极化恒等式在高中数学应用
- 格式:pdf
- 大小:76.95 KB
- 文档页数:2
极化恒等式高中数学向量《神奇的极化恒等式——高中数学向量的魔法钥匙》嘿!同学们,你们知道吗?在咱们高中数学里,有个超级神奇的东西,叫极化恒等式!这玩意儿就像是一把神奇的魔法钥匙,能打开向量世界里好多神秘的大门。
记得有一次上数学课,老师在黑板上写下了极化恒等式的公式,那一堆字母和符号,看得我脑袋都大啦!我心里直犯嘀咕:“这到底是啥呀?怎么这么复杂!” 老师好像看出了我们的困惑,笑着说:“同学们,别着急,咱们慢慢来。
”老师开始给我们讲解,他说:“极化恒等式就像是一座桥梁,把向量的长度和数量积联系在了一起。
” 我还是不太明白,就小声问同桌:“你懂了吗?” 同桌摇摇头说:“没有啊,感觉好难!” 这时候,前面的学霸转过头来,一脸自信地说:“这有啥难的,仔细听老师讲就懂啦!” 哼,我心里不服气,难道我就听不懂啦?老师接着举例子,在黑板上画了一个图,边画边说:“你们看,如果把向量A 和向量B 想象成两个小伙伴在走路,那么极化恒等式就能算出他们之间的某种特殊关系。
” 我突然好像有点感觉了,这不就跟我们平时走路算距离差不多嘛!后来,老师又出了几道练习题让我们做。
我一开始抓耳挠腮,怎么都做不出来。
我着急地想:“哎呀,这可怎么办呀?” 就在我快要放弃的时候,我突然灵光一闪,想起了老师讲的关键步骤,一下子就做出来了!我兴奋地喊了出来:“我做出来啦!” 周围的同学都投来了惊讶的目光。
经过那次之后,我发现极化恒等式其实也没那么可怕。
它虽然看起来复杂,但只要我们用心去理解,多做几道题,就能掌握它的奥秘。
这不就像我们学骑自行车吗?一开始觉得摇摇晃晃,根本掌握不了平衡,可是练得多了,自然而然就能骑得稳稳当当啦!极化恒等式也是这样,只要我们不害怕它,勇敢地去探索,就能发现它的美妙之处。
所以呀,同学们,别被极化恒等式一开始的样子吓到,只要我们坚持学习,它一定会成为我们在数学世界里的好帮手!。
极化恒等式的应用作者:高立东
来源:《数学学习与研究》2020年第14期
【摘要】在高中数学向量的学习中,极化恒等式虽然不是教材中的公式,但它可以由基本公式得出,在解决一些问题时,能够起到很好的作用.本文通过具体的例子,介绍了极化恒等式及其应用.
【关键词】极化恒等式
综上可见,极化恒等式虽然不是重要的公式,但如果我们对它有所了解并基本掌握,在解决具体问题,特别是一些讨论范围的小题时,往往会起到意想不到的效果.
向量数量积的最值问题还可以从多角度去思考,如:定义法、坐标法、基底法和几何意义法等.当题目涉及直线、平面或空间的一个动点,需要求两个向量数量积的最值的时候,教师可以引导学生利用極化恒等式去寻找解决问题的思路,把向量数量积的最值问题转化为某个向量模的最大值,进而找到该向量的模取得最值时的动点的位置,有利于揭示向量问题的本质,有利于理解向量作为沟通代数与几何的桥梁作用,有利于领悟数形结合的数学思想,有利于分辨向量知识的源与流,从而摆脱题海战术,提高教学效率.
【参考文献】
[1]施健昌.巧用四“化” 破解极化恒等式之惑[J].中学数学教学参考,2015(12).
[2]王红权,李学军,朱成万.巧用极化恒等式妙解一类向量题[J].中学教研(数学),2013(08).。
高考数学复习考点题型专题讲解专题6 极化恒等式、投影向量极化恒等式:a ·b =14[(a +b )2-(a -b )2].(1)几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.(2)在平行四边形PMQN 中,O 是对角线交点,则: ①PM →·PN →=14[|PQ →|2-|NM →|2](平行四边形模式);②PM →·PN →=|PO →|2-14|NM →|2(三角形模式).类型一 投影向量的应用由投影与投影所在的向量共线,问题转化为求向量间的投影数量与投影所在向量方向上单位向量的积.例1 已知|a |=4,e 为单位向量,它们的夹角为2π3,则向量a 在向量e 上的投影向量是________;向量e 在向量a 上的投影向量是________. 答案 -2e -18a解析 由|a |=4,e 为单位向量,它们的夹角为2π3, 向量a 在向量e 上的投影数量:|a |cos 23π=-2,向量e 在向量a 上的投影数量:|e |cos 23π=-12,故向量a 在向量e 上的投影向量:-2e , 向量e 在向量a 上的投影向量:-12×a |a |=-18a .训练1 (1)已知向量a 与b 的夹角为34π,且|a |=2,|b |=3,则a 在b 方向上的投影向量与投影向量的长度分别是( ) A.23b ,2B.23b ,- 2 C.-23b ,2D.-23b ,- 2 (2)已知向量a =(1,2),A (6,4),B (4,3),b 为向量AB →在向量a 上的投影向量,则|b |=________. 答案 (1)D (2)455解析 (1)设a 在b 方向上的投影向量为λb (λ∈R ),则a ·b =λb ·b , 故λ=a ·b b 2=|a |cos 34π|b |=-23.故a 在b 方向上的投影向量为-23b ,a 在b 方向上的投影向量的长度为|a | cos 34π=- 2.(2)AB →=(-2,-1), 由投影公式可知|b |=|AB →·a ||a |=|-2×1+(-1)×2|5=455.类型二 利用极化恒等式求向量的数量积利用极化恒等式求平面向量数量积的步骤: (1)取第三边的中点,连接向量的起点与中点;(2)利用极化恒等式将数量积转化为中线长与第三边长的一半的平方差; (3)求中线及第三边的长度,从而求出数量积的值.注:对于不共起点或不共终点的向量需通过平移转化为共起点(终点)的向量,再利用极化恒等式.