MIDAS GEN静力弹塑性分析
- 格式:ppt
- 大小:39.79 MB
- 文档页数:42
基于Midas的复杂空间结构静力弹塑性分析I. 前言-理论基础介绍-II. 分析方法-定义复杂空间结构静力弹塑性分析-Midas的基本原理和算法-III. 计算和分析-分析和计算的主要步骤-确保比较结果的准确性和稳定性-IV. 结果和讨论-分析和计算的结果-结果的解读和分析-讨论结果与预期的相似点和不同点-V.结论和未来工作-总结分析和计算的工作和结果-未来研究和应用的建议-结束语第一章:前言随着人们对建筑物安全性和可靠性的更高要求,复杂的空间结构的设计和分析变得越来越重要。
在这个背景下,静力弹塑性分析作为一种广泛应用的分析方法,在工程实践中被广泛采用。
本论文的目的是基于Midas软件平台对复杂空间结构进行静力弹塑性分析。
本文将介绍分析方法、Midas算法、计算和分析过程,结果和讨论。
最后,我们将提出一些对于未来工作的建议。
第二章:分析方法复杂空间结构静力弹塑性分析是一种能够模拟结构变形和各种应力作用的分析方法。
该方法通过确定结构的应力分布和形变,确定结构在预定载荷作用下的变形模式和承载能力。
在处理复杂的空间结构设计和分析时,静力弹塑性分析是一种理论和实践有效的工具。
Midas软件是一种用于计算结构应力分布和形变的数值方法。
它可以模拟各种静态和动态载荷下的结构变形和应力分布,同时还可以确定最大承载能力。
Midas算法采用了高级的非线性有限元分析模型,以优化可靠性和精确度。
它还采用了可视化分析工具,帮助用户进行更有效的分析和设计。
第三章:计算和分析在进行复杂空间结构静力弹塑性分析时,需要进行以下几个步骤:1. 建模和定义材料特性2. 定义结构荷载和支持条件3. 进行静力计算并确定初始应力和应变4. 进行弹性分析5. 进行塑性分析6. 进行后处理和结果分析在Midas软件中,用户可以方便地进行这些步骤,从而得到完整的静力弹塑性分析结果。
首先,用户需要通过建模和定义材料特性来创建一个准确的模型。
该模型需要包括材料物理性质、外部荷载和支持条件信息。
浅谈静力弹塑性分析(Pushover )的理解与应用摘要:本文首先介绍采用静力弹塑性分析(Pushover )的主要理论基础和分析方法,以Midas/Gen 程序为例,采用计算实例进行具体说明弹塑性分析的步骤和过程,表明Pushover 是罕遇地震作用下结构分析的有效方法。
关键词:静力弹塑性 Pushover Midas/Gen 能力谱 需求谱 性能点一、基本理论静力弹塑性分析方法,也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种静力分析方法,在一定精度范围内对结构在罕遇地震作用下进行弹塑性变形分析。
简要地说,在结构计算模型上施加按某种规则分布的水平侧向力或侧向位移,单调加荷载(或位移)并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到控制点达到目标位移或建筑物倾覆为止,得到结构能力曲线,之后对照确定条件下的需求谱,并判断是否出现性能点,从而评价结构是否能满足目标性能要求。
Pushover 分析的基本要素是能力谱曲线和需求谱曲线,将两条曲线放在同一张图上,得出交会点的位移值,同位移容许值比较,检验是否满足特定地震作用下的弹塑性变形要求。
能力谱曲线由能力曲线(基底剪力-顶点位移曲线)转化而来(图1)。
与地震作用相应的结构基底剪力与结构加速度为正相关关系,顶点位移与谱位移为正相关关系,两种曲线形状一致。
其对应关系为:1/αG V S a =roofroof d X S ,11γ∆=,图1 基底剪力-顶点位移曲线转换为能力谱曲线其中1α、1γ、roof X ,1分别为第一阵型的质量系数,参与系数、顶点位移。
该曲线与主要建筑材料的本构关系曲线具有相似性,其实其物理意义亦有对应,在初始阶段作用力与变形为线性关系,随着作用力的增大,逐渐进入弹塑性阶段,变形显著增长,不论对于构件,还是结构整体,都是这个规律。
需求谱曲线由标准的加速度响应谱曲线转化而来。
成都市第七人民医院项目屈曲约束支撑方案MIDAS静力弹塑性分析报告1屈曲约束支撑应用概况 (2)2结构MIDAS静力弹塑性分析模型 (2)3 屈曲约束支撑模型静力弹塑性分析 (5)4 结构抗震性能的综合评价 (11)11屈曲约束支撑应用概况成都市第七人民医院项目在1-3层Y向采用了88根TJ型屈曲约束支撑,屈曲约束支撑(BRB)具体支撑参数见下表。
屈曲约束支撑表格编号材料屈服承载力(10KN)根数BRB1 Q23534 32BRB2 Q23534 16BRB3 Q23545 20BRB4 Q235 45 12BRB5 Q235 48 4BRB6 Q23550 42结构MIDAS静力弹塑性分析模型2.1. 计算软件采用MIDAS-gen进行静力弹塑性分析。
2.2.结构整体模型及地震反应基本参数2图2.2.1 整体结构模型图2.2.2 屈曲约束支撑平面布置图(蓝线位置为屈曲约束支撑)为准确反映结构的弹塑性性能和屈服机制,结构整体模型采用空间模型。
