静力弹塑性分析方法简介
- 格式:doc
- 大小:24.50 KB
- 文档页数:4
静力弹塑性分析方法简介摘要:PUSHOVER方法是基于性能/位移设计理论的一种等效静力弹塑性近似计算方法,该方法弥补了传统的基于承载力设计方法无法估计结构进入塑性阶段的缺陷,在计算结果相对准确的基础上,改善了动力时程分析方法技术复杂、计算工作量大、处理结果繁琐,又受地震波的不确定性、轴力和弯矩的屈服关系等因素影响的情况,能够非常简捷的求出结构非弹性效应、局部破坏机制、和整体倒塌的形成方式,便于进一步对旧建筑的抗震鉴定和加固,对新建筑的抗震性能评估以及设计方案进行修正等。
PUSHOVER方法以其概念明确、计算简单、能够图形化表达结构的抗震需求和性能等特点,正逐渐受到研究和设计人员的重视和推广。
目前,国内外论述PUSHOVER方法的文章已经很多,但大部分是针对某一方面的论述。
为了给读者一个比较快速全面的认识,本文在综合大量文献的基础上,对PUSHOVER 方法的基本原理、分析步骤、等效体系的建立、侧向荷载的分布形式等方面做了比较全面的论述。
关键词:基于性能抗震设计;静力弹塑性分析;动力时程分析方法;恢复力模型;目标位移1前言结构分析方法基本可以分为弹性方法和弹塑性方法。
按对地震得不同处理方式,又分为等效静力分析与动力时程分析。
一般来说动力弹塑性时程分析方法能较真实地模拟地震作用过程,但是,由于计算工作量巨大,地震波的不确定性等因素的影响,此方法尚处于科研阶段,在短期内做到实用化非常困难。
自20世纪90年代美国学者提出基于性能设计的抗震设计思想以来,PUSHOVER方法由于其简单方便以及对结构特性的良好表现性,很快成为各国学者积极讨论广泛研究的焦点之一。
经过十几年的研究,已经取得了较大发展,并且得到了美国的SEAOCVision2000,ATC–33,ATC–34,ATC–40,FEMA273,FEMA274[1-3];欧洲的Eurocode8和日本的BuildingStandardLawofJapan等规范或规程的认可,我国也将这种方法引入了《建筑抗震设计规范》(GB50011-2001)。
结构静力弹塑性分析方法的研究和改进一、本文概述随着建筑行业的不断发展,对建筑结构的安全性和稳定性的要求也越来越高。
结构静力弹塑性分析方法作为一种重要的结构分析方法,能够更准确地模拟结构在静力作用下的弹塑性行为,因此在工程实践中得到了广泛应用。
然而,现有的结构静力弹塑性分析方法仍存在一些问题和不足,如计算精度不高、计算效率低等,这些问题限制了其在大型复杂结构分析中的应用。
因此,本文旨在深入研究结构静力弹塑性分析方法,探索其改进策略,以提高计算精度和效率,为工程实践提供更为准确和高效的结构分析方法。
本文首先介绍了结构静力弹塑性分析方法的基本原理和计算流程,分析了现有方法的不足和局限性。
在此基础上,本文提出了一种改进的结构静力弹塑性分析方法,通过引入新的算法和优化计算流程,提高了计算精度和效率。
本文还通过实际工程案例的对比分析,验证了改进方法的可行性和有效性。
本文的研究不仅有助于推动结构静力弹塑性分析方法的发展,提高其在工程实践中的应用水平,同时也为相关领域的研究提供了有益的参考和借鉴。
二、结构静力弹塑性分析方法的理论基础结构静力弹塑性分析方法(Pushover Analysis)是一种在结构工程领域广泛应用的非线性静力分析方法,旨在评估结构在地震等极端荷载作用下的性能。
该方法基于结构在地震作用下的弹塑性反应特点,通过模拟结构的静力加载过程,分析结构的弹塑性变形、内力分布和破坏机制,为结构抗震设计和性能评估提供重要依据。
静力弹塑性分析方法的理论基础主要建立在塑性力学、结构力学和地震工程学等多个学科领域。
其中,塑性力学提供了描述材料在弹塑性阶段的应力-应变关系的本构模型,包括理想弹塑性模型、随动硬化模型等多种模型,这些模型能够反映材料在受力过程中的非线性行为和塑性变形累积。
结构力学则为静力弹塑性分析提供了结构整体和局部的力学分析方法,包括静力平衡方程、变形协调条件等,这些方程和条件构成了静力弹塑性分析的数学模型。
静力弹塑性分析(Pushover 分析)■ 简介Pushover 分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。
Pushover 分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。
所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。
Pushover 分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规X 要求,然后再通过pushover 分析评价结构在大震作用下是否能满足预先设定的目标性能。
计算等效地震静力荷载一般采用如图2.24所示的方法。
该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。
在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。
目前我国的抗震规X 中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。
这样的设计方法可以说是基于荷载的设计(force-based design)方法。
一般来说结构刚度越大采用的修正系数R 越大,一般在1~10之间。
但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。