例2 (1)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值为________.(2)如图,在平行四边形ABCD 中,AB =1,AD =2,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边上的中点,则EF →·FG →+GH →·HE →=________.答案 (1)78 (2)32解析 (1)设BD =DC =m ,AE =EF =FD =n , 则AD =3n .根据向量的极化恒等式,有AB →·AC →=AD →2-DB →2=9n 2-m 2=4,FB →·FC →=FD →2-DB →2=n 2-m 2=-1,联立解得n 2=58,m 2=138.因此EB →·EC →=ED →2-DB →2=4n 2-m 2=78.即BE →·CE →=78.(2)连接EG ,FH 交于点O (图略), 则EF →·FG →=EO →2-OH →2=1-⎝ ⎛⎭⎪⎫122=34,GH →·HE →=GO →2-OH →2=1-⎝ ⎛⎭⎪⎫122=34,因此EF →·FG →+GH →·HE →=32.训练2 (1)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________.(2)如图,在△ABC 中,已知AB =4,AC =6,∠BAC =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=3AE →,若F 为DE 的中点,则BF →·DE →的值为________.答案 (1)-16 (2)4解析 (1)因为M 是BC 的中点, 由极化恒等式得AB →·AC →=|AM →|2-14|BC →|2=9-14×100=-16.(2)取BD 的中点N ,连接NF ,EB ,因AB =4,AE =2,∠BAC =60°,故BE ⊥AE ,所以BE =2 3. 在△DEB 中,FN 綉12BE ,所以FN =3,故BF →·DE →=2FB →·FD →=2⎝ ⎛⎭⎪⎫FN →2-14DB →2=2(3-1)=4.类型三 利用极化恒等式求数量积的最值(范围)(1)利用极化恒等式求数量积的最值(范围)时,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式.(2)难点在于求中线长的最值(范围),可通过观察图形或用点到直线的距离等求解.例3 (1)如图,在同一平面内,点A 位于两平行直线m ,n 的同侧,且A 到m ,n 的距离分别为1,3,点B ,C 分别在m ,n 上,|AB →+AC →|=5,则AB →·AC →的最大值是________.(2)(2022·济南调研)在△ABC 中,点E ,F 分别是线段AB ,AC 的中点,点P 在直线EF 上,若△ABC 的面积为2,则PB →·PC →+BC →2的最小值为________. 答案 (1)214 (2)2 3解析 (1)法一(极化恒等式法)连接BC ,取BC 的中点D ,AB →·AC →=AD →2-BD →2, 又AD =12|AB →+AC →|=52,故AB →·AC →=254-BD →2=254-14BC →2,又因为BC min =3-1=2, 所以(AB →·AC →)max =214.法二(坐标法)以直线n 为x 轴,过点A 且垂直于n 的直线为y 轴,建立如图所示的平面直角坐标系xOy ,如图,则A (0,3),C (c ,0),B (b ,2), 则AB →=(b ,-1),AC →=(c ,-3) 从而(b +c )2+(-4)2=52, 即(b +c )2=9,又AC →·AB →=bc +3≤(b +c )24+3=214,当且仅当b =c 时,等号成立. (2)取BC 中点O ,PB →·PC →=PO →2-14BC →2⇒PB →·PC →+BC →2=PO →2+34BC →2≥2PO →2·34BC →2=3|PO →||BC →|,当且仅当PO =32BC 时等号成立.∵PO ≥12h ,∴3|PO →||BC →|≥32h |BC →|=3S △ABC =23,∴PB →·PC →+BC →2的最小值为2 3.训练3 (1)如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为2,MN 是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),P 为正方体表面上的动点,当弦MN 的长度最大时,PM →·PN →的取值范围是________.(2)如图所示,正方形ABCD的边长为1,A,D分别在x轴,y轴的正半轴(含原点)上滑动,则OC→·OB→的最大值是________.答案(1)[0,2] (2)2解析(1)由正方体的棱长为2,得内切球的半径为1,正方体的体对角线长为2 3.当弦MN的长度最大时,MN为球的直径.设内切球的球心为O,则PM→·PN→=PO→2-ON→2=|PO→2|-1.由于P为正方体表面上的动点,故|OP|∈[1,3],所以PM→·PN→∈[0,2].(2)如图,取BC的中点M,AD的中点N,连接MN,ON,则OC →·OB →=OM →2-14=|OM →|2-14.因为OM ≤ON +NM =12AD +AB =32,当且仅当O ,N ,M 三点共线时取等号. 所以OC →·OB →的最大值为2.一、基本技能练1.设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b 等于( ) A.1 B.2 C.3 D.4 答案 A解析 由极化恒等式得a ·b =14[(a +b )2-(a -b )2]=14×(10-6)=1.2.