹣(m+1)x+2=0.∵方程(m2﹣1)x2﹣mx﹣x+2=0是关于x的一元一次方程,∴m2﹣1=0,且﹣m﹣1≠0,解得,m=1,则|m﹣1|=0.点评:本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.10.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A. 甲B. 甲与丁C. 丙D. 丙与丁【答案】B【解析】【分析】4个队一共要比场比赛,每个队都要进行3场比赛,各队的总得分恰好是四个连续奇数,甲、乙、丙、丁四队的得分情况只能是进行分析即可.【解答】4个队一共要比场比赛,每个队都要进行3场比赛,各队的总得分恰好是四个连续奇数,甲、乙、丙、丁四队的得分情况只能是所以,甲队胜2场,平1场,负0场.乙队胜1场,平2场,负0场.丙队胜1场,平0场,负2场.丁队胜0场,平1场,负2场.与乙打平的球队是甲与丁,故选B.【点评】首先确定比赛总场数,然后根据“各队的总得分恰好是四个连续的奇数”进行分析是完成本题的关键.二、填空题:本大题共10小题,每题3分,共30分。
2018-2019学年北京市海淀区清华附中七年级上学期期中考试数学试卷解析版一、.选择题(本题共24分,每小题3分)下列题均有四个选项,其中只有个是符合题意的1.﹣2018的相反数是()A .﹣B .C.﹣2018D.2018【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:D.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.太阳直径大约是1392000千米,这个数据用科学记数法可表示为()A.1.392×106B.13.92×105C.13.92×106D.0.1394×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1392000用科学记数法表示为:1.392×106.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元【分析】根据题意得出:收入记作为正,支出记作为负,表示出来即可.【解答】解:如果收入100元记作+100元,那么支出80元记作﹣80元,故选:D.【点评】本题考查了正数和负数,能用正数和负数表示题目中的数是解此题的关键.4.下列各式中是一元一次方程的是()A.x2+1=5B .=3C .﹣=1D.x﹣5【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.第1 页共13 页。
2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。
2019-2020学年北京市海淀区七年级(上)期中数学试卷1. −9的相反数是( )A. 19B. −19C. 9D. −92. 中国国家图书馆是亚洲最大的图书馆,截止到2017年12月,馆藏图书达3768万册,将37680000用科学记数法可以表示为( )A. 0.3768×108B. 3.768×107C. 37.68×106D. 3768×1043. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A. a +b >0B. a −b >0C. ab >0D. |a|>|b|4. 下列有理数大小关系判断正确的是( )A. −(−19)>−|−110| B. 0>|−10| C. |−3|<|+3|D. −1>−0.015. 你认为下列各式正确的是( )A. a 2=(−a)2B. a 3=(−a)3C. −a 2=|−a 2|D. a 3=|a 3|6. 在−22,(−2)2,−(−2),−|−2|中,负数的个数是( )A. 1个B. 2个C. 3个D. 4个7. 下列计算中,正确的是( )A. 2x 2−x 2=2B. 5c 2+5d 2=5c 2d 2C. −12(4x +2)=−2x +2D. −(2x −5)=−2x +58. 如果a 、b 互为相反数a ≠0),x 、y 互为倒数,那么代数式a+b 2−xy −ab 的值是( )A. 0B. 1C. −1D. 29. 根据你的生活经验,下列选项中能正确解释代数式a −3b 的是( )A. 小明每季度有零花钱a 元,拿出b 元捐给希望工程,平均每月剩余零花钱多少元?B. 某校初一(1)班共有a 名学生,其中有b 名男同学,男生的三分之一去参加篮球比赛,则班里还有多少人?C. 某种汽车油箱装满油为a 升,每百公里耗油b 升,行驶了三百公里,还剩多少升油?D. 某商品原价a元,计划买3件,恰逢商场打折,现价每件b元,那么现在买3件可以便宜多少钱?10.当x=3时,代数式px3+qx+1的值为2,则当x=−3时,px3+qx+1的值是()A. 2B. 1C. 0D. −111.在数轴上,到表示数2的点距离是3的点表示的数是______.12.多项式x3−2x2y2+3y2是______次多项式,最高次项的系数是______.13.12x3y n与−13x m−1y2是同类项,则mn=______.14.写出系数为−1,含有字母x、y的五次单项式______(只要求写出一个).15.一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为______元.16.如图,从一个边长为a的正方形的一角上剪去一个边长为b(a>b)的正方形,则剩余(阴影)部分的面积是______(用含a,b的式子表示).17.若|x+2|+(y−3)2=0,则xy=______ .18.古希腊数学家把1,3,6,10,15,21…,叫三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为______,第n个三角形数与第n−3个三角形数的差为______(用含n的式子表示).19.庆祝中华人民共和国成立70周年阅兵式,于2019年10月1日在北京天安门广场举行.在东西向的长安街上,若将天安门记为原点,向东为正方向,100m记为一个单位长度.当陆军方队经过天安门时,三军仪仗队在天安门西300m处,陆军特种兵方队在天安门西150m处,空降兵方队在天安门东100m处,武警方队在天安门东250m处,女兵方队在天安门东350m处.根据上面的信息,试画数轴表示这6个方队的位置.20. 计算:(1)12−(−18)+(−7)−15;(2)(23−56+34−12)÷(−124)′(3)−3−[−5+(1−2×35)÷(−2)];(4)−120+23÷(−2)3+(−4)×(−3).21. 化简多项式:(1)2x 2−3x 2+5x 2;(2)4a 2b −[ab −3(ab +43a 2b)+2ab 2].22. 先化简再求值:2x 2−y 2+(2y 2−3x 2)−2(y 2−2x 2),其中x =−1,y =2.23.一个三角形一边长为a+b,另一边长比这条边大b,第三边长比这条边小a−b.(1)求这个三角形的周长;(2)若a=5,b=3,求三角形周长的值.24.甲、乙两商场上半年经营状况如下(“+”表示盈利,“−”表示亏本,以百万元为单位):(1)三月份乙商场比甲商场多亏损______百万元;(2)六月份甲商场比乙商场多盈利______百万元;(3)甲、乙两商场上半年平均每月份别盈利或亏损多少万元?25.若用A、B、C分别表示有理数a,b,c,O为原点,如图所示:化简2c+|a+b|+|c−b|−|c−a|.26.定义:若a+b=6,则称a与b是关于3的平衡数.(1)8与______是关于3的平衡数,5−x与______是关于3的平衡数.(用含x的代数式表示)(2)若a=2x2−3(x2+x)+4,b=2x−[3x−(4x+x2)−2],判断a与b是否是关于3的平衡数,并说明理由.27.已知:A,B在数轴上对应的数分别用a,b表示,且(a+4)2+|b−12|=0.(1)数轴上点A表示的数是______,点B表示的数是______.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,当C点在数轴上且满足AC=3BC时,求C点对应的数.(3)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动,当P运动到B点时,再立即以同样速度返回,运动到A点停止;点P从点A出发时,另一动点Q 从原点O出发,以1个单位长度/秒速度向B运动,运动到B点停止.设点Q运动时间为t秒.当t为何值时,点P与点Q之间的距离为2个单位长度.答案和解析1.【答案】C【解析】解:−9的相反数是9,故选:C.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:37680000=3.768×107.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.3.【答案】D【解析】解:∵−3<a<−2<0<1<b<2∴a+b<0,a−b<0,ab<0,|a|>|b|故选A、B、C均错误,故选:D.根据数轴上的点所表示的数即可解答此题主要考查数轴上的点的比较大小,关键熟记数轴上的点从左至右依次增大,位于原点左边的数为负数.原点右边的数为正数,正数大于负数.4.【答案】A【解析】本题主要考查有理数的大小比较,比较两个有理数的大小时,需先化简,再比较。
北京市 XX 初中 2018— 2019 学年初一上期中考试数学试卷含答案— 2019 学年度第一学期期中考试初一数学试题班 ______________姓名 ______________学号 _________考1.本试卷共 3 页,考试时间 100 分钟。
试卷由主卷和附加卷组成,主卷部分满分100分,附加卷部分满分 20 分。
生2.试卷答案一律书写在答题纸上,在试卷上作答无效。
须3.在答题纸上,用黑色字迹钢笔或签字笔作答。
知4.考试结束后,将答题纸交回。
