二次函数和一次函数的概念和性质
- 格式:docx
- 大小:37.13 KB
- 文档页数:3
高中数学学习材料(灿若寒星精心整理制作)第二章第二单元一次函数和二次函数1.一次函数(1)一次函数的概念函数叫做一次函数,它的定义域是R,值域为R.一次函数的图象是,其中k叫做该直线的,b叫做该直线在y轴上的.一次函数又叫.(2)一次函数的性质①函数的改变量Δy=与自变量改变量Δx=的比值等于,k的大小表示直线与x轴的.②当k>0时,一次函数是;当k<0时,一次函数是.③当b=0时,一次函数为,是;当b≠0时,它.④直线y=kx+b与x轴的交点为,与y轴的交点为。
2.二次函数(1)函数y=ax2+bx+c(a≠0)叫做,它的定义域为R.(2)二次函数的性质与图象图象函数性质a>0 a<0 定义域x∈R值域a>0 a<024[,)4ac bya-∈+∞24(,]4ac bya-∈-∞奇偶性b=0时为偶函数,b≠0时既非奇函数也非偶函数单调性a>0 a<0(,],2bxa∈-∞-时递增[,)2bxa∈-+∞时递减(,],2bxa∈-∞-时递减[,)2bxa∈-+∞时递增图象特点()()241:;2:(,)224b b ac b x a a a-=--对称轴顶点 最值抛物线有最低点, 当2bx a=-时,y 有最小值2min44ac b y a-=抛物线有最高点, 当2bx a=-时,y 有最大值2max44ac b y a-=(3) 配方法将二次函数y =ax 2+bx +c 配成顶点式y =x (a(-)h)2+k 来求抛物线的顶点和函数y 的最值问题.配方法是研究二次函数的主要方法,熟练地掌握配方法是掌握二次函数性质的关键,对一个具体的二次函数,通过配方就能知道这个二次函数的主要性质.(4)二次函数解析式的三种形式 ①一般式:f (x )= ax 2+bx+c(a ≠0) .②顶点式:f(x)= f(x)=a(x-h)2+k (a ≠0) ,(k ,h)为顶点坐标. ③两根式:f(x)=a(x-x 1)(x-x 2)(a ≠0) , x 1、x 2为两实根. 3.待定系数法一般地,在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写为一般形式,其中系数待定,然后再根据题设条件求出这些待定系数. 这种通过求待定系数来确定变量之间关系式的方法叫做待定系数法。
一次函数与二次函数一次函数和二次函数是初等数学中最基本的函数类型,它们在现实生活中有着广泛的应用。
本文将对一次函数和二次函数的定义、性质、图像以及应用进行详细的介绍。
一、一次函数1. 定义:一次函数是指形如y = ax + b(a≠0)的函数,其中a和b为常数,x为自变量,y为因变量。
一次函数又称为线性函数。
2. 性质:(1)一次函数的图像是一条直线,且斜率为a,截距为b。
(2)当a>0时,一次函数的图像从左到右呈上升趋势;当a<0时,一次函数的图像从左到右呈下降趋势。
(3)当a>0且b>0时,一次函数的图像在第一象限;当a>0且b<0时,一次函数的图像在第四象限;当a<0且b>0时,一次函数的图像在第二象限;当a<0且b<0时,一次函数的图像在第三象限。
3. 图像:一次函数的图像是一条直线,其斜率和截距可以通过公式y = ax + b计算得出。
4. 应用:一次函数在实际生活中有很多应用,例如速度与时间的关系、距离与时间的关系、价格与数量的关系等。
二、二次函数1. 定义:二次函数是指形如y = ax² + bx + c(a≠0)的函数,其中a、b、c为常数,x为自变量,y为因变量。
二次函数又称为抛物线函数。
2. 性质:(1)二次函数的图像是一个抛物线,其顶点坐标为(-b/2a, f(-b/2a)),对称轴为x = -b/2a。
(2)当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
(3)当Δ= b² - 4ac > 0时,二次函数有两个不相等的实根;当Δ= b² - 4ac = 0时,二次函数有两个相等的实根;当Δ= b² - 4ac < 0时,二次函数没有实根。
3. 图像:二次函数的图像是一个抛物线,其顶点坐标、对称轴和判别式可以通过公式y = ax² + bx + c计算得出。
一次函数和二次函数一次函数一次函数是一种函数,它的自变量和因变量之间的关系是一个线性关系。
这种函数的特点是,它的图像是一条直线,且斜率不变,斜率也可以理解为函数的变化率。
一次函数的公式为y=ax+b,a是斜率,b是函数的截距,给定a和b的值可以求出x和y的值,也可以反过来求出a和b的值。
一次函数有许多特殊的应用,包括水平线、电力线、经济学中的折线图等。
水平线是一次函数应用最为广泛的情况,它可以帮助我们在计算机中实现垂直线的绘制,以满足特定的功能需求。
在电力线中,一次函数可以用来表示电力线的电压和电流之间的关系,它可以帮助我们更好地控制电力线的运行状态。
在经济学中,一次函数可以用来表示投入产出曲线的变化规律,从而分析经济的发展趋势。
