最新第二节非线性光学极化率
- 格式:doc
- 大小:412.50 KB
- 文档页数:17
2.2非线性极化率的经典非简谐振子模型1.物理模型采用Lorentz 模型来研究介质的非线性极化率。
设介质中含有振荡频率为0ω的振子集合,单位体积内共有N 个振子。
如图所示,在外加电场)(t E 作用下,原子中的电子做强迫振动。
恢复力和外加光电场为3220mBr mAr r m F ++ω-= (2.17)..)exp()()(21C C t i E t E +ω-ω= (2.18)图2.15 Lorentz 振子模型电子运动方程为eE mBr mAr r m dt dr m dtr d m -=--ω+Γ+3220222 (2.19)这里r 是电子偏离平衡位置的位移,左边第二项为弛豫力。
Lorentz 模型的不足之处是只用一个共振频率0ω来描述每一个原子。
事实上,每一个原子有许多本征能级,因而应有许多共振频率。
它不能描述非线性极化率的完全共振特性。
但它也能体现非线性极化率的一些特性。
2.数学技巧:微扰迭代法(2.19)式没有解析解,可采用微扰迭代方法来求解。
其思想是,我们总可以将r 展开成E 的幂级数+++=)()()(33221E r E r E r r (2.20)因此就能得到关于1r 、2r 和3r 的迭代微分方程组。
将(2.20)式代入(2.19)式,得到一系列方程中最低阶次的三个方程为()..)exp()(221201212C C t i E m e r dt dr dt r d +ω-ω-=ω+Γ+ (2.21a) 2122022222Ar r dt dr dtr d =ω+Γ+(2.21b)3121320323222Br r Ar r dt dr dtr d +=ω+Γ+ (2.21c) 先看(2.21a)式,它是关于t 的线性方程。
令..)exp(211C C t i q r +ω-= (2.22) 解得)()(ωω-=F E meq (2.23) 其中ωΓ-ω-ω=ωi F 21)(220(2.24)于是⎥⎦⎤⎢⎣⎡+ωω-=ω-..)()(211C C e F E m e r ti (2.25) 再看(2.21b)式。
第二节 非线性光学极化率一 密度矩阵表述法(一)刘维方程: 非线性光学极化率是介质的特征性质――与介质的电子和分子结构的细节有关――量子力学计算――密度矩阵表述法――最方便的方法,特别当必须处理激发的弛豫时. 令ϕ是在电磁场影响下物质系统的波函数.密度矩阵算符:ϕϕρ= (2.1.1) 物理量P 的系综平均由下式给出:()P Tr P Pρϕϕ== (2.1.2)[]ρρ,1H =∂∂i t (2.1.3) 该方程称作刘维方程(Liouville ’s equation ).哈密顿算符H 是由三部分组成: H HH H ++=随机int(2.1.4)1)0H 是未受扰动的物质系统的哈密顿算符,其本征态是n ,而本征能量是nE,nn E Hn =0;2)nt H 是描述光与物质相互作用的相互作用哈密顿算符;3)而随机H 是描述系统周围的热库施于该系统随机的扰动的哈密顿算符.H int 在电偶极矩近似下,相互作用哈密顿算符由下式给定:ntH E r e⋅= (2.1.5)在这里将只考察电子对极化率的贡献. 对于离子的贡献,就必须用—E R q i ii⋅∑代替E r e⋅,其中q i 和i R 分别是第i 个离子的电荷和位置.H 随机 哈密顿算符随机H 是造成物质激发的弛豫的原因,或者换言之,它是造成被扰动了的ρ弛豫回到热平衡的原因. 于是我们可以把式(2.1.3)表示成iht 1=∂∂ρ[]ρ,int 0,H H +弛豫⎪⎭⎫ ⎝⎛∂∂+t ρ(2.1.6)其中 []ρρ,随机弛豫Hiht 1=⎪⎭⎫⎝⎛∂∂ρ的矩阵元的物理意义:将本征态n 作为基矢,并把ϕ写成n 的线性组合: ∑=nn na ϕ,那么,ρ的矩阵元的物理意义就十分清楚了. 矩阵元2annnn n =≡ρρ表示系统在n 态中的布居,而非对角矩阵元*'''a a n n nn n n =≡ρρ表明系统的态具有n和'n 的相干混合.在n 和'n 有混合的情况下,如果a n 与a n '的相对相位是随机的(或不相干的),那么,通过系综平均后就有0'=ρnn 。