本工程的抗震设防烈度为7度(0.1g)(第三组)。
2.3.各构件塑性铰的设置表1 塑性铰的设置构件设置方法铰属性数据3框架混凝土梁梁端设置MIDAS提供的缺省的自动混凝土梁弯曲My铰本构模型混凝土柱柱顶和柱底设置MIDAS提供的缺省的混凝土柱自动PMM铰本构模型屈曲约束支撑根据屈曲约束支撑特性自定义支撑P铰本构模型0.143屈曲约束支撑模型静力弹塑性分析3.1确定罕遇地震作用下性能点通过对模型X、Y方向推覆分析来寻求7度罕遇地震作用下结构的性能点。
将Pushover计算得到的力-位移关系和罕遇地震下的反应谱分别转换为能力谱和需求谱,并统一绘在坐标系中。
如下图所示:X方向结构模型罕遇地震下基底剪力136500kN,顶点位移121mm; Y方向结构模型罕遇地震下基底剪力139000kN,顶点位移128mm。
图3.1.1 X方向结构模型罕遇地震作用下静力弹塑性分析性能点5图3.1.2 Y方向结构模型罕遇地震作用下静力弹塑性分析性能点3.2 X方向结构模型地震作用下静力弹塑性分析塑性铰情况6图3.2.1 整体模型屈曲约束支撑塑性铰示意图图3.2.2 整体模型梁柱塑性铰示意图3.3 Y方向结构模型罕遇地震作用下静力弹塑性分析塑性铰情况7图3.3.1 整体模型屈曲约束支撑塑性铰示意图图3.3.2 整体模型梁柱塑性铰示意图在X方向、Y方向结构模型上的静力弹塑性分析过程中,结构的塑性铰首先出现在屈曲约束支撑及框架梁上,其次出现在框架柱上。
m i d a s C i v i lm i d a s C i v i lm i d a s C i v i l图2.8.38 基于位移设计法的结构抗震性能评价m i d a s C i v i l示。
m i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i l1n λ- : 前一步骤(n-1)的荷载因子1λ : 第1荷载步的荷载因子nstep : 总步骤数i : 等差增量步骤号当前步骤的外力向量如下。
0n n λ=⋅P P(10)(3) 第3阶段: 最终步骤的荷载增量(n nstep =) 最终荷载步骤(nstep )的外力向量如下、0nstep nstep λ=⋅P P ; 1.0nstep λ= (11)图2.8.43 自动调整荷载步长的例题(荷载因子结果)m i d a s C i v i l2. 点击步长控制选项 > 增量控制函数定义步长控制函数m i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lATC-40中对不同结构响应类型规定了谱折减系数的下限值(参见表2.8.7)。
问:转换梁上支撑两道剪力墙怎么建模?答:可以在转换梁两侧设两个结点,在结点上再建立两道剪力墙,同时将此两节点与对应的转换梁节点采用刚性连接(刚臂)。
问:一个柱子上设置两道平行的框架梁怎么建模?答:可以将一根梁设置在柱节点上,然后再设置一新节点,利用刚性连接功能,将此节点与柱节点做刚性连接,再在此节点上建立另外一个框架梁。
问:跨层转换梁的建模问题,即一根转换梁连接上下层楼板?答:可将转换梁用板单元来建模即可。
问:对于有斜柱的结构个别层的层间位移没有输出的原因?答:原因可能由于本层的节点与下一层没有对应的节点,一般是指同一杆件的上、下节点。
问:转换层结构分析建模时,需要注意那些问题?答:需要注意:1、需将转换层的楼板刚性假定解除,否则转换梁分析完不会出现轴力,无法按偏心受拉构件进行配进设计。
2、转换梁上部的墙单元或板单元需要细分,且转换梁也需要细分,满足位移协调条件。
问:MIDAS/Gen能否计算箱基?答:使用MIDAS/Gen计算箱基的步骤如下:1、用板单元建立侧墙和底板、顶板,用梁单元模拟梁、柱。
2、将土压力、核爆等荷载按压力荷载或流体压力荷载输入。
3、如果考虑为弹性地基板,可在底板处加单向受压弹簧。
4、分析后,使用“结果/局部方向内力的合力”功能或查看板单元内力时候使用“剖断面”功能,求出板单元的内力。
问:PKPM中刚性板及弹性楼板在MIDAS/Gen中如何实现?答:一、PKPM中的“刚性楼板”即楼板面内无限刚,面外刚度为零。
MIDAS/Gen中只需在定义层数据时选择考虑刚性板即可。
二、PKPM中的“弹性板6”即采用壳元真实计算楼板平面内和平面外的刚度。
MIDAS/Gen中用板单元建立楼板,在定义板厚时真实输入板的面内和面外厚度。
注意在定义层数据时应该选择不考虑刚性板。
三、PKPM中的“弹性板3”即假定楼板平面内无限刚,楼板平面外刚度是真实的。
MIDAS/Gen中用板单元建立楼板,在定义板厚时,输入平面内厚度为0,平面外厚度为楼板真实厚度。
第42卷第24期 山 西建筑Vol .42No .242 0 1 6 年 8 月SHANXI ARCHITECTUREAug . 2016• 29 ••结构•抗震•文章编号:1009-6825 (2016) 24-0029-02静力弹塑性分析方法及位移法的工程应用胡玉海(大连市建筑设计研究院有限公司,辽宁大连116021)摘要:介绍了静力弹塑性分析及位移法的实施步骤,并通过某超限工程实例,采用MIDAS /GEN 计算软件,对其进行了罕遇地震下静力弹塑性的计算和结果分析,得到一些结论,供设计人员参考。