如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5,若AB →·AD →=-7,则BC →·DC →=( )A.-9B.21C.-21D.9答案 D解析 AB →·AD →=|AO →|2-14|BD →|2=-7,∴14|BD →|2=16,BC →·DC →=|CO →|2-14|BD →|2=25-16=9.3.如图,BC ,DE 是半径为1的圆O 的两条直径,BF →=2FO →,则FD →·FE →=( )A.-34B.-89C.-14D.-49答案 B解析 ∵BF →=2FO →,圆O 的半径为1,∴|FO →|=13.法一 FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO →2+FO →·(OE →+OD →)+OD →·OE →=⎝ ⎛⎭⎪⎫132+0-1=-89.法二 由极化恒等式得FD →·FE →=FO →2-14DE →2=19-1=-89.4.已知正方形ABCD 的面积为2,点P 在边AB 上,则PD →·PC →的最大值是( ) A.92B.2 C.32D.34 答案 B解析 如图所示,取CD 的中点E ,连接PE ,由极化恒等式可得PD →·PC →=PE →2-EC →2=|PE →|2-12,所以当P 与A (B )重合时,|PE →|=52最大,从而(PD →·PC →)max =2. 5.已知a ,b 是平面内两个互相垂直的单位向量,若c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A.1 B.2 C.2D.22答案 C解析 由极化恒等式(a -c )·(b -c )=14[(a +b -2c )2-(a -b )2],∵(a -c )·(b -c )=0, 所以(a +b -2c )2=(a -b )2, 故c 2=(a +b )·c , 又因为|a |=|b |=1,a ⊥b , ∴|a +b |=2,于是|c |2≤|a +b ||c |=2|c |, ∴|c |≤ 2.6.已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则PA →·PB →的最小值为( )A.1B. 2C.2D.2 2答案 A解析如图所示,由极化恒等式易知,当OP与直线x-y+2=0垂直时,PA→·PB→有最小值,即PA→·PB→=PO→2-OB→2=(2)2-12=1.故选A.7.已知AB是圆O的直径,AB长为2,C是圆O上异于A,B的一点,P是圆O所在平面上任意一点,则(PA→+PB→)·PC→的最小值为( )A.-14B.-13C.-12D.-1答案 C解析∵PA→+PB→=2PO→,∴(PA→+PB→)·PC→=2PO→·PC→,取OC中点D(图略),由极化恒等式得,PO→·PC→=|PD→|2-14|OC→|2=|PD→|2-14,又|PD →|2min =0,∴(PA →+PB →)·PC →的最小值为-12.8.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值为( ) A.-2 B.-32C.-43D.-1答案 B解析 取BC 的中点D ,连接AD ,PD ,取AD 的中点E ,连接PE .由△ABC 是边长为2的等边三角形,E 为中线AD 的中点得AE =12AD =32,则PA →·(PB →+PC →)=2PA →·PD →=2(|PE →|2-|EA →|2) =2⎣⎢⎡⎦⎥⎤|PE →|2-⎝ ⎛⎭⎪⎫322≥2×⎝⎛⎭⎪⎫0-34=-32, 当且仅当|PE →|=0时,取等号, ∴PA →·(PB →+PC →)的最小值为-32.9.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·DA →的值为________. 答案 1解析 取AE 中点O ,设AE =x (0≤x ≤1),则AO =12x ,∴DE →·DA →=|DO →|2-14|AE |2=12+⎝ ⎛⎭⎪⎫12x 2-14x 2=1. 10.在△ABC 中,AB =6,AC =5,A =120°,动点P 在以C 为圆心,2为半径的圆上,则PA →·PB →的最小值为________. 答案 16解析 设AB 的中点为M ,则PA →·PB →=PM →2-MA →2=|PM →|2-9, 所以要求PA →·PB →的最小值,只需求|PM →|的最小值,显然当点P 为线段MC 与圆的交点时,|PM →|取得最小值,最小值为|MC |-2. 在△AMC 中,由余弦定理得|MC |2=32+52-2×3×5×cos 120°=49, 所以|MC |=7,所以|PM →|的最小值为5, 则PA →·PB →的最小值为16.11.在Rt△ABC 中,CA =CB =2,M ,N 是斜边AB 上的两个动点,且MN =2,则CM →·CN →的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤32,2解析 取MN 的中点为P ,由极化恒等式得 CM →·CN →=|CP →|2-14|MN |2=|CP →|2-12.当P 为AB 的中点时,|CP →|取最小值为2,则CM →·CN →的最小值为32;当M 与A (或N 与B )重合时,|CP →|取最大值为102,则CM →·CN →的最大值为2,所以CM →·CN →的取值范围是⎣⎢⎡⎦⎥⎤32,2.12.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,AB =8,CD =6,则MA →·MB →的取值范围是________. 