寻找(t ∂∂/ρ)弛豫表达式.布居的弛豫是系统与热库的相互作用引起的态之间的跃迁的结果.令W n-n ’是由热引起的丛态n到态'n 的跃迁的速率.于是,n中的过剩布居的弛豫速率应是()tnn∂∂/ρ弛豫=]'''''_[ρρnnn n n n n nn w w→→∑ (2.1.8)在热平衡时,就有 0]_[/)0(')0('''')0(==⎪⎭⎫ ⎝⎛∂∂→→∑ρρρnn n n n n n n n nnw w t (2.1.9)因此,也可以把式(2.1.8)写成()]___[]_[)0(')0('''''')0(⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=∂∂→→∑ρρρρρρnn nn n n n n n n n n n nn w w nn t弛豫 (2.1.10) 非对角元的弛豫更复杂. 然而,在一些简单的情况中,预期相位相干性指数的衰减到零.这样,对于n ≠n ’,我们有ρρ'''nn nn nn t Γ-=⎪⎪⎭⎫⎝⎛∂∂弛豫(2.1.11) 这里'21'1')(nn n n nn T ==ΓΓ--是态n与'n 之间的特征弛豫时间.在磁共振中,布居的弛豫称作纵向弛豫,而非对角矩阵元的弛豫称作横向弛豫. 在某些情况下,态的纵向弛豫能用下式来近似:⎪⎭⎫ ⎝⎛--=∂∂-ρρρρ)0(1)0()(1]_[nn nn n nn nn T t弛豫 (2.1.12) 这样,T 1叫做纵向弛豫时间. 相应的T 2叫做横向弛豫时间.(二)微扰法解刘维方程在计算中采用微扰展开. 令()()()⋅⋅⋅+++=210ρρρρ()()()⋅⋅⋅+++=321P P P P(2.1.13)其中)()()P Tr n n Pρ=( (2.1.14)式中ρ)0(是热平衡的系统的密度矩阵算符,而且我们假设在介质中没有固有极化,因而00=P)(.把ρ的级数展开式代入式(2.1.6),再把nt H 视为一级微扰,相同级的相收集在一起,就得到弛豫⎪⎪⎪⎭⎫ ⎝⎛∂∂++=∂∂H H t i tρρρρ)1()0(int )1(0)1(]),[],([1 弛豫⎪⎪⎪⎭⎫ ⎝⎛∂∂++=∂∂H H t i tρρρρ)2()1(int )2(0)2(]),[],([1 (2.1.15)我们在这里感兴趣的是对能分解成傅立叶分量的场 ∑=E iℰi )exp(t i r i i i ω-⋅K的响应. 于是,由于 )(int int ωi i∑H H =和)exp()(int t i i i i ωεω-∝H算符ρ)(n 也能展开成傅立叶级数 )()()(ωρρi in n ∑=当)(/)()()(ωρωωρi n i i n i t -=∂∂时,就能从式(2.1.15)具体的逐级解出)()ωρi n (.第一级解是)()(')]([)()0()0(''''int )1('ρρωωωωρnnn n nn nn inn i inn i -+-=ΓH (2.1.16)这里我们采用了记号''n A n A nn =. 可以很容易得到更高级的解,尽管这种推倒是冗长乏味的,每当在推导中出现对角元)0()(ρn mm 时,为了得到一个封闭的解,常常必须对式(2.1.8)中的()弛豫t mm ∂∂/ρ作进一步的近似. 我们还需提及,只要0≠+ωωk j 式(2.1.16)中)()2('ωωρk j nn +的表达式即使在n=n ’时也是适用的,因为那时可在计算机中略去弛豫⎪⎭⎫ ⎝⎛∂∂t nn/)2(ρ这一项.二. 非线性极化率的微观表达式非线性极化强度()n p 和非线性极化率()n χ 的完全的微观表达式得到的. 在式(2.1.14)和(2.1.16)中,当H int =e E r ⋅和r Ne P-=时,很容易得到由电子贡献引起的一阶和二阶极化率. 用明显的笛卡儿张量标记,这些极化率就由下列各式给出:一阶: χij(1)=pi1(1)(ω)/E j (ω)=,)()()()()0(2g gn ng ng gn i ng j ng ng gn j ng i i r r i r r e Nρωωωω∑⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧Γ+--Γ++注意:ij =1,2,3 共有9个分量。