二次函数二次函数是一种函数,它的自变量和因变量之间的关系是一个二次方的关系。
它的图像是一条弧线,且斜率会变化,斜率的变化率可以理解为二次函数的变化率。
二次函数的公式为y=ax2+bx+c,a是斜率变化率,b是斜率,c是函数的截距,给定a、b和c的值可以求出x和y的值,也可以反过来求出a、b和c的值。
二次函数在实际应用中也有许多,包括空气阻力、压力曲线、经济学中的均衡分析等等。
空气阻力是一种二次函数应用最为广泛的情况,它可以帮助我们分析飞行物体在空气阻力作用下的行为,以满足特定的功能需求。
在压力曲线中,二次函数可以用来表示液体在受力作用下的压力变化,它可以帮助我们更好地控制液体的压力。
在经济学中,二次函数可以用来表示均衡分析的变化规律,从而分析经济的发展趋势。
总之,一次函数和二次函数是数学中的重要概念,它们的应用也极其广泛,从水平线到压力曲线,从经济学中的折线图到均衡分析,它们都起着重要的作用。
一次函数、二次函数、反比例函数性质总结1.一次函数一次函数)0(≠+=k b kx y ,当0=x 时,得到的y 的值也即b 叫做图象与坐标轴的纵截距,当0=y 时,得到的x 的值,叫做图象与坐标轴的横截距。
(1)当0=b 时,一次函数的解析式变为)0(≠=k kx y ,也称为正比例函数,此函数图象恒过原点)0,0(O ,且横,纵截距都为0。
且0>k 时,函数图象过一、三象限,0>k 时,图象过二、四象限。
② k (≠a )+∞(1)当0,0==c b 时,函数的解析式变为)0(2≠=a ax y ,则 ①0>a 时 ②0<a 时(2)b a ,决定二次函数的对称轴与开口方向②0,0,0=<>c b a 时③ 0,0,0=><c b a 时 ④ 0,0,0=<<c b a 时(3)c a ,决定开口方向与与y 轴的截距①0,0,0=>>b c a 时 ②a③0,0,0=>b c a 时 ④0,0,0=<<b c a 时y yOxx yOOyyOxxxxy y OOx xOOy(3)对于一般的二次函数,c b a ,,共同来决定其函数图像与性质,故通常采用配方的方法 )0(2≠++=a c bx ax y c aba b x a b x a c x a b x a +-++=++=))2()2(()(2222 c a b a b x a +-+=]4)2[(222=c a b a b x a +-+4)2(22 =ab ac a b x a 44)2(22-++ 我们称abx 2-=为二次函数的对称轴,坐标)44,2(2a b ac a b --为二次函数的顶点坐标,此时我们也称其解析式为二次函数的顶点式,并可设其解析式为)0()(2≠+-=a k h x a y 。
若知道二次函数与x 轴的两个交点坐标,可设其解析式为)0)()((21≠--=a x x x x a y 。
一次函数与二次函数知识点一、一次函数的性质与图像考点1、一次函数的概念(1)函数)0(≠+=k b kx y 叫做一次函数,定义域是R,值域是R;(2)图像是一条直线,其中k 叫做直线的斜率,b 叫做该直线在y 轴上的截距;一次函数又叫做线性函数; 例1、已知函数m m x m y ,31)12(-+-=为何值时, (1)这个函数为正比例函数; (2)这个函数为一次函数;(3)函数值y 随x 的增大而减小;(4)这个函数的图像与直线1+=x y 的交点在x 轴上?考点2、一次函数的图像和性质(1)单调性:0>k 时,为增函数;0<k 时,为减函数;(2)奇偶性:0=b 时,为奇函数;0≠b 时,为非奇非偶函数。
例2、画出函数12+=x y 的图像,利用图像解决下列问题: (1)求方程012=+x 的解; (2)求不等式012≥+x 的解集; (3)当的取值范围;时,求x y 3≤ (4)当的取值范围。
时,求x y 33≤≤-考点3、一次函数性质的应用例3、已知直线求:,44)2(2+-+=a x a y(1)a 为何值时,这条直线过原点;(2)a 为何值时,这条直线与y 轴交于点(0,-2); (3)a 为何值时,这条直线过点(1,0)。
考点四、一次函数的最值问题求一次函数)0(≠+=k b kx y 在某一区间[]c a ,上的值域的方法是:由于一次函数在某一区间[]c a ,上是单调的,所以它在区间的两个端点上取得最值,当0>k 时,它的值域是[][])(),(0,)(),(a f c f k c f a f 时,它的值域是当<。
例5、已知)(x f 为一次函数且满足183)1(2)1(4+=---x x f x f ,求函数[]11-)(,在x f 上的最大值,并比较)2011()2010(f f 和的大小。
练习:1、对于每个实数取设)(,x f x x y x y x y 21,12,1-=+=+=三个函数中的最大值,用分段函数的形式写出的最小值。