答案 [-9,0]解析 如图,取CD 的中点G ,连接OG ,MO ,CO ,得OG ⊥CD ,MA →·MB →=|MO →|2-14|BA →|2=|MO →|2-16,∵|OC →|≥|OM →|≥|OG →|, ∴7≤|OM →|≤4, ∴MA →·MB →∈[-9,0]. 二、创新拓展练13.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( ) A.2 B.3 C.6 D.8答案 C解析 如图,由已知OF =1,取FO 中点E ,连接PE ,由极化恒等式得:OP →·FP →=|PE →|2-14|OF →|2=|PE →|2-14,∵当P 在椭圆右顶点时,|PE →|2有最大值,|PE →|2max=254, ∴OP →·FP →的最大值为6.14.(多选)(2022·苏北四市调研)已知在△ABC 中,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( ) A.PB →·PC →=PD →2-DB →2B.存在点P ,使|PD →|<|P 0D →| C.P 0C →·AB →=0 D.AC =BC 答案 AD解析 如图所示,取BC 的中点D ,连接PD ,根据向量的极化恒等式,有PB →·PC →=PD →2-DB →2,P 0B →·P 0C →=P 0D →2-DB →2. 又PB →·PC →≥P 0B →·P 0C →,所以|PD →|≥|P 0D →|,A 正确;B 错误;故由点P 为边AB 上任意一点知:点D 到边AB 上点的距离的最小值为|DP 0→|,从而DP 0⊥AB , ∴P 0C →·AB →≠0,C 错误;取AB 的中点E ,则由P 0B =14AB 知,CE ∥DP 0,故CE ⊥AB ,于是AC =BC ,D 正确.15.(2022·宁波模拟)AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,|AB |=6,若点P 为⊙C 上一动点,则PA →·PB →的取值范围是( ) A.[0,100] B.[-12,48] C.[-9,64] D.[-8,72] 答案 D解析 如图,取AB 中点为Q ,连接PQ .∴PA →+PB →=2PQ →,PA →-PB →=BA →,∴PA →·PB →=14[(PA →+PB →)2-(PA →-PB →)2]=14(4|PQ →|2-|BA →|2).又∵|BA →|=6,|CQ |=25-⎝ ⎛⎭⎪⎫622=4,∴PA →·PB →=|PQ →|2-9, ∵点P 为⊙C 上一动点, ∴|PQ |max =5+|CQ |=9, |PQ |min =5-|CQ |=1,∴PA →·PB →的取值范围为[-8,72].16.在半径为1的扇形中,∠AOB =60°,C 为弧上的动点,AB 与OC 交于P ,则OP →·BP →的最小值为________. 答案 -116解析 取OB 的中点D ,作DE ⊥AB 于点E ,连接PD ,则OP →·BP →=|PD →|2-|OD →|2=|PD →|2-14,易知|PD →|∈[]|DE →|,|AD →|=⎣⎢⎡⎦⎥⎤34,32,则OP →·BP →=PD →2-14∈⎣⎢⎡⎦⎥⎤-116,12,故所求最小值为-116.17.如图,在平面四边形ABCD 中,AC =AD =2,∠DAC =120°,∠ABC =90°,则BD →·BC →的最大值为________.答案 1解析 取CD 的中点E ,连接EA ,EB ,∵AC =AD =2,∠DAC =120°, ∴AE ⊥CD ,DE =AD sin 60°=3, 由∠ABC =∠AEC =90°,∴A ,B ,C ,E 四点共圆,且AC 为直径,则BD →·BC →=|BE →|2-|ED →|2=|BE →|2-(3)2≤|AC →|2-3=22-3=1, 所以BD →·BC →的最大值为1.18.(2022·金丽衢12校联考)已知平面向量a ,b ,c ,d 满足|a |=|b |=2,a·b =0,|b +2c |=2,若(d -a )·(d +2b )≤4,则|c +d |的取值范围为________. 答案 [0,10+4]解析 如图,因为|a |=|b |=2,a ·b =0,所以不妨设a =OA →=(2,0),b =OB →=(0,2).设c =OC →,d =OD →.因为|b +2c |=2,即⎪⎪⎪⎪⎪⎪c -⎝ ⎛⎭⎪⎫-12b =1,所以可知点C 在以(0,-1)为圆心,1为半径的圆上.设E (0,-4),M 为AE 的中点,由(d -a )·(d +2b )=AD →·ED →=DM →2-AM →2=DM →2-5≤4,可得点D 在以M (1,-2)为圆心,3为半径的圆内(包含边界), 所以|c +d |=|d -(-c )|=|OD →-OC ′→|=|C ′D →|∈[0,10+4].。
极化恒等式的应用引言极化恒等式是数学中一条重要的关系式,它在各个领域中都有着广泛的应用。
本文将介绍极化恒等式的定义和性质,并给出一些具体的应用案例。
极化恒等式的定义极化恒等式是指在内积空间中,通过使用内积运算将双线性函数转化为一个向量上的光滑函数。
具体地,对于一个内积空间 V,其内积运算为 \< , \>,则对于任意两个向量v, w ∈ V,极化恒等式可以表示为:\< v, w \> = \frac{1}{4} \left(\|v + w\|^2 - \|v - w\|^2\right)其中,\|v\| 表示向量 v 的范数。
极化恒等式的性质极化恒等式具有以下一些重要的性质:1.对称性:对于任意的v, w ∈ V,极化恒等式成立。