第Ⅰ卷(主卷部分,共 100 分)一、(本大共10 小,每小 3 分,共 30 分)1.2016的绝对值是1B .2016 C.2016 D.2016A .20162.近年来,高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.到 2015 年底,高速铁路营运里程达到18 000 公里 . 将 18 000 用科学记数法表示应为A . 18×103B .1.8 ×103 C.1.8 ×104 D .1.8 ×1053.下列式子中,正确的是A .0.4 1 B. 4 6 C.9 8 D .( 4)2 ( 3)22 5 7 8 94.下列运算正确的是A .2m2 3m3 5m5 B.5xy 4xy xyC.5c2 5d 2 5c2 d 2 D .2x2 x2 25.有理数a, b 在数轴上的位置如图所示,则下列各式成立的是A .b a 0B. b 0C.a b D .ab0 6.下列说法中正确的是A. a一定是正数B. a 一定是负数C. ( a) 一定是正数D. 如果| a |1,那么a < 0.a7.若 x=2 是关于 x 的方程 ax+6=2 ax 的解,则 a 的值为A. 3B. 2C. 11D.28.已知a2 2b 1,则代数式2a2 4b 3 的值是A. 1B. 1C. 5D. 59.下列式子的变形中,正确的是A. 由 6+x=10 得 x=10+6B. 由 3x+5=4x 得 3x 4x= -5C. 由 8x= 4 3x 得 8x 3x = 4D. 由 2(x 1)= 3 得 2x 1=310.用火柴棍按如图所示的方式摆大小不同的“H ”,依此规律,摆出第n 个“ H”需要火柴棍的根数是⋯第 1 个第 2 个第 3 个A. 2 n+ 3B. 3n+ 2C. 3n+ 5D. 4n+ 1二、填空(本大共8 小, 11-14 每 2 分, 15-18 每 3 分,共 20 分)11. 用四舍五入法将 5.876 精确到0.01,所得到的近似数为.12. 请写出一个只含有x, y 两个字母,次数为5,系数是负数的单项式.13. 一家商店把一种旅游鞋按成本价 a 元提高50%标价,然后再以8 折优惠卖出,则这种旅游鞋每双的售价是 _____________ 元 .( 用含 a 的式子表示 )14.数轴上点 A 表示的数为4,点 B 与点 A 的距离为 5,则点 B 表示的数为 _______________.15. 若 x 7y22016的值为.60 ,则( x y)16. 若 5x6 y 2 m与3x n 9 y6是同类项,那么n m的值为___________.17. 在如 所示的 3× 3 方 中, 于同一横行、同一 列、同一斜角 上的 3 个数之和都相等. 在方 中已填写了一些数和代数式(其中每个代数式都表示一个 数), x 的 ,空白 填写的 3 个数的和....18. a 是不1 的有理数,我 把1 称a 的差倒数的差倒数是 11, 1 的差倒数 1 a....如: 21 2是11.已知 a 15,a 2 是 a 1 的差倒数, a 3 是 a 2 的差倒数, a 4 是 a 3 的差的倒数, ⋯ , 1 ( 1)2依此 推, a的差倒数 a=.20152016三、计算(本大题共 4 小题,每题 4 分,共 16 分)19. ( 12.7)( 5 2) 87.3 3 355 20. 2.55 ( 1) ( 4)16 8 21. (12 5 ) ( 36)63 1222. 14173 ( 2 )2 264 325. 先化 ,再求3(4a22ab 3) 4(5a23ab 3) ,其中 a1, b1 .226. 已知:A 3a 2 5ab 3 ,B a 2 ab ,求当 a 、 b 互 倒数 ,A 3B 的 .27. 有理数 a , b , c 在数 上的位置如 所示.( 1)用“<” 接:0, a , b , c ;( 2)化 代数式:3 c a 2 b c 3 a b .28. 用“☆ ”定 一种新运算: 于任意有理数a 和b , 定 a ☆ b = ab 22ab a .如: 1☆ 2 = 1 22 2 1 2 1= 9 .( 1)求 ( 2) ☆ 3 的 ;( 2)若(a1☆ 3 )☆ (1) = 8 ,求 a 的 ;22 ( 3)若 2 ☆ x = m , ( 1x) ☆ 3 = n (其中 x 有理数), 比 m, n 的大小.4四、解下列方程(本大题共 2 小题,每题 5 分,共 10 分)23. 3 x 2 x (2 x 1)24. x1 2x 1146第 Ⅱ 卷( 附 加 卷部 分 ,共 20 分 )五、解答题(本大题共 4 小题,每题 6 分,共 24 分)解答题(共 3 小题,第 1、2 题每题 6 分,第 3 题 8 分,共 20 分)1.1883 年,德国数学家格奥 格·康托 引入位于一条 段上的一些点的集合,他的做法如下:取一条 度1 的 段,将它三等分,去掉中 一段,余下两条 段,达到第1 段;将剩下的两条 段再分 三等分,各去掉中 一段,余下四条 段,达到第2 段;再将剩四条 段,分 三等分,分 去掉中 一段,余下八条 段,达到第3 段;⋯⋯; 的操作一直 下去,在不断分割舍弃过程中,所形成的线段数目越来越多, 把 种分形,称做康托 点集.下 是康托 点集的最初几个 段,当达到第 5 个 段 ,余下的段的 度 之和;当达到第n 个 段 ( n 正整数 ) ,余下的 段的 度....之和.2. 于正整数 a ,我 定:若a 奇数, f (a) 3a 1;若 a 偶数, f (a) a.例如2f (15) 3 15 146 , f (10) 10 .若 a 1 8 , a 2f (a 1 ) , a 3f ( a 2 ) , a 4 f (a 3 ) ,⋯,52依此 律 行下去, 得到一列数 a 1 , a 2 , a 3 , a 4 ,⋯, a n ,⋯( n 正整数), a 3 ,a 1 a 2 a 3 a 2016.12 1 1 23 0 1 23 23 1 2 34 1 2 3334 1 3 45 2 3 43将 三个等式的两 相加,可以得到1 2 2 3 3 41 3 4 5 203完 段材料, 你 算:( 1) 1 2 2 3100 101( 2) 12 2 3n n 1( 3) 1 2 3 2 3 4 n n 1 n 2XX 中学 2018—2019 学年度第一学期期中考试3. 材料,大数学家高斯在上学 曾 研究 一个 ,1+2+3+⋯⋯ 10=?初一数学标准答案和评分标准研究, 个 的一般 是 1 2 3n1n(n 1) ,其中 n 是正整数, 在第 Ⅰ卷 (主 卷 部 分, 共 100 分)2一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)我 来研究一个 似的 :1 2 2 3 n(n 1) ?察下面三个特殊的等式:号1 2 3 4 5 6 7 8 9 10答案DCDBADABBB二、填空题(本大题共 8 小题, 11-14 题每题 2 分, 15-18 题每题 3 分,共 20 分)11.5.88 12.2x 3 y 2 等13. 1.2a 14.-9 或 115.116.-2717.. -1 ( 2 分); _-4_(16分) 18. .5三、计算(本大题共 4 小题,每题 4 分,共 16 分)19.解原式12.7 5287.3 33⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分55=-100+9⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分=-91⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分20.解:原式5 16 ( 1) ( 1) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分2 5 8 41 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分421.1 2 5) ( 36)解:原式 = (3612=36 1 36 ( 2) ( 36)5 ⋯⋯⋯⋯⋯ 2 分6 3 12= 6 2415 3⋯⋯⋯⋯ 4 分 22.解:原式 = 1 1 34 2...........2 分6 4 9=1 3 14 ........... .3 分649=1 766=4 ..............4 分3四、解下列方程(本大题共 2 小题,每题 5 分,共 10 分)23.3 x 2 x (2 x 1)解: 3x 6x 2x 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分3x x 2x1 6⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分 4x 7⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分x 7⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分.424.1 x 1 2x 14 6解: 12 3( x 1) 2(2 x 1) . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分12 3x3 4x 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分3x 4x 2 12 37x13 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分x 13 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分7五、解答题(本大题共 4 小题,每题 6 分,共 24 分)25. 先化 ,再求3(4a22ab 3 ) 4(5a23ab 3) ,其中 a1, b1 .2解:3(4a 22ab 3 ) 4(5a 2 3ab 3 )=12a 2 6ab 3 20a212 ab 3 --------------------------------------- 2 分 .