基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。
结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。
所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。
框架结构抗震设计—静力弹塑性分析法摘要:静力弹塑性分析法(Push-Over)是一种基于性能的抗震设计方法,已被越来越多的人认可和使用,本文重新梳理了Push-Over方法的水平加载原理及方法,明确了能力谱和需求谱及性能点三者的关系和意义。
利用框架结构的Push-Over曲线,介绍结构的性能点,并对结构的抗震能力进行验证,判断其抗震性能。
关键词:静力弹塑性分析(Push-Over分析);框架结构;能力谱;需求谱;性能点1引言近年来,地震一次又一次袭击我们的家园近,2008年发生在四川汶川的8.0级大地震,死亡人数69227人,直接经济损失8451亿;2015年发生在尼泊尔的8.1级大地震,死亡人数8219人,直接经济损失348.84亿。
这一组组触目惊心的数据,都无时无刻不在警告我们工程人员,良好的抗震减震设计和优异的施工质量是当前中国乃至全世界都应该做到的,这样可以保证我们的房屋、桥梁及隧道做到大震不倒、中震可修、小震不坏。
如何提高建筑物的抗震能力、是否有更先进的抗震设防理念,是摆在科研工作者面前最急迫也是最艰难的问题。
抗震设计分析大致经历了一下几个阶段,静力理论阶段、反应谱理论阶段、动力理论阶段及基于性能的抗震设计理论阶段。
基于性能的抗震设计理论中最主要的两种设计方法是:一、弹塑性时程分析法;二、静力弹塑性分析理论(Push - Over法)。
静力弹塑性分析理论作为一种简单而有效的抗震设计理论已越来越被广大科研人员和设计人员所接受。
广大科研人员已经将其应用于房屋建筑、桥梁及其他结构的抗震设计中。
钢筋混凝土框架结构、层间隔震结构、钢结构及钢管混凝土结构的静力弹塑性分析均进行了大量的理论研究和实际应用]。
本文应用Push - Over方法对某钢筋混凝土框架结构厂房进行抗震性能分析。
2 静力弹塑性分析方法静力弹塑性分析(Push - Over)是在结构上施加竖向静载和活荷载并保持不变,同时施加沿高度分布的某种水平荷载或位移作用,随着水平作用的不断增加,结构构件逐渐进入塑性状态,结构的梁、柱和剪力墙等构件出现塑性铰,最终达到结构侧向破坏。
静力弹塑性分析方法与与动力弹塑性分析方法的优缺点Pushover)分析法1、静力弹塑性分析方法(Pushover)分析法优点:(1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。
(2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。
2、静力弹塑性分析方法(Pushover)分析法缺点:(1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。
(2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。
(3)只能从整体上考察结构的性能,得到的结果较为粗糙。
且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。
不能完全真实反应结构在地震作用下性状。
二、弹塑性时程分析法1、时程分析法优点:(1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。
(2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。
(3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。
(4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。
2、时程分析法缺点:(1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。
(2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。
所以此法的计算工作十分繁重,必须借助于计算机才能完成。
结构设计中的静力弹塑眭分析研究邓小云q匕京东方华太建筑设计工程有限责任公司,北京市100073)应用科技我国有很多地区处于地震多发带,河北省唐山大地震及5.12汶川地震等也给我们显示了地震的危害。
在建设工程里积极地采取抗震分析、抗震手段是一个十分重要的应对措施。
特别是现代社会建筑高度越来越高,复杂程度也日益明显。
在这种情况下光依靠弹性理论的结构分析设计不容易满足需要。
应用弹塑性分析方法是比较合理的地震反应分析方法,它可以计算地震反应全过程中各时刻的内力和变形,特别是能够计算开裂、屈服的次序,集中的发现应力集中部位,因此能够识别屈服机制、薄弱环节以及其破坏类型,这种方法是结构弹塑性分析较为可靠方法。
1Pushov er方法原理静力弹塑性分析方法诞生于20世纪80年代,这些年来许多工程师以及科学家都进行了深入的研究。
尤其是近几年提出了许多改进方法,如适时谱Pus hover分析方法、振型Pus hover分析方法等。
pushover分析法的步骤有各自的特点,但是其基本步骤相同:1)确定各个构件的单元初始刚度矩阵或者根据前一步力~变形关系确定的单元弹塑性刚度矩阵,然后确定结构总刚度矩阵K,这实际上就是建立了结构的计算模型、构件的物理参数和恢复力模型;2)根据第一步所确定的结构总刚度矩阵计算由竖向荷载作用产生的各个构件初始内力和变形,也就是结构在荷载作用下的内力计算;3)建立荷载作用下的荷载分布形式,将地震力等效为倒三角或与第一振型等效的水平荷载模式。