2.线性性:极化恒等式中的向量 v 和 w 可以是任意的线性组合,对应的恒等式仍然成立。
3.正定性:当且仅当 V 是一个欧几里得空间时,极化恒等式成立。
极化恒等式在向量分析中的应用极化恒等式在向量分析中起着重要的作用,以下是一些常见的应用案例:1. 向量正交性证明假设有两个向量 v 和 w,在证明它们正交性时,可以利用极化恒等式。
通过计算 \< v, w \>,若等式右侧的值为 0,则可以得到 v 和 w 的正交性。
2. 向量长度计算对于一个给定的向量 v,可以利用极化恒等式计算其长度。
通过令 w = v,代入极化恒等式并求解,即可得到向量 v 的长度,即 \|v\|。
3. 向量夹角计算给定两个向量 v 和 w,可以利用极化恒等式计算它们之间的夹角。
通过令 w = v - w,代入极化恒等式并求解,即可得到向量 v 和 w 之间的夹角。
极化恒等式在物理学中的应用极化恒等式在物理学中也有广泛的应用,以下是一些常见的应用案例:1. 电场的计算对于一个给定的电场分布,利用极化恒等式可以计算电场的能量密度。
通过令v 和 w 分别为电场和电位移向量,在极化恒等式中代入并求解,即可得到电场的能量密度。
高中数学极化恒等式公式概述及解释说明1. 引言1.1 概述本文旨在对高中数学中的极化恒等式公式进行概述和解释说明。
高中数学中,极化恒等式是一类重要的数学公式,具有广泛的应用。
通过深入探究极化恒等式的定义、重要性以及在高中数学中的应用,希望能够帮助读者更好地理解和运用这些公式。
1.2 文章结构本文主要分为五个部分,包括引言、高中数学极化恒等式公式概述、解释极化和恒等式概念、常见的高中数学极化恒等式公式及其证明方法介绍以及结论与展望。
每个部分将详细介绍相关内容,并提供实例和解释,以便读者能够更好地理解。
1.3 目的本文的目的是系统地总结和阐述高中数学中涉及到的极化恒等式公式,并提供相应的证明方法。
通过对这些公式进行深入讲解,旨在帮助读者加深对这些概念的理解,并掌握它们在实际问题中应用的技巧。
同时,本文也将展望未来研究的方向,为相关领域的进一步探索提供思路和建议。
以上是对“1. 引言”部分的详细清晰撰写。
2. 高中数学极化恒等式公式概述2.1 极化恒等式的定义在高中数学中,极化恒等式是指可以在变量或未知数所代表的值满足一定条件的情况下,将一个表达式变为另一个等价的表达式。
极化恒等式通常涉及到代数、三角函数、数列和几何等方面的内容。
它们由数学家们总结得出,是解决问题和推导证明的重要工具。
2.2 极化恒等式的重要性极化恒等式在高中数学教学中具有重要作用。
通过运用极化恒等式,我们可以简化复杂的表达式、推导出新的关系和性质,并解决各种类型的问题。
理解和掌握了极化恒等式,能够提升学生对高中数学概念和方法的理解,在解决实际问题时更加灵活和高效。
2.3 极化恒等式在高中数学中的应用极化恒等式广泛应用于高中数学各个领域。
例如,在代数领域,我们经常使用分配律、合并同类项以及因式分解来转换表达式;在三角函数领域,我们利用三角函数的周期性和各种恒等式来简化计算;在数列领域,我们可以运用递归关系和等差、等比数列的性质;在几何领域,我们使用勾股定理、相似性质和平行线截切定理等。
巧用极化恒等式秒杀向量高考题一、极化恒等式:1.极化恒等式:设b a ,是两个平面向量,则有恒等式])()[(4122b a b a b a --+=⋅ (1) 2.极化恒等式的几何意义:向量a 和b 的数量积b a ⋅等于以a 和b 为邻边的平行四边形的“和对角线”的平方减去“差对角线”的平方的41,即 ][41])[(41])()[(41222222BC AD BC AD b a b a b a -=-=--+=⋅在三角形中,也可以用三角形的中线来表示,即22222241])2[(41])()[(41BC AM BC AM b a b a b a -=-=--+=⋅极化恒等式的作用主要在于,它可以将两个向量的数量积转化为这两个向量的“和向量”与“差向量”的平方差的四分之一,因此,当两个向量的“和向量”与“差向量”为定向量时,常常可以考虑极化恒等式进行转化求解 二、极化恒等式的应用1.(2012年浙江高考15题)在ABC ∆中,M 是BC 的中点,3=AM ,10=BC ,则=⋅AC AB解法1:(基底法))()()()(MA MB MA MB MA MC MA MB AC AB --⋅-=-⋅-=⋅1625922-=-=-=MB MA解法2:(坐标法)以点M 为原点,BC 为x 轴建立平面直角坐标系,则)0,5(),0,5(C B -,设)sin 3,cos 3(θθA ,则)sin 3,cos 35(),sin 3,cos 35(θθθθ--=---=AC AB16259sin 925cos 9)sin 3()cos 35)(cos 35(222-=-=+-=-+---=⋅θθθθθAC AB 解法3:(极化恒等式)=⋅AC AB 161004194122-=⨯-=-BC AM2.(2011年上海高考11题)在正ABC ∆中,D 是BC 上的点,3=AB ,1=BD ,则=⋅AD AB解法1:(基底法))3132(AC AB AB AD AB +⋅=⋅ AC AB AB ⋅+=313222152********=⨯⨯⨯+⨯= 解法2:(基底法))(BA BD BA AD AB -⋅-=⋅215921132=+⨯⨯-=+⋅-=BA BD BA解法3:(坐标法)以BC 的中点O 为原点,BC 为x 轴建立平面直角坐标系,则)0,23(-B , )233,0(),0,21(A D -,所以)233,21(),233,23(--=--=AD AB所以21542743=+=⋅AD AB 解法4:(转化为其它向量的数量积)取BC 的中点E ,则BD AE ⊥所以=⋅AD AB ED EB AE EB ED AE AE ED AE EB AE ⋅+⋅+⋅+=+⋅+2)()(2152123)233(22=⨯+=⋅+=ED EB AE 解法5:(极化恒等式)取BD 的中点M ,则由极化恒等式知215411)233(412222=-+=-=⋅BD AM AD AB 3.