关键词:静力弹塑性,MIDAS /GEN ,位移法,塑性铰 中图分类号:TU 313〇引言我国现行抗震设计规范以我国目前现有科技水平和经济能 力为前提,提出了“小震不坏,中震可修,大震不倒”三水准抗震设 防目标。
对于一般规则结构是以小震的弹性分析进行内力计算, 在遭遇大震时通过概念设计和抗震构造措施来满足大震不倒要 求。
近年来基于性能的抗震设计方法已在很多复杂工程中得以 应用,用静力弹塑性分析方法,可以分析构件在罕遇地震工况下 进人弹塑性状态时结构的响应。
1静力弹塑性分析及位移法的实施步骤1)建立结构弹塑性分析模型:分析模型在已满足小震弹性分析现行规范要求和结构构件满足承载力和正常使用要求条件,完 成混凝土构件的配筋。
2)施加竖向荷载:竖向荷载可以是初始的 重力荷载代表值或是施工模拟分析中的初始竖向荷载。
3)施加 水平荷载并求出能力曲线谱:每一步加载时,在水平荷载(罕遇地 震荷载)和结构自重等竖向力共同作用下,计算所有结构构件的 内力以及弹性和弹塑性变形,进而可以求出结构位移一加速度能 力曲线谱。
4)求出性能点:需求谱分为弹性需求谱和弹塑性需求S O -S 9-O -S 9-O -S S O -S 9-O -S S O -S 9-O -S 9-O -S S O -S 9-O -S 9-O -S S O -S 9-O -S S O -S 9-O -S 9-O -S化以这样一种载体融人到藏族民居中(堂屋如图4所示)。
m i d a s C i v i lm i d a s C i v i lm i d a s C i v i l图2.8.38 基于位移设计法的结构抗震性能评价m i d a s C i v i l示。
m i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i l1n λ- : 前一步骤(n-1)的荷载因子1λ : 第1荷载步的荷载因子nstep : 总步骤数i : 等差增量步骤号当前步骤的外力向量如下。
0n n λ=⋅P P(10)(3) 第3阶段: 最终步骤的荷载增量(n nstep =) 最终荷载步骤(nstep )的外力向量如下、0nstep nstep λ=⋅P P ; 1.0nstep λ= (11)图2.8.43 自动调整荷载步长的例题(荷载因子结果)m i d a s C i v i l2. 点击步长控制选项 > 增量控制函数定义步长控制函数m i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lATC-40中对不同结构响应类型规定了谱折减系数的下限值(参见表2.8.7)。
■ 简介Pushover 分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。
Pushover 分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。
所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。
Pushover 分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover 分析评价结构在大震作用下是否能满足预先设定的目标性能。
计算等效地震静力荷载一般采用如图所示的方法。
该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。
在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。
目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。
这样的设计方法可以说是基于荷载的设计(force-based design)方法。
一般来说结构刚度越大采用的修正系数R 越大,一般在1~10之间。
但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。
基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。
结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。
所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。
例题钢筋混凝土静力弹塑性推覆分析2 例题. 钢筋混凝土静力弹塑性推覆分析概要此例题介绍使用midas Gen 的反应谱分析功能来进行钢筋混凝土结构分析的方法。
此例题的步骤如下:1.简介2.设定操作环境及设定材料截面3.用建模助手建立模型4.建立框架柱及剪力墙5.楼层复制及生成层数据文件6.定义边界条件7.输入楼面及梁单元荷载8.输入风荷载9.定义质量10.运行分析11.荷载组合12.一般设计参数13.钢筋混凝土构件设计参数14.钢筋混凝土构件设计15.静力弹塑性分析例题 钢筋混凝土静力弹塑性推覆分析31.简介本例题介绍使用midas Gen 的静力弹塑性分析功能来进行抗震设计的方法。