在结构各层的质心处,沿高度施加以上形式的水平荷载。
选取水平加载模式,单调增加水平加载力的大小,求取水'-T-荷载作用下结构的内力和变形,组合竖向和水平荷载作用下结构的内力和变形:4)根据构件的内力和变形确定构件的物理参数是否被修改,若无构件物理参数被修改,转入3)循环,对于开裂或屈服的t-千f#-,对其刚度进行修改后,再增加一级荷载,又使得一个或一批杆件开裂或屈服,若有构件物理参数被修改,记录结构底部剪力和结构代表变形,转入1)循环;5)当结构达到目标位移,构件达到极限弯矩(或剪力)或者结构形成独立的机构,终止计算过程。
m i d a s C i v i lm i d a s C i v i lm i d a s C i v i l图2.8.38 基于位移设计法的结构抗震性能评价m i d a s C i v i l示。
m i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i l1n λ- : 前一步骤(n-1)的荷载因子1λ : 第1荷载步的荷载因子nstep : 总步骤数i : 等差增量步骤号当前步骤的外力向量如下。
0n n λ=⋅P P(10)(3) 第3阶段: 最终步骤的荷载增量(n nstep =) 最终荷载步骤(nstep )的外力向量如下、0nstep nstep λ=⋅P P ; 1.0nstep λ= (11)图2.8.43 自动调整荷载步长的例题(荷载因子结果)m i d a s C i v i l2. 点击步长控制选项 > 增量控制函数定义步长控制函数m i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lATC-40中对不同结构响应类型规定了谱折减系数的下限值(参见表2.8.7)。
静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点比较一、Pushover分析法1、Pushover分析法优点:(1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。
(2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。
2、Pushover分析法缺点:(1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。
(2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。
(3)只能从整体上考察结构的性能,得到的结果较为粗糙。
且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。
不能完全真实反应结构在地震作用下性状。
二、弹塑性时程分析法1、时程分析法优点:(1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。
(2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。
(3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。
(4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。
2、时程分析法缺点:(1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。
(2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。
所以此法的计算工作十分繁重,必须借助于计算机才能完成。
浅谈静力弹塑性分析(Pushover )的理解与应用摘要:本文首先介绍采用静力弹塑性分析(Pushover )的主要理论基础和分析方法,以Midas/Gen 程序为例,采用计算实例进行具体说明弹塑性分析的步骤和过程,表明Pushover 是罕遇地震作用下结构分析的有效方法。
关键词:静力弹塑性 Pushover Midas/Gen 能力谱 需求谱 性能点一、基本理论静力弹塑性分析方法,也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种静力分析方法,在一定精度范围内对结构在罕遇地震作用下进行弹塑性变形分析。
简要地说,在结构计算模型上施加按某种规则分布的水平侧向力或侧向位移,单调加荷载(或位移)并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到控制点达到目标位移或建筑物倾覆为止,得到结构能力曲线,之后对照确定条件下的需求谱,并判断是否出现性能点,从而评价结构是否能满足目标性能要求。
Pushover 分析的基本要素是能力谱曲线和需求谱曲线,将两条曲线放在同一张图上,得出交会点的位移值,同位移容许值比较,检验是否满足特定地震作用下的弹塑性变形要求。
能力谱曲线由能力曲线(基底剪力-顶点位移曲线)转化而来(图1)。
与地震作用相应的结构基底剪力与结构加速度为正相关关系,顶点位移与谱位移为正相关关系,两种曲线形状一致。
其对应关系为:1/αG V S a =roofroof d X S ,11γ∆=,图1 基底剪力-顶点位移曲线转换为能力谱曲线其中1α、1γ、roof X ,1分别为第一阵型的质量系数,参与系数、顶点位移。