(2016年江苏高考13题)在ABC ∆中,D 是BC 上的点,F E ,是AD 上两个三等分点,4=⋅CA BA ,1-=⋅CF BF ,则=⋅CE BE解法1:(基底法)设b AC a AB ==,,则4=⋅=⋅=⋅b a AC AB CA BA ①)32()32()()(AC AD AB AD AC AF AB AF CF BF -⋅-=-⋅-=⋅1)22(91)3231()3231()3131()3131(22-=--⋅=-⋅-=-+⋅-+=b a b a b a a b b b a a b a ② 联立①②得229,2=+b a所以))(61[])(61[)()(b b a a b a AC AE AB AE CE BE -+⋅-+=-⋅-=⋅87)5526(36122=--⋅=b a b a解法2:(基底法)设a DF b BD ==,,则49)3()3()()(22=-=+⋅-=-⋅-=⋅b a b a b a DC DA DB DA CA BA ① 1)()()()(22-=-=+⋅-=-⋅-=⋅b a b a b a DC DF DB DF CF BF ②联立①②得813,852==b a 所以874)2()2()()(22=-=+⋅-=-⋅-=⋅b a b a b a DC DE DB DE CE BE 解法3:(坐标法)以BC 为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系,设)0,(a B -, ),(),2,2(),3,3(),0,(y x F y x E y x A a C ,则4)(9)3,3()3,3(222=-+=-⋅+=⋅a y x y a x y a x CA BA ① 4)(),(),(222=-+=-⋅+=⋅a y x y a x y a x CF BF ②联立①②得813,85222==+a y x 所以813)(4)2,2()2,2(222=-+=-⋅+=⋅a y x y a x y a x CE BE 解法4:(极化恒等式)设a FD EF AE ===,则4419412222=-=-=⋅=⋅BC a BC AD AC AB CA BA ①141412222-=-=-=⋅=⋅BC a BC FD FC FB CF BF ②联立①②得81341,8522==BC a所以=⋅CE BE 87813820414412222=-=-=-=⋅=BC a BC ED EC EB4.若AB 是圆O 的直径,M 是圆O 的弦CD 上的一个动点,8=AB ,6=CD ,则MB MA ⋅的取值范围为解法1:(坐标法)设点)0,4(),0,4(B A -,设),(y x M ,则由OC OM OG ≤≤知16722≤+≤y x所以]0,9[1622-∈-+=⋅y x MB MA解法2:(极化恒等式)1641222-=-=⋅MO BC MO MB MA又OC OM OG ≤≤,即]4,7[∈OM ,所以]0,9[-∈⋅MB MA5.已知正ABC ∆内接于半径为2的圆O ,E 为线段BC 上一动点,延长AE 交圆O 与点F ,则FB FA ⋅的取值范围为解法1:(坐标法)建系如图,)1,3(),1,3(B A --, 设]2,6[),sin 2,cos 2(ππθθθ-∈F ,所以 ]6,0[sin 42)sin 21,cos 23()sin 21,cos 23(∈+=---⋅----=⋅θθθθθFB FA解法2:(极化恒等式)341222-=-=⋅FD BC FD FB FA 因为CD FD BD ≤≤,即]3,3[∈FD ,所以FB FA ⋅]6,0[∈ 6.如图,放置的边长为1的正方形ABCD ,顶点D A ,分别在x 轴,y 轴正半轴(含原点)滑动,则OC OB ⋅的最大值为解法1:(坐标法)设)90,0(0∈=∠θODA ,则)0,(sin θA ,)cos ,0(θD ,)sin cos ,(cos ),sin ,cos (sin θθθθθθ++C B所以22sin 1)cos (sin cos cos )cos (sin ≤+=+++=⋅θθθθθθθOC OB 当且仅当045=θ时等号成立,所以OC OB ⋅的最大值为2 解法2:(极化恒等式)取AD BC ,的中点N M ,,则4141222-=-=⋅OM BC OM OC OB ,又23121=+=+≤MN ON OM所以241)23(2=-≤⋅OC OB ,即OC OB ⋅的最大值为27.(2012年南京模拟)在ABC ∆中,点F E ,分别为线段AC AB ,的中点,点P 在直线EF 上,若ABC ∆的面积为2,则2BC PC PB +⋅的最小值是 解析:(极化恒等式)由题意知4221=⋅⇒=⋅=∆h BC h BC S ABC 2222224341BC PO BC BC PO BC PC PB +=+-=+⋅322343)2(22≥⋅≥+≥h BC BC h8.(2012年安徽高考题)平面向量b a ,满足32≤-b a ,则b a ⋅的最小值为 解法1:222249494432b a b a b a b a b a +=+⋅⇒≤⋅-+⇒≤- 由基本不等式得894449422-≥⋅⇒⋅-≥≥+=+⋅b a b a b a b a b a ,当且仅当略 所以b a ⋅的最小值为89-解法2:(极化恒等式)]92[81]22[81)2(21222-+≥--+=⋅=⋅b a b a b a b a b a89)90(81-=-≥,当且仅当⎪⎩⎪⎨⎧=-=+3202b a b a 即b a ,反向共线且43=a 时等号成立, 所以b a ⋅的最小值为89-巩固练习:1.