5.3简单的轴对称图形(三)优秀课件
- 格式:ppt
- 大小:466.00 KB
- 文档页数:15
5.3.3角平分线的性质教学目标:1.掌握作已知角的平分线的尺规作图方法。
2.利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题.3.使学生在自主探索角平分线的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验;重难点:1. 利用角平分线的性质定理解决实际问题;2. 利用角平分线构造垂线。
启中入1.复习:(1)角平分线定义:(2)角平分线性质:(3)相关模型:2.验证猜想:角的平分线上的点到角的两边的距离相等.已知:如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于E 。
求证: PD=PE归纳:角平分线性质:___________________________________________ 几何语言:O B读中思例1.如图,△ABC 中,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ,求证:CF=EB 。
练习1.如图 ,在△ABC 中,∠C=90°,AC=BC , AD 平分∠CAB ,并交BC 于D , DE ⊥AB 于点E ,若 AB=8cm ,则△DEB 的周长为_____2.如图,已知点P 是∠AOB 角平分线上的一点, PC ⊥OA 于C ,PC=4cm ,点D 是OB 上一个动点, 则PD 的最小值为___(练习1) (练习2) (例2)例2.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=5,DE=2,则△BCE 的面积为__________.练习1.如图,已知△ABC ,∠ABC ,∠ACB 的角平分线交于点O ,连接AO 并延长交BC 于D ,OH ⊥BC 于H ,若∠BAC=60°,OH=3cm ,OA 长为_____(练习1) (练习2)CF OC B2.如图,∠AOB=300,P 是∠AOB 的平分线上一点,PC ∥OA,交OB 于点C ,PD ⊥OA ,垂足为点D 。