= 8a 2 6ab 3 .----------------------------------------3分 .当 a1,b 1. ,2原式 = 8 ( 1)26 1( 1)3 ---------------------------------------4分 .522=----------------------------------------------- 6分 .26. 已知:设 A3a25ab 3, B a2ab ,求当 a 、 b 互为倒数时, A 3B 的值.解: 由题意得, ab1--------------------------------------- 1分 .原式 = A 3B= 3a 2 5ab 3 3(a 2 ab) ------------------------------------- 2分 .= 8ab3-------------------------------------4 分 .当 ab 1 时,原式 =11--------------------------------------6分 .27.解:( 1) a b 0c --------------------------------------1分( 2) 3 c a 2 b c 3 a b= 3(ca) 2 c b 3 a b -------------------------------------- 4分= 3c 3a 2c 2b 3a3b --------------------------------------5 分 = 5c b--------------------------------------6分28.解:( 1)解:( 1)(﹣ 2) ☆3=﹣ 2×32+2×(﹣ 2) ×3+(﹣ 2)=﹣ 18﹣ 12﹣ 2=﹣ 32; --------------------------------------2分( 2)解:☆3=×32+2× ×3+=8( a+1)8( a+1) ☆(﹣ )2=8( a+1) ×(﹣ ) +2×8( a+1)×(﹣ ) +8(a+1)=8解得: a=3;-------------------------------------- 4分( 3)由题意 m=2x 2+2×2x+2=2x 2+4x+2 ,2 =4x ,n= ×3 +2 × x ×3+所以 m ﹣ n=2x 2> 0.-------------------------------------- 6分 +2 所以 m > n .第 Ⅱ 卷 ( 附 加 卷部 分, 共 20 分)解答题(共 3 小题,第 1、2 题每题 6 分,第 3 题 8 分,共 20 分)2 5 2 n1. _________________ ;__________________ . (每空 3 分)332. a 3 _____2____________ ;a 1 a 2 a 3 a 2016 __________4711_________ .(每空 3 分)3.解: ( 1) 1 2 2 3100 101 =343400--------------------------------------2分( 2) 12 2 3n n 1 = 1n n 1 (n2)3--------------------------------------5分( 3)1 2 3 2 3 4n n 1 n 2 =1n n 1 ( n 2)( n3) 4--------------------------------------8分。
2018-2019 年初一数学第一学期期中检测~考试时间: 100 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息]2.请将答案正确填写在答题卡上第 I 卷(选择题)&评卷人 得分`一、选择题(每题 3 分,共 30 分)1.多项式 3x 2- 2xy 3-1y - 1 是(.).<&)2.】\A .三次四项式~B.三次三项式C .四次四项式…D.四次三项式|2.- 3 的绝对值是;|,`A. 3B).- 3C~.-D.!@3.若 |x+2|+|y-3|=0,则 x-y 的值为…【()A . 5。
B. -5C ' .1 或 -1D】 .以上都不对*4.1:)}》…>的相反数是((-)3-%$,(A .1B….1 C…. 3D.﹣3,(3@3:`¥5.2018 年 5 月 21 日,石油天然气集团公司与俄罗斯天然气工业股份公司在签署了 《中俄东线供气购销合同》 ,这份有效期为30 年的合同规定,从2018 年开始供气,每年的天然气供应量为<380 亿立方米, 380 亿立方米用科学记数法表示为()A . ×10 )103B .38×10 9 `3C .380×10 8 (3 D. ×10 113|m mm <m6.计算 (a 2) 3÷ (a 2) 2的结果是 ( ^)·| A . a B . a 2 C . a 3 ,D . a 4`(7.下列因式分解中,正确的有(-)!'$《%:① `①4a ﹣ a b =a ( 4﹣ a b );②x 2y﹣ 2xy+xy=xy ( x ﹣ 2);③﹣ a+ab ﹣ ac=﹣ a ( a ﹣ b ﹣c );④9abc﹣ 6a 2b=3abc ( 3﹣ 2a );⑤ x 2y+ xy= xy( x+y )%A . 0 个 B. 1 个 C 《. 2 个 D. 5 个8.下列因式分解正确的是( )、A. x2﹣ xy+x=x ( x﹣ y)B. a3﹣ 2a2b+ab2=a( a﹣ b)2"C. x2﹣ 2x+4=( x﹣ 1)2+3D. ax2﹣ 9=a(x+3)( x﹣ 3)9.实数 a、 b 在数轴上的位置如图所示,下列式子错误的是() :A. a< b C.- a<-b B. |a| > |b| D. b- a> 010.﹣ 的倒数是()A 、B 、C 、﹣D 、﹣第 II卷(非选择题)评卷人 得分二、填空题(每题 3 分,共 24 分)12 .用代数式表示“a 的 4 倍与 5 的差”为.13.已知 2xm 1y 3和 1xny m+n是同类项,则n m2012=▲。
第1页(共18页)2018-2019学年北京人大附中七年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2010?西藏)的相反数是()A .B .3C .﹣3D .2.(3分)(2018秋?海淀区校级期中)港珠澳大桥于2018年10月24日上午9时正式通车啦是中国境内一座连接香港珠海和澳门的桥隧工程,于2009年12月15日动工建设,2017年7月7日,大桥主体工程全线贯通,2018年2月6日,大桥主体完成验收,港珠澳大桥桥隧全长55千米,工程项目总投资额1269亿元,用科学记数法表示,1269亿元为()A .1269×108B .1.269×1010C .1.269×1011D .1.269×10123.(3分)(2018秋?海淀区校级期中)以下说法正确的是()A .一个数前面带有“﹣”号,则是这个数是负数B .整数和小数统称为有理数C .数轴上的点都表示有理数D .数轴上表示数a 的点在原点的左边,那么a 是一个负数4.(3分)(2018秋?海淀区校级期中)下列等式变形,正确的是()A .由6+x =7得x =7+6B .由3x+2=5x 得3x ﹣5x =2C .由2x =3得xD .由2﹣3x =3得x5.(3分)(2018秋?海淀区校级期中)用四舍五入法对0.4249取近似数精确到百分位的结果是()A .0.42B .0.43C .0.425D .0.4206.(3分)(2018秋?海淀区校级期中)以下代数式中不是单项式的是()A .﹣12abB .C .D .07.(3分)(2018秋?海淀区校级期中)下列计算正确的是()A .a+a =a2B .6x 3﹣5x 2=x C .3x 2+2x 3=5x5D .3a 2b ﹣4ba 2=﹣a 2b8.(3分)(2018秋?海淀区校级期中)下列等式,是一元一次方程的是()A .2x+3y =0B .3=0C .x 2﹣3x+2=x2D .1+2=39.(3分)(2018秋?海淀区校级期中)以下说法正确的是()A.不是正数的数一定是负数B.符号相反的数互为相反数C.一个数的绝对值越大,表示它的点在数轴上越靠右D.当a≠0,|a|总是大于010.(3分)(2018秋?海淀区校级期中)下列去括号正确的是()A.4(x﹣1)=4x﹣1B.﹣5(1x)=﹣5﹣x C.a﹣(﹣2b+c)=a+2b+c D.a+2(﹣2b+c)=a﹣4b+2c11.(3分)(2018秋?海淀区校级期中)当x=2时,代数式px 3+qx+1的值为﹣2018,求当x=﹣2时,代数式的px 3+qx+1值是()A.2017B.2018C.2019D.202012.(3分)(2018秋?海淀区校级期中)有理数a,b,c在数轴上的对应点的位置如图所示,若|a|<|b|,则下列结论中一定成立的是()A.b+c>0B.a+c<0C.>1D.abc≥0二、填空题(共12小题,每小题2分,满分24分)13.(2分)(2018秋?海淀区校级期中)下列数()2,+6,﹣2,0.9,﹣π,﹣(),0,,0.,﹣4.95中,是负分数的有.14.(2分)(2018秋?海淀区校级期中)比大小:(填写“>”或“<”)15.(2分)(2017秋?青龙县期末)单项式的系数是.16.(2分)(2018秋?海淀区校级期中)多项式ab﹣2ab 2﹣3a2+5b﹣1的次数是.17.(2分)(2018秋?海淀区校级期中)若关于x的方程m﹣3x=x﹣4的解是x=2,则m的值为.18.(2分)(2018秋?海淀区校级期中)如果|x|=2,则x的倒数是.19.(2分)(2018秋?海淀区校级期中)把多项式x 2﹣2﹣3x3+5x的升幂排列写成.20.(2分)(2015秋?泉港区期中)|a+3|+(b﹣2)2=0,求a b=.21.(2分)(2018秋?海淀区校级期中)一个两位数个位上的数是1,十位上的数是x,把1与x对调,新的两位数比原两位数小18,则依此题意所列的方程为.22.(2分)(2018秋?