(2007年天津高考15题)在ABC ∆中,2=AB ,3=AC ,D 是边BC 的中点,则=⋅BC AD解析:=⋅BC AD 25)49(21)(21)(222=-=-=-⋅+AB AC AB AC AC AB 2.已知正ABC ∆内接于半径为2的圆O ,点P 是圆O 上的动点,则PB PA ⋅的取值范围为 解析:过点C 作AB CD ⊥于点D ,则点D 为AB 的中点,32===BC AC AB ,PB PA ⋅341222-=-=PD AB PD因为31≤≤PD ,所以PB PA ⋅]6,2[-∈3.设正方形ABCD 的边长为4,动点P 在以AB 为直径的圆弧APB 上(如图所示),则PC PD ⋅的取值范围为解析:取CD 的中点E ,则441222-=-=⋅PE CD PE PC PD因为522≤≤PE ,所以]160[ ∈⋅PC PD4.(2015年南通三调)如图,已知正方形ABCD 的边长为2,E 为AB 的中点,以A 为圆心,AE 为半径作圆交AD 于点F ,若P 为劣弧EF 上的动点,则PD PC ⋅的最小值为解法1:(坐标法)解法2:(极化恒等式)取CD 的中点G ,则141222-=-=⋅PG CD PG PD PC又215≤≤-PG ,所以PD PC ⋅]3,525[-∈,所以PD PC ⋅的最小值为525- 5.已知AB 是圆O 的直径,2=AB ,C 是圆O 上异于,点B A ,的一点,P 是圆O 所在的平面上任意一点,则PC PB PA ⋅+)(的最小值为解析:取OC 的中点D ,则21212)41(22)(222-≥-=-⨯=⋅=⋅+PD OC PD PC PO PC PB PA6.(2017年南通二模)如图,在平面四边形ABCD 中,O 为BD 的中点,且3=OA ,5=OC ,若7-=⋅AD AB ,则=⋅DC BC解析:16417419412222=⇒-=-=-=⋅BD BD BD AO AD AB916254122=-=-=⋅=⋅BD CO CD CB DC BC7.如图,在ABC ∆中,已知4=AB ,6=AC ,060=∠BAC ,点E D ,分别在边AC AB ,上,且AD AB 2=,AE AC 3=,若F 为DE 的中点,则DE BF ⋅的值为 解法1:(极化恒等式)取BD 的中点N ,连接EB NF ,,则AE BE ⊥,所以32=BE 因为NF 是DBE ∆的中位线,所以3=FN4)1(2)41(22222=-=-=⋅=⋅FN DB FN FD FB DE BF解法2:(基底法)略 解法3:(坐标法)略备选题:1.(2008年浙江高考9题)已知b a ,是平面内两个互相垂直的单位向量,若向量0)()(=-⋅-c b c a ,则c 的最大值为( )A.1B.2C.2D.22 解法1:(代数法)c b a c b a c b a c c b c a ⋅+=⇒=⋅+⋅+-=-⋅-)(0)()()(22所以2cos 2cos 2≤=⇒+=θθc c b a c ,故选C解法2:(坐标法)设),(),1,0(),0,1(y x OC c b a ====,则)1,(),,1(y x c b y x c a --=---=-所以21)21()21(0)1()1()()(22=-+-⇒=----=-⋅-y x y y x x c b c a所以点C 在以点)21,21(为圆心,222≤解法3:(几何法)设b a OD c OC b OB a OA +====,,,2==所以0)()(=-⋅-c b c a CB CA CB CA OC OB OC OA ⊥⇒=⋅⇒=-⋅-⇒00)()(所以点C 在以AB 的最大值为22.(2013年浙江高考7题)设点0P 是ABC ∆的边AB 上一定点,满足AB B P 410=,且对于AB 上任一点P ,恒有C P B P PC PB 00⋅≥⋅,则( )A.090=∠ABC B.090=∠BAC C.AC AB = D.BC AC = 解析:取BC 的中点M ,则22022004141BC M P BC PM C P B P PC PB -≥-⇒⋅≥⋅ 所以M P PM 0≥,所以AB MP ⊥0,所以BC AC =,故选D3.在平面直角坐标系xOy 中,B A ,分别在y x ,正半轴上移动,2=AB ,若点P 满足2=⋅PB PA ,则OP 解析1:(坐标法)设),0(),0,(b B a A ,),(y x P ,则422=+b a2),(),(22=--+=-⋅-=⋅=⋅by ax y x b y x y a x BP AP PB PA by ax y x +=-+⇒222324324)(4))(()()2(222222222222+≤+≤-⇒+=++≤+=-+⇒y x y x y x b a by ax y x]13,13[22+-∈+=y x解析2:(极化恒等式)取AB 的中点Q ,则121==AB OQ⇒=-=-=⋅∴2141222PQ AB PQ PB PA 3=,1313+≤+≤=≤=-∴4.梯形ABCD 中,满足AD // BC ,1=AD ,3=BC ,2=⋅DC AB ,则=⋅BD AC 解析:取BC 的两个三等分点F E ,,G 在CB 的延长线上,且1==AD BG ,则321412222=⇒=-=-=⋅=⋅AE AE BF AE AF AB DC AB=⋅BD AC 1)43()41(22=--=--=⋅-GC AE AG AC5.