该曲线与主要建筑材料的本构关系曲线具有相似性,其实其物理意义亦有对应,在初始阶段作用力与变形为线性关系,随着作用力的增大,逐渐进入弹塑性阶段,变形显著增长,不论对于构件,还是结构整体,都是这个规律。
需求谱曲线由标准的加速度响应谱曲线转化而来。
结构静力弹塑性分析的原理和计算实例一、本文概述结构静力弹塑性分析是一种重要的工程分析方法,用于评估结构在静力作用下的弹塑性行为。
该方法结合了弹性力学、塑性力学和有限元分析技术,能够有效地预测结构在静力加载过程中的变形、应力分布以及破坏模式。
本文将对结构静力弹塑性分析的基本原理进行详细介绍,并通过计算实例来展示其在实际工程中的应用。
通过本文的阅读,读者可以深入了解结构静力弹塑性分析的基本概念、分析流程和方法,掌握其在工程实践中的应用技巧,为解决实际工程问题提供有力支持。
二、弹塑性理论基础弹塑性分析是结构力学的一个重要分支,它主要关注材料在受力过程中同时发生弹性变形和塑性变形的情况。
在弹塑性分析中,材料的应力-应变关系不再是线性的,而是呈现出非线性特性。
当材料受到的应力超过其弹性极限时,材料将发生塑性变形,这种变形在卸载后不能完全恢复,从而导致结构的永久变形。
弹塑性分析的理论基础主要包括塑性力学、塑性理论和弹塑性本构关系。
塑性力学主要研究塑性变形的产生、发展和终止的规律,它涉及到塑性流动、塑性硬化和塑性屈服等概念。
塑性理论则通过引入屈服函数、硬化法则和流动法则等,描述了材料在塑性变形过程中的应力-应变关系。
弹塑性本构关系则综合考虑了材料的弹性和塑性变形行为,建立了应力、应变和应变率之间的关系。
在结构静力弹塑性分析中,通常需要先确定材料的弹塑性本构模型,然后结合结构的边界条件和受力情况,建立结构的弹塑性平衡方程。
通过求解这个平衡方程,可以得到结构在静力作用下的弹塑性变形和应力分布。
弹塑性分析在结构工程中有着广泛的应用,特别是在评估结构的承载能力、变形性能和抗震性能等方面。
通过弹塑性分析,可以更加准确地预测结构在极端荷载作用下的响应,为结构设计和加固提供科学依据。
以上即为弹塑性理论基础的主要内容,它为我们提供了分析结构在弹塑性阶段行为的理论框架和工具。
在接下来的计算实例中,我们将具体展示如何应用这些理论和方法进行结构静力弹塑性分析。
时程分析法又称直接动力法,在数学上又称步步积分法。
顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。
它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。
当用此法进行计算时,系将地震波作为输入。
一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。
当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。
这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。
作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。
时程分析法的主要功能有:1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。
特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。
2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。
3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。
总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。
时程分析法有关的几个问题:1、恢复力特性曲线;恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。
2、结构计算模型及分析方法;3、地震波的选用;4、时程分析计算结果的处理。
静力弹塑性分析方法简介
摘要:pushover方法是基于性能/位移设计理论的一种等效静力弹塑性近似计算方法,该方法弥补了传统的基于承载力设计方法无法估计结构进入塑性阶段的缺陷,在计算结果相对准确的基础上,改善了动力时程分析方法技术复杂、计算工作量大、处理结果繁琐,又受地震波的不确定性、轴力和弯矩的屈服关系等因素影响的情况,能够非常简捷的求出结构非弹性效应、局部破坏机制、和整体倒塌的形成方式,便于进一步对旧建筑的抗震鉴定和加固,对新建筑的抗震性能评估以及设计方案进行修正等。
pushover方法以其概念明确、计算简单、能够图形化表达结构的抗震需求和性能等特点,正逐渐受到研究和设计人员的重视和推广。
目前,国内外论述pushover方法的文章已经很多,但大部分是针对某一方面的论述。
为了给读者一个比较快速全面的认识,本文在综合大量文献的基础上,对pushover方法的基本原理、分析步骤、等效体系的建立、侧向荷载的分布形式等方面做了比较全面的论述。
关键词:基于性能抗震设计;静力弹塑性分析;动力时程分析方法;恢复力模型;目标位移
abstract:pushover is an equivalent static elastoplastic approximate method which based on performance or displacement design theory. this method offsets the drawback of the force-base method which can’t estimate the inelastic characteristic of the structure, and improves the situation