海淀区校级期中)已知a ,b 在数轴上的对应点如图所示,则化简|a+b|﹣|2a ﹣b|的结果是.23.(2分)(2018秋?海淀区校级期中)《九章算术》是我国古代一部数学专著,其中第八卷《方程》记载:“今有五雀六燕,集称之衝,雀俱重,燕俱轻,一雀一燕交而处,衡视平”,意思是“五只雀比六只燕重.但是将这群雀和这群燕互相交换一只以后,两群鸟一样重,如果假设一只雀重x 两,则用含x 的式子表示一只燕的重量为两.24.(2分)(2018秋?海淀区校级期中)对于有理数a ,b 定义运算“*”如下:a*b =b ,则关于该运算,下列说法正确的有(请填写正确说法的序号)①5*7=9*7②如果a*b =b*a ,那么a =b ③该运算满足交换律④该运算满足结合律,三、解答题(共1小题,满分20分,每小题20分)25.(20分)(2018秋?海淀区校级期中)(1)计算:12﹣(﹣18)+(﹣7)﹣15(2)计算:﹣52×|1|﹣||[(﹣1)3﹣7](3)计算:()﹣24×()(4 )解方程:x ﹣3x+1四、解答题:(本题共12分,每题4分26.(4分)(2018秋?海淀区校级期中)先化简下式,在求值:2(﹣x 2+3+4x )﹣(5x+4﹣3x 2),其中x .27.(4分)(2018秋?海淀区校级期中)求单项式﹣x2m ﹣n y 3与单项式x 5ym+n可以合并,求多项式4m ﹣2n+5(﹣m ﹣n )2﹣2(n ﹣2m )2的值.28.(4分)(2018秋?海淀区校级期中)将连续的奇数1,3,5,7,排成如下表:如图所示,图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.(1)设T字框内处于中间且靠上方的数是整个数表当中从小到大排列的第n个数,请你用含n的代数式表示T字框中的四个数的和;(2)若将T字框上下左右移动,框住的四个数的和能等于2018吗?如能,写出这四个数,如不能,说明理由.五、解答题[本题共8分,每题4分29.(4分)(2018秋?海淀区校级期中)阅读下面材料并回答问题观察有理数﹣2和﹣4在数轴上对应的两点之间的距离是2=|﹣2﹣(﹣4)|有理数1和﹣3在数轴上对应的两点之间的距离是4=|1﹣(﹣3)|归纳:有理数a、b在数轴上对应的两点A、B之间的距离是|a﹣b|;反之,|a﹣b|表示有理数a、b在数轴上对应点A、B之间的距离,称之为绝对值的几何意义应用(1)如果表示﹣1的点A和表示x点B之间的距离是2,那么x为;(2)方程|x+3|=4的解为;(3)小松同学在解方程|x﹣1|+|x+2|=5时,利用绝对值的几何意义分析得到,该方程的左式表示在数轴上x对应点到1和﹣2对应点的距离之和,而当﹣2≤x≤1时,取到它的最小值3,即为1和﹣2对应的点的距离.由方程右式的值为5可知,满足方程的x对应点在1的右边或﹣2的左边,若x的对应点在1的右边,利用数轴分析可以看出x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3;故原方程的解是x=2或x=﹣3参考小松的解答过程,回答下列问题:(Ⅰ)方程2|x﹣3|+|x+4|=20的解为;(Ⅱ)设x是有理数,令y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+…+100|x﹣100|下列四个结论中正确的是(请填写正确说法的序号)①有多于1个的有限多个x使y取到最小值②只有一个x使y取得最小值③有无穷多个x使y取得最小值④y没有最小值30.(4分)(2018秋?海淀区校级期中)数学是一门充满乐趣的学科,某校七年级小凯同学的数学学习小组遇到一个富有挑战性的探宄问题,请你帮助他们完成整个探究过程;【问题背景】对于一个正整数n,我们进行如下操作:(1)将n拆分为两个正整数m1,m2的和,并计算乘积m1×m2;(2)对于正整数m1,m2,分别重复此操作,得到另外两个乘积;(3)重复上述过程,直至不能再拆分为止,(即折分到正整数1);(4)将所有的乘积求和,并将所得的数值称为该正整数的“神秘值”,请探究不同的拆分方式是否影响正整数n的“神秘值”,并说明理由.【尝试探究】:(1)正整数1和2的“神秘值”分别是(2)为了研究一般的规律,小凯所在学习小组通过讨论,决定再选择两个具体的正整数6和7,重复上述过程探究结论:如图1所示,是小凯选择的一种拆分方式,通过该拆分方法得到正整数6的“神秘值”为15.请模仿小凯的计算方式,在图2中,选择另外一种拆分方式,给出计算正整数6的“神秘值”的过程;对于正整数7,请选择一种拆分方式,在图3中绐出计算正整数7的“神秘值”的过程.【结论猜想】结合上面的实践活动,进行更多的尝试后,小凯所在学习小组猜测,正整数n的“神秘值”与其折分方法无关.请帮助小凯,利用尝试成果,猜想正整数n的“神秘值”的表达式为,(用含字母n的代数式表示,直接写出结果)2018-2019学年北京人大附中七年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2010?西藏)的相反数是()A .B .3C .﹣3D .【解答】解:根据相反数的定义,得的相反数是.故选:A .2.(3分)(2018秋?海淀区校级期中)港珠澳大桥于2018年10月24日上午9时正式通车啦是中国境内一座连接香港珠海和澳门的桥隧工程,于2009年12月15日动工建设,2017年7月7日,大桥主体工程全线贯通,2018年2月6日,大桥主体完成验收,港珠澳大桥桥隧全长55千米,工程项目总投资额1269亿元,用科学记数法表示,1269亿元为()A .1269×108B .1.269×1010C .1.269×1011D .1.269×1012【解答】解:将1269亿用科学记数法表示为 1.269×1011.故选:C .3.(3分)(2018秋?海淀区校级期中)以下说法正确的是()A .一个数前面带有“﹣”号,则是这个数是负数B .整数和小数统称为有理数C .数轴上的点都表示有理数D .数轴上表示数a 的点在原点的左边,那么a 是一个负数【解答】解:A 、一个数前面带有“﹣”号,这个数不一定是负数,如﹣(﹣3)=3,故选项错误;B 、整数和分数统称为有理数,故选项错误;C 、数轴上的点都表示实数,故选项错误;D 、数轴上表示数a 的点在原点的左边,那么a 是一个负数,故选项正确.故选:D .4.(3分)(2018秋?海淀区校级期中)下列等式变形,正确的是()A .由6+x =7得x =7+6B .由3x+2=5x 得3x ﹣5x =2C .由2x =3得xD .由2﹣3x =3得x【解答】解:A 、由6+x =7得x =7﹣6,错误;B 、由3x+2=5x 得3x ﹣5x =﹣2,错误;C 、由2x =3得x ,正确;D 、由2﹣3x =3得x ,错误;故选:C .5.(3分)(2018秋?海淀区校级期中)用四舍五入法对0.4249取近似数精确到百分位的结果是()A .0.42B .0.43C .0.425D .0.420【解答】解:0.4249≈30.42(精确到百分位).故选:A .6.(3分)(2018秋?海淀区校级期中)以下代数式中不是单项式的是()A .﹣12abB .C .D .0【解答】解:A 、﹣12ab ,是单项式,不合题意;B 、,是单项式,不合题意;C 、,是多项式,不是单项式,符合题意;D 、0,是单项式,不合题意;故选:C .7.(3分)(2018秋?海淀区校级期中)下列计算正确的是()A .a+a =a2B .6x 3﹣5x 2=x C .3x 2+2x 3=5x5D .3a 2b ﹣4ba 2=﹣a 2b【解答】解:A 、a+a =2a ,故本选项错误;B 、6x 3与5x 2不是同类项,不能合并,故本选项错误;C 、3x 2与2x 3不是同类项,不能合并,故本选项错误;D 、3a 2b ﹣4ba 2=﹣a 2b ,故本选项正确;故选:D .8.(3分)(2018秋?海淀区校级期中)下列等式,是一元一次方程的是()A .2x+3y =0B .3=0C .x 2﹣3x+2=x2D .1+2=3【解答】解:A 、本方程中含有两个未知数,不是一元一次方程,故本选项错误;B、该方程不是整式方程,故本选项错误;C、由原方程知﹣3x+2=0,符合一元一次方程的定义;故本选项正确;D、1+2=3中不含有未知数,不是方程,故本选项错误.故选:C.9.(3分)(2018秋?海淀区校级期中)以下说法正确的是()A.不是正数的数一定是负数B.符号相反的数互为相反数C.一个数的绝对值越大,表示它的点在数轴上越靠右D.当a≠0,|a|总是大于0【解答】解:A、0不是正数,也不是负数,故选项错误;B、符号相反的两个数互为相反数,例如,3与﹣5不是相反数,故选项错误;C、一个数的绝对值越大,表示它的点在数轴上离原点越远,不一定越靠右,故选项错误;D、a≠0,不论a为正数还是负数,|a|都大于0,故选项正确.故选:D.10.(3分)(2018秋?海淀区校级期中)下列去括号正确的是()A.4(x﹣1)=4x﹣1B.﹣5(1x)=﹣5﹣xC.a﹣(﹣2b+c)=a+2b+c D.a+2(﹣2b+c)=a﹣4b+2c【解答】解:A、原式=4x﹣4,故本选项错误;B、原式=﹣5+x,故本选项错误;C、原式=a+2b﹣c,故本选项错误;D、原式=a﹣4b+2c,故本选项正确.故选:D.11.(3分)(2018秋?海淀区校级期中)当x=2时,代数式px 3+qx+1的值为﹣2018,求当x=﹣2时,代数式的px 3+qx+1值是()A.2017B.2018C.2019D.2020【解答】解:当x=2时,8p+2q+1=﹣2018,所以8p+2q=﹣2019,当x=﹣2时,﹣8p﹣2q+1=2019+1=2020.故选:D.12.(3分)(2018秋?海淀区校级期中)有理数a,b,c在数轴上的对应点的位置如图所示,若|a|<|b|,则下列结论中一定成立的是()A.b+c>0B.a+c<0C.>1D.abc≥0【解答】解:由于|a|<|b|,由数轴知:a<0<b或0<a<b,a<c<b,所以b+c>0,故A成立;a+c可能大于0,故B不成立;可能小于0,故C不成立;abc可能小于0,故D不成立.故选:A.二、填空题(共12小题,每小题2分,满分24分)13.(2分)(2018秋?海淀区校级期中)下列数()2,+6,﹣2,0.9,﹣π,﹣(),0,,0.,﹣4.95中,是负分数的有﹣4.95.【解答】解:()2,+6,﹣2,0.9,﹣π,﹣(),0,,0.,﹣4.95,则是负分数的有:﹣ 4.95,故答案为:﹣ 4.95.14.(2分)(2018秋?海淀区校级期中)比大小:>(填写“>”或“<”)【解答】解:,,∵||<||,∴>,∴>.故答案是:>.15.(2分)(2017秋?青龙县期末)单项式的系数是.【解答】解:原式x2y,所以该单项式的系数为;故答案为:。