(2016年南京三模)在半径为1的扇形AOB 中,060=∠AOB ,C 为弧上的动点,AB 与OC 交于点P ,则BP OP ⋅的最小值为 解析:取OB 的中点D ,则41)43(41412222-≥-=-=⋅=⋅PD OB PD PB PO BP OP 161-=6.在等腰直角ABC ∆中,1==AC AB ,点E 为斜边BC 的中点,点M 在线段AB 上运动,则)()(AM AC AM AE -⋅-的取值范围为解析:取CE 中点D ,则]42343[,∈MD]1167[8141)()(222,∈-=-=⋅=-⋅-MD CE MD MC ME AM AC AM AE7.已知B A ,是圆O :122=+y x 上的两个点,P 是线段AB 上的动点,当AOB ∆的面积最大时,2AP AP AO -⋅的最大值为 解析:当AOB ∆的面积最大时,OB OA ⊥,所以PO PA PO AP AP AO AP AP AP AO ⋅-=⋅=-⋅=-⋅)(2取OA 的中点,则222241)41(PM OA PM PO PA AP AP AO -=--=⋅-=-⋅81)42(412=-≤。
活跃在高考中的一个恒等式——极化恒等式01何谓极化恒等式()()14⎡⎤⋅=+--⎢⎥⎣⎦22a b a b a b三角形模型:在ABC 中,D 为BC 的中点:.⋅=-=-=-22222214AB AC AD BD AD CD AD BC平行四边形模型在平行四边形ABCD 中:()⋅=-2214AB AD AC BD02极化恒等式应用例1,(2017全国II ,理12)已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()⋅+PA PB PC 的最小值是( )A. 2-B. 32-C. 43- D. 1- 解法1(坐标法):以BC 所在直线为x 轴,BC 的中垂线y 轴建立平面直角坐标系,()()()1,0,1,0,0,3C A B -,设(),P x y ,则(),3,x y =--PA ()1,x y =---PB ,()1,x y =--PC()()(),32,2x y x y ⋅+=--⋅--=PA PB PC ∴222232+2222x y x y ⎡⎤⎛⎢⎥=+-- ⎢⎥⎝⎭⎣⎦,当且仅当0,2x y ==0,2P ⎛ ⎝⎭,()⋅+PA PB PC 取得最小值32-.解法2(极化恒等式):设BC 的重点为O ,OC 的中点为M ,连接OP ,PM ,()22⋅+=⋅=-=2212PA PB PC PO PA PM AO ∴33222-≥-2PM ,当且仅当M 与P 重合始去等号.例2在ABC 中,已知90,4,3,C AC BC D ∠===是AB 的中点,E ,F 分别是BC ,AC 上的动点,且EF = 1,则⋅DE DF 的最小值为( ) A.5 B. 154 C. 174D. 17解法1(坐标法)以AC 所在直线为x 轴,BC 所在直线为y 轴建立平面直角坐标系,则()()34,0,0,3,2,,2A B D ⎛⎫⎪⎝⎭设()()0,,,0,E b F a 则221a b +=,332,,2,22b a ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭DE DF ,()2532512434242b DE DF a a b ∴⋅=--=-+, 由柯西不等式可得:()()()222224343a b a b ++≥+,即435a b +≤,当且仅当43,55a b ==时取等号,()251255154342424DE DF a b ∴⋅=-+≥-=,故选B解法2(极化恒等式)设EF 的中点为M ,连接CM ,则12=CM ,即点M 在如图所示的圆弧上,则 2222111154244DE DF DM EM DM CD ⋅=-=-≥--=,故选B本题也可用三角换元法解决例3,(2013浙江)设ABC ,0P 是边AB 上的一定点,满足014P B AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅≥⋅,则( ) A. 90ABC ∠= B. AB AC = C. 90BAC ∠= D. AC BC =解法1(坐标法)以AB为x轴,AB的中垂线为y轴,建立如图所示的直角坐标系,设()()=4,,,,0AB C a b P x,则()()()()()()()0001,0,2,0,2,0,2,0,,,1,0,1,P A B PB x PC a x b P B PC a b -=-=--==-, ()()00,21PB PC P B PC x a x a ⋅≥⋅∴--≥-恒成立,即:()()110x a x ---≥恒成立, 11,a ∴-=即:0a =,∴点C 在y 轴上,AC BC ∴=,故选D解法2(基地法)解法3(极化恒等式)例4、(2016江苏)如图,在ABC中,D是BC的中点,E,F是AD上的两个三等分点,⋅值为4,1⋅=⋅=-,则BE CEBA CA BF CF解法1(坐标法)以BC为x,D为坐标原点,建立如图所示的直角坐标系解法2(基底法)解法3(极化恒等式)例5、(2018宝鸡一模)直线0ax by c ++=与圆22:16O x y +=相交于两点M ,N ,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为 解法1(坐标法)以O 为坐标原点,MN 的平行线为x 轴,建立如图所示的直角坐标系,解法3(极化恒等式)例6,如图,已知B ,D 是直角C 两边上的动点,,3,6AD BD AD BAD π⊥=∠=,()()11,22CM CA CB CN CD CA =+=+,则CM CN ⋅的最大值为以C为坐标原点,BC为x轴,建立如图所示的直角坐标系,解法2(基底法)解法3(极化恒等式):(注:可编辑下载,若有不当之处,请指正,谢谢!)。