of the dynamic history analytical method which needs complex technique, big calculate workload and complexity in dealing with the result and which also influenced by the uncertainty of the earthquake wave and the yield relationship of the axial force and moment. with the pushover method, we can briefly gain the elastic characteristic of the structure, local damage mechanisms and the whole collapse modes, and identify or reinforce seismic ability of the old structure, and give a seismic performance estimation of the new structure, and rectify the design project. the popularity of this approximate, nonlinear static analysis method is due to it’s conceptual simplicity and ability to graphically describe a structure’s seismic capacity and demand. however many papers on pushover method are published at present, most of them are only concerned in an aspect. in order to giving the people who interest in this method a whole understand, this paper, based on a lot of documents, sums up the method in detail, including basic principal, analytical steps, equivalent system’s establishment and the distribution mode of the lateral force.
key words:performance-based seismic design;static elastoplastic analysis;dynamic history analysis method;
restoring model;target displacement
中图分类号:tu7文献标识码:a文章编号:2095-2104(2012)1前言
结构分析方法基本可以分为弹性方法和弹塑性方法。
按对地震得不同处理方式,又分为等效静力分析与动力时程分析。
一般来说动力弹塑性时程分析方法能较真实地模拟地震作用过程,但是,由于计算工作量巨大,地震波的不确定性等因素的影响,此方法尚处于科研阶段,在短期内做到实用化非常困难。
自20世纪90年代美国学者提出基于性能设计的抗震设计思想以来,pushover方法由于其简单方便以及对结构特性的良好表现性,很快成为各国学者积极讨论广泛研究的焦点之一。
经过十几年的研究,已经取得了较大发展,并且得到了美国的seaoc vision 2000,atc – 33,atc – 34,atc – 40,fema273,fema274[1-3];欧洲的eurocode 8和日本的building standard law of japan等规范或规程的认可,我国也将这种方法引入了《建筑抗震设计规范》(gb50011-2001)。
在反应谱的基础上建立的静力弹塑性分析方法主要有:n2方法,atc-40推荐的能力谱方法[4],fema-273推荐的位移影响系数法,改进能力谱方法[2],chopra改进能力谱方法[5],适应谱法[6],概率pushover分析方法[7],静动力综合法[8]等。
另外,还有很多学者针对这一方法的适用范围、影响因素作了深入探讨和研究,但是他们大多是针对某一方面,使对这方面有兴趣的读者感到凌乱,没有头绪,所以有必要对pushover方法的基本原理、分析步骤、适用
范围、优缺点等作全面的论述。
2 基本原理与分析步骤
2.1 pushover方法的基本原理
静力弹塑性分析方法主要用于确定结构的非弹性效应、局部破坏机制、和整体倒塌的形成方式。
因此该方法可以用于旧建筑的抗震鉴定和加固,以及新建筑的设计和抗震性能评估。
这种方法的基本原理是:首先利用由反应谱换算得到的代表抗震需求的需求谱和体现结构自身性能的能力谱得到结构在可能地震作用下所对应的需求位移,然后在施加竖向荷载的同时,将表征地震作用的一组水平静力荷载以单调递增的形式作用到原结构计算模型上进行静力推覆分析,在达到需求位移时停止荷载递增,最后在荷载终止状态对结构进行抗震性能评估,判断是否可以保证结构在该水平地震作用下满足相应的功能要求。