2018-2019学年北京四中七年级(上)期中数学试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.−5的相反数是()A. 15B. −15C. 5D. −52.2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕,“十九大”最受新闻网站关注.据统计,关键词“十九大”在1.3万个网站中产生数据174000条,其中174000用科学记数法表示为()A. 1.74×105B. 17.4×105C. 17.4×104D. 0.174×1063.下列各式中,不相等的是()A. (−3)2和−32B. (−3)2和32C. (−2)3和−23D. |−2|3和|−23|4.有理数m,n在数轴上的对应点的位置如图所示,则不正确的结论是()A. m>−1B. m>−nC. mn<0D. m+n>05.设x为有理数,若|x|>x,则()A. x为正数B. x为负数C. x为非正数D. x为非负数6.下列结论正确的是()A. −3ab2和b2a是同类项B. π2不是单项式C. a比−a大D. 一个数的绝对值越大,表示它的点在数轴上越靠右7.已知代数式3x2−4x的值为9,则6x2−8x−6的值为()A. 3B. 24C. 18D. 128.下列式子中去括号错误的是()A. 5x −(x −2y +5z)=5x −x +2y −5zB. 2a 2+(−3a −b)−(3c −2d)=2a 2−3a −b −3c +2dC. 3x 2−3(x +6)=3x 2−3x −6D. −(x −2y)−(−x 2+y 2)=−x +2y +x 2−y 29. 如果a >0,b <0,a +b <0,那么下列各式中大小关系正确的是( )A. −b <−a <b <aB. −a <b <a <−bC. b <−a <−b <aD. b <−a <a <−b10. 下列说法正确的是( )A. 近似数5千和5000的精确度是相同的B. 317500精确到千位可以表示为31.8万,也可以表示为,3.18×105C. 2.46万精确到百分位D. 近似数8.4和0.7的精确度不一样二、填空题(本大题共8小题,共16.0分) 11. 写出一个比−234小的有理数:______. 12. 若9−4m 与m 互为相反数,则m =______.13. 若−10x 7y 与5x 4m−1y 是同类项,则m 的值为______. 14. 绝对值大于1而小于4的整数有______个. 15. 若|2x −3|=5,则x =______.16. 若多项式x 2−2kxy +y 2+6xy −6不含xy 的项,则k =______.17. 按一定规律排列的一列数为−12,2,−92,8,−252,18…,则第8个数为______,第n 个数为______.18. 一只小球落在数轴上的某点P 0,第一次从 p 0向左跳1个单位到P 1,第二次从P 1向右跳2个单位到P 2,第三次从P 2向左跳3个单位到P 3,第四次从P 3向右跳4个单位到P 4…,若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P 6所表示的数是______;若小球按以上规律跳了2n 次时,它落在数轴上的点P 2n 所表示的数恰好是n +2,则这只小球的初始位置点P 0所表示的数是______. 三、计算题(本大题共5小题,共52.0分) 19. 计算(1)(−20)+(+3)−(−5)−(+7) (2)−0.25+(−37)×(45)(3)(−12)×(−8)+(−6)(4)|−5+8|+24+(−3)(5)(512+23−34)×(−12)(6)(−14+9−2)÷(−13)−|−9|20.化简:(1)3x−y2+x+y2;(2)(5a2+2a−1)−4(3−8a+2a2).21.已知数轴上三点M,O,N对应的数分别为−1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为______;(2)如果点P到点M、点N的距离相等,那么x的值是______;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P 到点M、点N的距离相等,求t的值.22.阅读材料.,那么12+22+32+⋯+n2结果等于多少我们知道,1+2+3+⋯+n=n(n+1)2呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为n+n+n+⋯+n,即n2.这样,个圆圈,所有圆圈中数的和为12+22+32+⋯+n2.该三角形数阵中共有n(n+1)2【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n−1行的第一个圆圈中的数分别为n−1,2,n),发现每个位置上三个圆圈中数的和均为______,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+⋯+n2)=______,因此,12+22+32+⋯+ n2=______.【解决问题】根据以上发现,计算:12+22+32+⋯+102的结果为______.1+2+3+⋯+1023.阅读下面材料,并解决有关问题我们知道:|a|={a,当a>0时0,当a=0时−a,当a<0时现在我们可以用这一结论来化解含有绝对值的代数式如化简代数式|x+1|+|x−2|时,可令x+1=0和x−2=0,分别求得x=−1和x=2(称−1,2分别为|x+1|和|x−2|的零点值)在实数范围内,零点值x=−1和x=2可将全体实数分成不重复且不遗漏的如下三种情况:(1)x<−1(2)−1≤x<2(3)x≥2从而化简代数式|x+1|+|x−2|,可分以下三种情况(1)x<−1时,原式=−(x+1)−(x−2)=−2x+1(2)−1≤x<2时,原式=x+1−(x−2)=3(3)x≥2时,原式=x+1+x−2=2x−1通过以上阅读,请你解决以下问题(1)化简代数式|x+2|+|x−4|(2)求|x−1|−4|x+1|的最大值.四、解答题(本大题共5小题,共22.0分)24.已知3a−7b=−3,求代数式2(2a+b−1)+5(a−4b)−3b的值.25.有理数在数轴上的对应点位置如图所示,化简:|a|+|a+b|−2|a−b|.26.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中,最接近25千克的那筐白菜为______千克;(2)以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?27.将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第1列第9行的数为______,再根据第1行的偶数列的规律,写出第3行第6列的数为______,判断2018所在的位置是第______行,第______列.28.在数轴上,点A向右移动1个单位得到点B,点B向右移动(n+1)(n为正整数)个单位得到点C,点A、B、C分别表示有理数a、b、c.(1)当n=1时,A、B、C三点在数轴上的位置如图所示,a、b、c三个数的乘积为正数.①数轴上原点的位置可能()A、在点A左侧或在A、B两点之间B、在点C右侧或在A、B两点之间C、在点A左侧或在B、C两点之间D、在点C右侧或在B、C两点之间②若这三个数的和与其中的一个数相等,则a=______.(2)将点C向右移动(n+2)个单位得到点D,点D表示有理数d,a、b、c、d四个数的积为正数,且这四个数的和与其中的两个数的和相等,a为整数.若n分别取1,2,3,…,100时,对应的a的值分别为a1,a2,a3,…a100,则a1+a2+a3+⋯+a100=______.答案和解析1.【答案】C【解析】解:−5的相反数是5.故选:C.依据相反数的定义求解即可.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【答案】A【解析】解:174000用科学记数法表示为1.74×105,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】【分析】根据有理数的乘方、绝对值和负整数指数幂的知识点进行解答,即可判断.此题确定底数是关键,要特别注意−32和(−3)2的区别.【解答】解:A、(−3)2=9,−32=−9,故(−3)2≠−32;B、(−3)2=9,32=9,故(−3)2=32;C、(−2)3=−8,−23=−8,则(−2)3=−23;D、|−2|3=23=8,|−23|=|−8|=8,则|−2|3=|−23|.故选:A.4.【答案】A【解析】解:如图所示,A、m>−1,故本选项正确;B、|m|<|n|且m<0<n,则m>−n,故本选项错误;C、m<0<n,则mn<0,故本选项错误;D、|m|<|n|且m<0<n,故本选项错误;故选:A.根据数轴与实数的意义解答.本题主要考查了绝对值及数轴,解题的关键是得出n,m的取值范围.5.【答案】B【解析】解:根据绝对值的意义可知:若|x|>x,则x必为负数.故选:B.根据绝对值的意义分析:非负数的绝对值是它本身,负数的绝对值是它的相反数,即可得知答案.此题主要考查绝对值的性质.6.【答案】A【解析】解:A、−3ab2和b2a是同类项,故本选项符合题意;B、π是单项式,故本选项不符合题意;2C、当a=0时,a=−a,故本选项不符合题意;D、一个数的绝对值越大,表示它的点在数轴上离原点越远,故本选项不符合题意;故选:A.