p PF PH x0 2 .
OF
x
B
6、通径 通径的长度:2p
通过焦点且垂直对称轴的直线,与抛物线相交 于两点,连接这两点的线段叫做抛物线的通径。
思考?:通径是抛物线的焦点弦中最短的弦吗?
是
归纳特点
1.抛物线只位于半个坐标平面内,虽然它可以无 限延伸,但它没有渐近线;
2.抛物线只有一条对称轴,没有对称中心; 3.抛物线只有一个顶点、一个焦点、一条准线; 4.抛物线的离心率是确定的,为1;
1.解:设两交点为A(x1 , y1) , B(x2 , y2) ,抛物线
方程为
y2=2px
(p>0),
则焦点
F
p 2
,
0
,
AB
:
y
k(
x
p 2
)
y2 2 px y k( x
p) 2
k2x2
p(k 2
2) x
k2 p2 4
0
p(k 2 2)
p2
x1 x2
k2
, x1 x2 4
2
点M在抛物线上,所以 -2 2 2 p 2
即p=2
因此,所求抛物线标准方程是 y2 4 x
说明:当焦点在 x(y)轴上,开口方向不定时, 设为 y2=2mx(m ≠0) (x2=2my (m≠0)), 可避免讨论.
思考
顶点在坐标原点,对称轴是坐标轴 ,并且经过点
M(2 , 2 2) 的抛物线有几条?求它的标准方程
在方程①中,当 y=0时,x=0, O F
x
因此抛物线①的顶点就是坐标原点。
4、离心率 e=1.
抛物线上的点p到焦点 的距离和它到准线的距
离之比,叫做抛物线的离心率,用e表示。由抛物