例题模型为九层钢筋混凝土框-剪结构。
(该例题数据仅供参考) 基本数据如下: 轴网尺寸:见平面图柱: 500mmx500mm 主梁: 250mmx600 mm 混凝土: C30 剪力墙: 250mm图2 分析模型例题钢筋混凝土静力弹塑性推覆分析4 2.设定操作环境及定义材料和截面1.主菜单选择文件>新项目文件>保存:输入文件名并保存2.主菜单选择工具>设置>单位系:长度 m, 力 kN图3 定义单位体系3.主菜单选择特性>材料>材料特性值:添加:定义C30混凝土材料号:1 数据库:C30 规范:GB10(RC)例题 钢筋混凝土静力弹塑性推覆分析5图4 定义材料4.主菜单选择 特性>截面>截面特性值:添加:定义梁、柱截面尺寸例题钢筋混凝土静力弹塑性推覆分析6图5 定义梁、柱截面5.主菜单选择特性>截面>厚度:添加:定义剪力墙厚度图6 定义剪力墙厚度例题 钢筋混凝土静力弹塑性推覆分析73.使用建模助手建立模型主菜单选择 结构>建模助手>基本结构>框架:输入:添加X 坐标,距离6,重复5;添加Z 坐标,距离6,重复3;编辑: Beta 角,90度;生成框架 材料:C30; 截面:250*600插入:插入点,0,0,0;Alpha ,-90。
例题动力弹塑性分析2 例题. 钢筋混凝土框架动力弹塑性分析概要此例题将介绍利用MIDAS/Gen做动力弹塑性分析的整个过程,以及查看分析结果的方法。
此例题的步骤如下:1.简要2.设定操作环境及定义材料和截面3.用建模助手建立模型平面4.生成框架柱5.楼层复制及生成层数据文件6.定义边界条件7.输入楼面荷载8.定义结构类型9.定义质量10.定义配筋11.定义及分配铰特性值12.输入时程分析数据13.运行分析14.查看结果例题 动力弹塑性分析31.简要本例题介绍使用MIDAS/Gen 的动力弹塑性分析功能来进行抗震设计的方法。
例题模型为二层钢筋混凝土框架结构。
(该例题数据仅供参考) 基本数据如下:轴网尺寸:见平面图 柱: 300x300 主梁: 200x300 混凝土: C30 层高: 一~二层 :3.0m 地震波: El Centro分析时间: 12 秒图1 分析模型例题动力弹塑性分析4 2.设定操作环境及定义材料和截面在建立模型之前先设定环境及定义材料和截面1.主菜单选择文件>新项目2.主菜单选择文件>保存:输入文件名并保存3.主菜单选择工具>单位体系:长度 m, 力 kN图2 定义单位体系4.主菜单选择模型>材料和截面特性>材料:添加:定义C30混凝土材料号:1 名称:C30 规范:GB(RC)混凝土:C30 材料类型:各向同性5.主菜单选择模型>材料和截面特性>截面:添加:定义梁、柱截面尺寸注:也可以通过程序右下角随时更改单位。
例题 动力弹塑性分析5图3 定义材料图4 定义梁、柱截面例题动力弹塑性分析6 3.用建模助手建立模型主菜单选择文件>新项目主菜单选择模型>结构建模助手>框架:输入:添加x坐标,距离3,重复2;添加z坐标,距离3,重复2;编辑: Beta角,90度;材料,C30;截面,200x300;生成框架;插入:插入点,0,0,0;Alpha,-90。
■ 简介Pushover 分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。
Pushover 分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。
所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。
Pushover 分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover 分析评价结构在大震作用下是否能满足预先设定的目标性能。
计算等效地震静力荷载一般采用如图所示的方法。
该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。
在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。
目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。
这样的设计方法可以说是基于荷载的设计(force-based design)方法。
一般来说结构刚度越大采用的修正系数R 越大,一般在1~10之间。
但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。
基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。
结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。
所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。