根据同类项、单项式、有理数的大小比较、绝对值的性质和数轴逐个判断即可.本题考查了同类项、单项式、有理数的大小比较、绝对值的性质和数轴,能熟记知识点的内容是解此题的关键.7.【答案】C【解析】解:∵代数式3x2−4x的值为9,∴3x2−4x=9则6x2−8x−6=2(3x2−4x)−6=2×9−6=12.故选:C.根据已知得出3x2−4x=9,再将原式变形得出答案.此题主要考查了代数式求值,正确应用已知条件是解题关键.8.【答案】C【解析】解:A、5x−(x−2y+5z)=5x−x+2y−5z,故本选项不符合题意;B、2a2+(−3a−b)−(3c−2d)=2a2−3a−b−3c+2d,故本选项不符合题意;C、3x2−3(x+6)=3x2−3x−18,故本选项符合题意;D、−(x−2y)−(−x2+y2)=−x+2y+x2−y2,故本选项不符合题意.故选:C.根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“−”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.9.【答案】D【解析】【分析】此题主要考查了有理数的比较大小,关键是利用数轴表示出a、b、−a、−b在数轴上的位置.首先根据题目的条件确定a、b的正负,以及绝对值的大小,再根据分析画出数轴标出a、b、−a、−b在数轴上的位置,根据数轴上的数左边的总比右边的小即可选出答案.【解答】解:∵a>0,b<0,∴a为正数,b为负数,∵a+b<0,∴负数b的绝对值较大,则a、b、−a、−b在数轴上的位置如图所示:,由数轴可得:b<−a<a<−b,故选D.10.【答案】B【解析】解:A、近似数5千精确到千位,近似数5000的精确到个位,故选项错误.B、317500精确到千位可以表示为31.8万,也可以表示为,3.18×105,故选项正确.C、2.46万精确到百位,故选项错误.D、近似数8.4和0.7的精确度一样,故选项错误.故选:B.此题考查了近似数,掌握最后一位所在的位置就是精确度是本题的关键.11.【答案】−3小的有理数为−3(答案不唯一),【解析】解:比−234故答案为:−3.的负数都可以.根据负数的大小比较,绝对值大的反而小,只要绝对值大于234本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大或者两个负数比较大小绝对值大的反而小是解答此题的关键.12.【答案】3【解析】解:根据题意得:9−4m+m=0,移项合并得:−3m=−9,解得:m=3.故答案为:3利用相反数性质列出方程,求出方程的解即可得到m的值.此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.13.【答案】2【解析】解:由题意,得4m−1=7,解得m=2,故答案为:2.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.14.【答案】4【解析】解:绝对值大于1且小于3的整数有±2,±3.故答案为:4.求绝对值大于1且小于4的整数,即求绝对值等于2或3的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.主要考查了绝对值的性质,绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.15.【答案】4或−1【解析】解:∵|2x−3|=5,∴2x−3=±5,∴x=4或−1.故答案为4或−1.根据绝对值的意义得到2x−3=±5,然后解两个一次方程即可.本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=−a.16.【答案】3【解析】【解析】解:x2+(6−2k)xy+y2−6令6−2k=0,k=3故答案为:3【分析】将含xy的项进行合并,然后令其系数为0即可求出k的值.【考点】本题考查多项式的概念,涉及一元一次方程的解法.17.【答案】32,(−1)n×n22【解析】【分析】此题主要考查了数字的规律问题,合理的统一数列中的分母寻找规律是解题的关键.首先把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(−1)n表示,代入即可求解.【解答】解:把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(−1)n表示,故第n个数为:(−1)n×n22,第8个数为:(−1)8×822=32.故答案为32,(−1)n×n22.18.【答案】3 2【解析】解:由题意可得,小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是6÷2=3,小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是:n+2−(2n÷2)=2,故答案为:3,2.根据题意,可以发现题目中每次跳跃后相对于初始点的距离,从而可以解答本题.此题考查数字的变化规律,数轴的认识、有理数的加减,明确题意列出算式,找出其中的变化规律是解题的关键.19.【答案】解:(1)(−20)+(+3)−(−5)−(+7)=(−20)+3+5+(−7)=−19;(2)−0.25+(−37)×(45)=−14+(−1235)=−35+(−48)140=−83140;(3)(−12)×(−8)+(−6)=4+(−6) =−2;(4)|−5+8|+24+(−3)=3+24+(−3)=24;(5)(512+23−34)×(−12)=(−5)+(−8)+9 =−4;(6)(−14+9−2)÷(−13)−|−9|=(−1+9−2)×(−3)−9=6×(−3)−9=−18−9=−27.【解析】(1)根据有理数的加减法可以解答本题;(2)先算乘法,再算加法即可解答本题;(3)先算乘法,再算加法即可解答本题;(4)根据有理数的加法可以解答本题;(5)根据乘法分配律可以解答本题;(6)先算小括号里的,再算除法,最后算减法即可解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.20.【答案】解:(1)3x−y2+x+y2=3x+x−y2+y2=4x;(2)(5a2+2a−1)−4(3−8a+2a2)=5a2+2a−1−12+32a−8a2=5a2−8a2+2a+32a−1−12=−3a2+34a−13.【解析】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.(1)直接合并同类项即可;(2)先去括号,再合并同类项即可.21.【答案】(1)4;(2)1;(3)①当点P在点M的左侧时.根据题意得:−1−x+3−x=8.解得:x=−3.②P在点M和点N之间时,PN+PM=8,不合题意.③点P在点N的右侧时,x−(−1)+x−3=8.解得:x=5.∴x的值是−3或5.(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是−t,点M对应的数是−1−2t,点N对应的数是3−3t.①当点M和点N在点P同侧时,点M和点N重合,所以−1−2t=3−3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=−t−(−1−2t)=t+1.PN=(3−3t)−(−t)=3−2t.所以t+1=3−2t,解得t=2,符合题意.3或4.综上所述,t的值为23【解析】解:(1)MN的长为3−(−1)=4.故答案为:4.(2)根据题意得:x−(−1)=3−x,解得:x=1;故答案为:1.(3)见答案;(4)见答案.【分析】(1)MN的长为3−(−1)=4,即可解答;(2)根据题意列出关于x的方程,求出方程的解即可得到x的值;(3)可分为点P在点M的左侧和点P在点N的右侧,点P在点M和点N之间三种情况计算;(4)分别根据①当点M 和点N 在点P 同侧时;②当点M 和点N 在点P 异侧时,进行解答即可.此题主要考查了数轴的应用以及一元一次方程的应用,根据M ,N 位置的不同进行分类讨论得出是解题关键.22.【答案】2n +1n(n+1)(2n+1)2 n(n+1)(2n+1)6 7【解析】解:【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n −1行的第一个圆圈中的数分别为n −1,2,n),发现每个位置上三个圆圈中数的和均2n +1;由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+⋯+n 2)=n(n+1)(2n+1)2;因此,12+22+32+⋯+n 2=n(n+1)(2n+1)6; 【解决问题】根据以上发现,计算:12+22+32+⋯+1021+2+3+⋯+10的结果为7. 故答案为:2n +1;n(n+1)(2n+1)2;n(n+1)(2n+1)6根据图1和图2,归纳总结得到一般性规律,利用此规律确定出所求即可.此题考查了有理数的混合运算,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)当x <−2时,|x +2|+|x −4|=−x −2+4−x =−2x +2; 当−2≤x <4时,|x +2|+|x −4|=x +2+4−x =6;当x ≥4时,|x +2|+|x −4|=x +2+x −4=2x −2;(2)当x <−1时,原式=3x +5<2,当−1≤x ≤1时,原式=−5x −3,−8≤−5x −3≤2,当x >1时,原式=−3x −5<−8,则|x −1|−4|x +1|的最大值为2.【解析】(1)分为x <−2、−2≤x <4、x ≥4三种情况化简即可;(2)分x <−1、−1≤x ≤1、x >1分别化简,结合x 的取值范围确定代数式值的范围,从而求出代数式的最大值.本题主要考查了绝对值,解题的关键是能根据材料所给信息,找到合适的方法解答. 24.