二阶:=+=)(21)2(ωωωijkX [])()(/)(21)2(ωωωk J i E E P∑⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛Γ+++Γ+-⨯Γ+--⎪⎪⎭⎫ ⎝⎛Γ+-+Γ++⨯Γ+--Γ++Γ+++Γ++Γ+++Γ+-Γ+-+Γ+-Γ+--=,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)0(122121,223.11)()()(11)()()()())(()()()())(()()()())(()()()())(()()()(n n g g g n g n ng ng nn nn gn j n n i ng k ng ng g n g n nn nn gn k n n i ng j g n g n ng ng ng i n n k gn j g n g n ng ng ng i n n j gn k g n g n ng ng g n j nn k gn i gn ng g n k nn j gn i i i i r r r i i i r r r i i r r r i i r r r i i r r r g n i ng i r r r eN ρωωωωωωωωωωωωωωωωωωωωωωωωωωωω (2.2.)在χ)1(ij 中有两项,而在χ)2(ijk中有8项. 注意:χ)2( 有27个分量三阶:χ)3(ijkL (31ωωωω++=),它总共48项. 在文献(5)中给出了χ)3(ijkL的完全表达式,这里就不在重述了. χ)3(ijkL的共振结构以后要在第十四章里讨论.在非共振的情况下,可以忽略式(2.1.17)的分母中的衰减常数. 注意到这时χ)2(ijk的表达式中最后两项变成-+--))(()()()('21''g n ng gn k n n i ng j r r r ωωωω))(()()()(2'1''ng g n gn g n n i ng k r r r ωωωω-+二阶极化率就能被简化成只有6项的形式.当N 表示每单位体积内的原子或分子数时,表达式(2.2.1)实际上对于气体或分子液体或分子固体是比较合适的,而)0(gρ由玻尔兹曼分布所给定. 对于电子性质由能带结构来描述的固体,其本征态是布洛赫态,而)0(g ρ对应于费米分布. 这时χ)1(ij和χ)2(ijk的表达式应作适当的修改. 由于能带的态基本上是连续的,故可忽略去分母中的衰减常数. 在忽略了光子的波矢关系的电偶极矩近似中,对于这样的固体,χ)2(ijk具有形式χ)2(ijk()2ωωω+==-[][]⎰∑⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--⨯',,'223)()(,,',,,,c c v v c cv k j i q q qv r q c q c r q c q c r q v q d eωωωω+[][])()(,,',',,,'1q q qv r q c q c r q c q c r q v v c cv j k iωωωω--+[][])()(,,',',,,2'q q qv r q c q c r q c q c r q v cv v c i j k ωωωω++ +[][])()(,,',',,,1'q q q v r q c q c r q c q c r q v cv v c i k j ωωωω+++[][])()(,,',',,,'21q q qv r q c q c r q c q c r q v v c cv k i jωωωω+-+[][])()(,,',',,,2'1q q qv r q c q c r q c q c r q v cv v c j i kωωωω-+(2.2.2)式中q 表示电子波矢,v,c,和c ’是带的指标,而)(qf v 是态q v,的费密分布因子. 对于凝聚态物质,应存在一个由感生的偶极矩-偶极矩相互作用产生的局域场. 于是一个局域场修正因子()n L 要作为一个乘数因子出现在()n χ中. 我们将在第四节中较仔细的讨论这种局域场修正. 对于固体中其波函数扩展到许多个晶胞上的布洛赫(带态)电子来说,这种局域场会有被平均掉的趋势,因而()n L 也许接近于1.讨论:1大致估计极化率的数量级2 考察何时可作为微扰比较χ)1(+n与χ)(n1<<时才可用级数展开3 结构对称性对极化率有简化4 极化率的共振增强特性记住:1。