【答案】解:当3a −7b =−3时,原式=4a +2b −2+5a −20b −3b=9a−21b−2=3(3a−7b)−2=−9−2=−11【解析】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.根据整式的运算法则即可求出答案.25.【答案】解:∵由图可知,a<−1<0<b<1,∴a+b<0,a−b<0,∴原式=−a−(a+b)+2(a−b)=−a−a−b+2a−2b=−3b.【解析】先根据各点在数轴上的位置判断出其符号及绝对值的大小,再去绝对值符号,合并同类项即可.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.26.【答案】解:(1)24.5(2)1.5+(−3)+2+(−0.5)+1+(−2)+(−2)+(−2.5)=−5.5(千克)答:不足5.5千克;(3)[1.5+(−3)+2+(−0.5)+1+(−2)+(−2)+(−2.5)+25×8]×2.6=505.7元,答:出售这8筐白菜可卖505.7元【解析】解:(1)|−0.5|最小,最接近标准,最接近25千克的那筐白菜为24.5千克;故答案为:24.5;(2)(3)见答案【分析】(1)根据绝对值的意义,可得答案;(2)根据有理数的加法,可得答案;(3)根据单价乘以数量,可得答案.本题考查了正数和负数,利用有理数的加法是解题关键.27.【答案】81 34 45 8【解析】解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方, 第一列第9行的数为9的平方,即:92=81;第一行的偶数列的数是列数的平方,则第1行第6列的数为62=36,∴第3行第6列的数为36−2=34,∵45×45=2025,2018在第45行,向右依次减小,故2018所在的位置是第45行,第8列.故答案为:81,34,45,8.根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2018所在的位置.此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.28.【答案】−2或−32 −2650【解析】解:(1)①把n =1代入即可得出AB =1,BC =2,∵a 、b 、c 三个数的乘积为正数,∴从而可得出在点A 左侧或在B 、C 两点之间;故选C ;②b =a +1,c =a +3当a +a +1+a +3=a 时,a =−2当a +a +1+a +3=a +1时,a =−32当a +a +1+a +3=a +3时,a =−12(舍去)(2)依据题意得,b =a +1,c =b +n +1=a +n +2,d =c +n +2=a +2n +4. ∵a 、b 、c 、d 四个数的积为正数,且这四个数的和与其中的两个数的和相等, ∴a +c =0或b +c =0.∴a =−n+22或a =−n+32; ∵a 为整数,∴当n 为奇数时,a =−n+32,当n 为偶数时,a =−n+22.∴a 1=−2,a 2=−2,a 3=−3,a 4=−3,…,a 99=−51,a 100=−51,∴a 1+a 2+a 3+⋯+a 100=−2650.故答案为−2或−3,−2650.2(1)把n=1代入即可得出AB=1,BC=2,再根据a、b、c三个数的乘积为正数即可选择出答案;(2)依据题意得,b=a+1,c=b+n+1=a+n+2,d=c+n+2=a+2n+4.根据a、b、c、d四个数的积为正数,且这四个数的和与其中的两个数的和相等,即可得出用含n的式子表示a,由a为整数,分两种情况讨论:当n为奇数时;当n为偶数时,得出a1=−2,a2=−2,a3=−3,a4=−3,…,a99=−51,a100=−51,从而得出a1+a2+a3+⋯+a100=−2650.本题考查了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.。
2018-2019学年北京市海淀区学校七年级(上)期中数学模拟试卷一、填空题(本大题共8小题,每小题3分,共24分)1.(3分)北京时间2016年9月15日22时04分09秒,搭载着天宫二号空间实验室的长征二号F运载火箭在酒泉卫星发射中心正式点火升空.按计划,天宫二号经过几次变轨,将进入到高度约384000米的运行轨道.把384000用科学记数法表示为.2.(3分)如图为某城市未几天的每日最高气温及最低气温的变化趋势图,日温差最大的日期为.3.(3分)用四舍五入法将1.3582精确到0.01的近似数为.4.(3分)如果3a﹣b=3,那么代数式1+b﹣3a的值是.5.(3分)若=3是关于的方程2+a=0的解,则a= .6.(3分)《九章算术》是中国古代第一部数学专著,不仅最早提到分数问题,也首先记录了盈不足等问题,在第七章“盈不足”中有这样一个问题:“今有蒲生一日,长三尺;莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”其意思是“有蒲和莞两种植物,蒲第一日长了3尺,莞第一日长了1尺,以后蒲每日生长的长度是前一日的一半,莞每日生长的长度是前一日的2倍,问几日蒲、莞上涨的长度相等.”请计算出第三日后,蒲、莞的长度相差为尺.7.(3分)在等式3a﹣7=2a+1的两边同时减去一个多项式可以得到等式a=8,则这个多项式是.8.(3分)为了大力促进水资节约,本市居民用水实行阶梯水价、水量分档和水价标准如下:按年度用水量计算,将居民家庭全年用水量划分为三档,水价分档递增,第一阶梯用水量不超过180立方米,水价为每立方米5元;第二阶梯用水量在181﹣260立方米之间,水价为每立方米7元;第三阶梯用水量为260立方米以上,水价为每立方米9元.某户居民从2016年1月1日至9月30日,累积用水200立方米,则这户居民9个月共需缴纳水费元.二、解答题(共55分)9.(18分)计算(1)5﹣7﹣(﹣2);(2)﹣6×(﹣)﹣4÷;(3)8﹣2×(﹣3)2;(4)﹣18﹣(﹣2)÷(﹣)(5)(﹣1)4+[(﹣2)3﹣(6﹣42)×2].10.(8分)用简便方法计算:(1)(﹣+1﹣)×(﹣60);(2)(﹣3)×7﹣5×3﹣(﹣4)×3.11.(12分)计算:(1)(3a+1)﹣(﹣a+2);(2)22﹣3(2﹣2y2)+3y2;(3)2﹣[﹣2﹣(32﹣1)﹣].12.(4分)先化简,再求值:﹣a﹣(a2﹣5a+3)+2(a2﹣1),其中a=﹣.13.(5分)已知有理数a、b在数轴上的位置如图所示.(1)在数轴上表示2a;(2)化简|a|﹣|a+b|+|b﹣a|.14.(8分)解方程:(1)2(﹣8)=5(+1);(2)﹣1=.三、解答题(共15分)15.(5分)北京统计信息网中,发布了2016年02季度、03季度本市农产品生产者价格指数的相关数据,如下表:(1)表中a的值为,b的值为;(2)03季度与02季度相比,各项指标中变化幅度最小的是哪类产品?(3)小红说:“蔬菜/食用菌和渔业产品这两类产品的增长幅度相同”,你认为小红的说法是否正确,请说明理由.16.(4分)阅读材料:十二五期间,本市全方位深化优先发展公共交通政策措施,以方便广大市民出行、最大限度减少地面交通负荷为目标.加快轨道交通新线建设,扩大线网规模,增加中心城线网密度,根据报告数据显示,2014年,北京市公交平均每条运营线路的日行驶里程约为0.5万公里,2015年底,由于新开通了多条地铁线路,公交运营线路比2014年减少60条,运营线路车辆日行驶的总里程比2014年减少32万公里,平均每条运营线路的日行驶里程约为0.4万公里.列代数式表示下列各数据:(1)设2014年公交运营线路为m条,则2015年运营线路车辆每日行驶的总里程为万公里;(2)设2015年公交运营车辆日行驶的总里程为n万公里,则2014年公交运营线路为条.17.(6分)初一年级在小学段期间将组织参观国家博物馆,需要租用客车,已知年级共有254位学生和6位老师参加此次活动,每辆客车上至少要有一位老师,现有甲、乙两种客车,它们的载客量和租金如下表所示.根据以上材料,解决下列问题:(1)从乘车人数考虑,既要保证260名师生的乘车需求,同时要使每辆车上至少有1位老师,所以,租用甲、乙两种客车的总数为辆;(2)设租用甲种客车辆,则租用乙种客车辆.①设所租用客车的载客总量为y1人,则y1= ;(用含的代数式表示)②设租车的费用为y2元,则y2= ;(用含的代数式表示)③可求得,当= 时,最节省费用,所需租车费用为元.参考答案与试题解析一、填空题(本大题共8小题,每小题3分,共24分)1.(3分)北京时间2016年9月15日22时04分09秒,搭载着天宫二号空间实验室的长征二号F运载火箭在酒泉卫星发射中心正式点火升空.按计划,天宫二号经过几次变轨,将进入到高度约384000米的运行轨道.把384000用科学记数法表示为 3.84×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:384000用科学记数法表示为3.84×105,故答案为:3.84×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)如图为某城市未几天的每日最高气温及最低气温的变化趋势图,日温差最大的日期为周四.【分析】根据图形可以算出相应的温差,从而可以解答本题.【解答】解:由图可得,周一的温差为:7﹣0=7℃,周二的温差为:7﹣1=6℃,周三的温差为:6﹣(﹣1)=7℃,周四的温差为:4﹣(﹣4)=8℃,周五的温差为;3﹣(﹣4)=7℃,周六的温差为:4﹣(﹣3)=7℃,周日的温差为:9﹣2=7℃,故答案为:周四.【点评】本题考查有理数的减法,解答本题的关键是明确有理数减法的计算方法.3.(3分)用四舍五入法将1.3582精确到0.01的近似数为 1.36 .【分析】把千分位上的数字8进行四舍五入即可.【解答】解:1.3582精确到0.01的近似数为1.36.故答案为1.36.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.4.(3分)如果3a﹣b=3,那么代数式1+b﹣3a的值是﹣2 .【分析】先把1+b﹣3a表示为1﹣(3a﹣b),然后利用整体代入的方法计算.【解答】解:∵3a﹣b=3,∴1+b﹣3a=1﹣(3a﹣b)=1﹣3=﹣2.故答案为﹣2.【点评】本题考查了代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.5.(3分)若=3是关于的方程2+a=0的解,则a= ﹣6 .【分析】方程的解就是能够使方程左右两边相等的未知数的值,把=3代入方程就得到关于a 的方程,从而求出a的值.【解答】解:把=3代入方程2+a=0得:6+a=0,得:a=﹣6.故答案为:﹣6.【点评】本题主要考查了方程解的定义,已知=3是方程的解实际就是得到了一个关于a的方程.6.(3分)《九章算术》是中国古代第一部数学专著,不仅最早提到分数问题,也首先记录了盈不足等问题,在第七章“盈不足”中有这样一个问题:“今有蒲生一日,长三尺;莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”其意思是“有蒲和莞两种植物,蒲第一日长了3尺,莞第一日长了1尺,以后蒲每日生长的长度是前一日的一半,莞每日生长的长度是前一日的2倍,问几日蒲、莞上涨的长度相等.”请计算出第三日后,蒲、莞的长度相差为尺.【分析】根据题意求出两种植物生长长度的规律即可求解.【解答】解:(1)设:日蒲、莞上涨的长度相等有题意得:蒲,第日上涨长度为:3×21﹣;莞,第日上涨长度为:1×2﹣1,则:3×21﹣=1×2﹣1,解得:≈2.6.答:2.6日蒲、莞上涨的长度相等(2)蒲第3日后上涨长度为:,莞,第3日上涨长度为:7,二者差为尺,故答案是.【点评】本题考查的是有理数的乘方,重点是要求出两种植物生长长度的规律,是一道难度较大的题目.7.(3分)在等式3a﹣7=2a+1的两边同时减去一个多项式可以得到等式a=8,则这个多项式是2a﹣7 .【分析】根据等式的性质和整式的加减进行填空即可.【解答】解:∵等式3a﹣7=2a+1的两边同时减去一个多项式可以得到等式a=8,∴3a﹣7﹣(2a﹣7)=2a+1﹣(2a﹣7),∴a=8,故答案为2a﹣7.【点评】本题考查了整式的加减,掌握整式加减的法则是解题的关键.8.(3分)为了大力促进水资节约,本市居民用水实行阶梯水价、水量分档和水价标准如下:按年度用水量计算,将居民家庭全年用水量划分为三档,水价分档递增,第一阶梯用水量不超过180立方米,水价为每立方米5元;第二阶梯用水量在181﹣260立方米之间,水价为每立方米7元;第三阶梯用水量为260立方米以上,水价为每立方米9元.某户居民从2016年1月1日至9月30日,累积用水200立方米,则这户居民9个月共需缴纳水费1040 元.【分析】根据题中的阶梯水价,计算出应缴纳的水费即可.【解答】解:根据题意知这户居民9个月共需缴纳水费180×5+7×(200﹣180)=1040(元),故答案为:1040.【点评】此题考查了有理数的混合运算,列出正确的算式是解本题的关键.二、解答题(共55分)9.(18分)计算(1)5﹣7﹣(﹣2);(2)﹣6×(﹣)﹣4÷;(3)8﹣2×(﹣3)2;(4)﹣18﹣(﹣2)÷(﹣)(5)(﹣1)4+[(﹣2)3﹣(6﹣42)×2].【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=5﹣7+2=0;(2)原式=4﹣=;(3)原式=8﹣18=﹣10;(4)原式=﹣1﹣8=﹣9;(5)原式=1﹣8+20=13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.(8分)用简便方法计算:(1)(﹣+1﹣)×(﹣60);(2)(﹣3)×7﹣5×3﹣(﹣4)×3.【分析】(1)根据乘法分配律可以解答本题;(2)根据乘法分配律可以解答本题.【解答】解:(1)(﹣+1﹣)×(﹣60)==40+(﹣70)+48=18;(2)(﹣3)×7﹣5×3﹣(﹣4)×3===﹣25.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.11.(12分)计算:(1)(3a+1)﹣(﹣a+2);(2)22﹣3(2﹣2y2)+3y2;(3)2﹣[﹣2﹣(32﹣1)﹣].【分析】按照先去括号,后合并同类项的法则化简即可.【解答】解:(1)(3a+1)﹣(﹣a+2)=3a+1+a﹣2=4a﹣1(2)22﹣3(2﹣2y2)+32=22﹣32+6y2+9=﹣2+6y2+9(3)2﹣[﹣2﹣(32﹣1)﹣]=2+2+32﹣1+=42+﹣1【点评】本题考查整式的加减,解题的关键是掌握去括号法则、合并同类项法则,属于中考常考题型.12.(4分)先化简,再求值:﹣a ﹣(a 2﹣5a+3)+2(a 2﹣1),其中a=﹣. 【分析】去括号,合并同类项,最后代入求出即可. 【解答】解:﹣a ﹣(a 2﹣5a+3)+2(a 2﹣1) =﹣a ﹣a 2+5a ﹣3+2a 2﹣2 =a 2+4a ﹣5,当a=﹣时,原式=﹣2﹣5=﹣6.【点评】本题考查了整式的加减和求值,能正确根据整式的加减法则进行化简是解此题的关键.13.(5分)已知有理数a 、b 在数轴上的位置如图所示. (1)在数轴上表示2a ; (2)化简|a|﹣|a+b|+|b ﹣a|.【分析】(1)在数轴上画出表示2a 的点即可; (2)根据绝对值的性质化简即可; 【解答】解:(1)表示2a 的点如图所示:(2)∵a <0,a+b >0,B ﹣a >0,∴|a|﹣|a+b|+|b ﹣a|=﹣a ﹣a ﹣b+b ﹣a=﹣3a .【点评】本题考查绝对值的性质、数轴等知识,解题的关键是熟练掌握绝对值的性质,属于中考常考题型. 14.(8分)解方程: (1)2(﹣8)=5(+1);(2)﹣1=.【分析】方程去分母,去括号,移项合并,将系数化为1,即可求出解. 【解答】解:(1)2﹣16=5+5 2﹣5=5+16﹣3=21=﹣7(2)3(3y﹣1)﹣12=2(5y﹣7)9y﹣3﹣12=10y﹣149y﹣10y=﹣14+12+3﹣y=1y=﹣1【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.三、解答题(共15分)15.(5分)北京统计信息网中,发布了2016年02季度、03季度本市农产品生产者价格指数的相关数据,如下表:(1)表中a的值为﹣2 ,b的值为 2.1 ;(2)03季度与02季度相比,各项指标中变化幅度最小的是哪类产品?(3)小红说:“蔬菜/食用菌和渔业产品这两类产品的增长幅度相同”,你认为小红的说法是否正确,请说明理由.【分析】(1)根据02季度、03季度本市农产品生产者价格指数的相关数据,即可得到a,b 的值;(2)根据各项指标中变化幅度的绝对值,可得畜禽产品的变化幅度最小;(3)根据蔬菜/食用菌的增长幅度为﹣4.3,而渔业产品的增长幅度为4.3,即可得到结论.【解答】解:(1)a=93.2﹣95.2=﹣2;b=90.1﹣88=2.1;故答案为:﹣2,2.1;(2)根据各项指标中变化幅度的绝对值,可得畜禽产品的变化幅度最小,变化幅度为1;(3)小红的说法不正确,因为蔬菜/食用菌的增长幅度为﹣4.3,而渔业产品的增长幅度为4.3.【点评】本题主要考查了统计表,统计表是表现数字资料整理结果的最常用的一种表格.统计表是由纵横交叉线条所绘制的表格表现统计资料的一种形式.16.(4分)阅读材料:十二五期间,本市全方位深化优先发展公共交通政策措施,以方便广大市民出行、最大限度减少地面交通负荷为目标.加快轨道交通新线建设,扩大线网规模,增加中心城线网密度,根据报告数据显示,2014年,北京市公交平均每条运营线路的日行驶里程约为0.5万公里,2015年底,由于新开通了多条地铁线路,公交运营线路比2014年减少60条,运营线路车辆日行驶的总里程比2014年减少32万公里,平均每条运营线路的日行驶里程约为0.4万公里.列代数式表示下列各数据:(1)设2014年公交运营线路为m条,则2015年运营线路车辆每日行驶的总里程为(0.5m ﹣32)万公里;(2)设2015年公交运营车辆日行驶的总里程为n万公里,则2014年公交运营线路为条.【分析】(1)根据题意可以求得2015年运营线路车辆每日行驶的总里程;(2)根据题意可以求得2014年公交运营线路的条数.【解答】解:(1)由题意可得,2015年运营线路车辆每日行驶的总里程为:(0.5m﹣32)(万公里),故答案为:(0.5m﹣32);(2)由题意可得,2014年公交运营线路为:(条),故答案为:.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.17.(6分)初一年级在小学段期间将组织参观国家博物馆,需要租用客车,已知年级共有254位学生和6位老师参加此次活动,每辆客车上至少要有一位老师,现有甲、乙两种客车,它们的载客量和租金如下表所示.根据以上材料,解决下列问题:(1)从乘车人数考虑,既要保证260名师生的乘车需求,同时要使每辆车上至少有1位老师,所以,租用甲、乙两种客车的总数为 6 辆;(2)设租用甲种客车辆,则租用乙种客车(6﹣)辆.①设所租用客车的载客总量为y1人,则y1= 50+35(6﹣);(用含的代数式表示)②设租车的费用为y2元,则y2= 1200+1000(6﹣);(用含的代数式表示)③可求得,当= 4 时,最节省费用,所需租车费用为6800 元.【分析】(1)根据教师人数,载客量即可判断;(2)分别求出甲乙两种车的载客量,租金即可解决问题,再求出自变量的取值范围,利用一次函数的性质即可解决问题;【解答】解:(1)有6位老师,要使每辆车上至少有1位老师,所以,租用甲、乙两种客车的总数为6辆;(2)设租用甲种客车辆,则租用乙种客车(6﹣)辆.①设所租用客车的载客总量为y1人,则y1=50+35(6﹣);②设租车的费用为y2元,则y2=1200+1000(6﹣);③∵y2=1200+1000(6﹣)=200+6000,又∵50+35(6﹣)≥260,解得≥,∵200>0,y2随的增大而增大,∴=4时,费用最少,此时费用为6800元.故答案为6,(6﹣),50+35(6﹣),1200+1000(6﹣),4,6800;【点评】本题考查列代数式、一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。