一次函数和二次函数【学习目标】1.掌握一次函数的图象和性质,二次函数的图象和性质,会判断函数的单调性; 2.会求函数的最大值、最小值,能利用配方法解决二次函数的问题; 3.了解待定系数法的概念,会用待定系数法求函数的解析式。
【要点梳理】要点一、一次函数的性质与图象 1.一次函数的概念(1)深刻理解斜率这个概念.①定义:一次函数y =kx+b (k ≠0)的图象是一条直线,以后简写为直线y =kx+b ,其中k 叫做该直线的斜率.②用运动的观点理解斜率k .函数的改变量21()y y -与自变量的改变量21()x x -的比值等于常数k .③从对图象的单调性的影响上理解斜率k .当k >0时,一次函数是增函数;当k <0时,一次函数是减函数. (2)深刻理解截距b 的含义.①定义:一次函数y =kx+b (k ≠0)的图象是一条直线,以后简写为直线y =kx+b ,其中b 叫做该直线在y 轴上的截距.②b 的取值范围:b ∈R .③b 的几何意义:直线y =kx+b 与y 轴的交点的纵坐标.④点(0,b )是直线y =kx+b 与y 轴的交点.当b >0时,此交点在y 轴的正半轴上;当b <0时,此交点在y 轴的负半轴上;当b =0时,此交点在原点,此时的一次函数就是正比例函数.一次函数(0)y kx b k =+≠图象性质单调性奇偶性k >0b =0增函数 奇函数b ≠0增函数 非奇非偶函数k <0 b =0减函数 奇函数b ≠0减函数 非奇非偶函数.(2)图象的画出:因为两点确定一条直线,所以画一次函数的图象时,只要先描出两个点,再连成直线即可.(3)图象的特点:①正比例函数y =kx 的图象是经过原点(0,0)的一条直线.②一次函数y =kx+b 的图象是经过y 轴上点(0,b )的一条直线. (4)画法技巧:①画正比例函数y =kx 的图象,通常取(0,0)、(1,k )两点连线.②画一次函数y =kx+b 的图象,通常取它与坐标轴的交点(0,b )、,0b k ⎛⎫-⎪⎝⎭两点连线,原因是上述两点在坐标轴上,描点较准确.但由于b k -多数情况下是分数,故在描点时,我们也可以取x 和y 都是整数的情形.3.一次函数性质的应用(1)函数的改变量21()y y -与自变量的改变量21()x x -的比值等于常数k .(2)当k >0时,一次函数是增函数;当k <0时,一次函数是减函数.(3)当b =0时,一次函数变为正比例函数,是奇函数;当b ≠0时,它既不是奇函数,也不是偶函数. (4)直线y =kx+b 与x 轴的交点为,0b k ⎛⎫-⎪⎝⎭,与y 轴的交点为(0,b ). 要点诠释:一次函数y =kx+b (k ≠0)的性质可从两方面来理解: ①图象与坐标轴的交点,大家知道x 轴、y 轴上的点的纵坐标、横坐标都分别为0,所以在解析式y =kx+b 中分别令x =0,y =0,得y =b ,b x k =-,从而得出直线y =kx+b 与x 轴、y 轴的交点分别是,0b A k ⎛⎫- ⎪⎝⎭、B (0,b ),这是要熟记的,另外还要知道y =kx+b 与正比例函数y =kx 的图象的平行关系.②函数的增减性,也就是:当k >0时,y 随x 增大而增大;当k <0时,y 随x 的增大而减小.其含义是:当k >0时,如果x 越来越大,那么y 的值也越来越大;当k <0时,如果x 越来越大,那么y 的值越来越小. 对于直线y =kx+b (k ≠0)而言:当k >0,b >0时,直线经过一、二、三象限;当k >0,b <0时,直线经过一、三、四象限;当k <0,b >0时,直线经过一、二、四象限;当k <0,b <0时,直线经过二、三、四象限.4.一次函数的最值问题求一次函数y =kx+b (k ≠0)在某一区间[a ,c ]上的值域的方法是:由于一次函数在某一区间[a ,c ]上是单调的,所以它在区间的两个端点上取得最值,当k >0时,它的值域为[f (a ),f (c )],当k <0时,它的值域为[f (c ),f (a )].5.一次函数的保号性及应用性质1:已知函数()f x kx b =+,如果有()0(0)f α><,()0(0)f β><,则对任意(,)x αβ∈都有()0(()0)f x f x ><.这个性质称为函数()f x kx b =+在区间(,)αβ上的保号性.同样,()f x kx b =+在区间[,]αβ,[,)αβ,(,]αβ上也具有保号性.性质2:若一次函数()f x kx b =+在区间(,)αβ上有()()0f f αβ<g ,则在(,)αβ内必存在一点x 0使0()0f x =.要点二:二次函数的性质与图象 1.函数2(0)y ax a =≠的图象和性质关于二次函数2(0)y ax a =≠的性质,主要从抛物线的开口方向、顶点坐标、对称轴、函数值的增减性以及函数的最大值或最小值几个方面来研究,下面结合图象将其性质列表归纳如下:函数图象开口方向顶点坐标对称轴单调性最大(小)值y =ax 2(a >0)向上 (0,0) y 轴在区间(,0]-∞上是减函数,在区间[0,)+∞上是增函数当x =0时,min 0y =y =ax 2(a <0)向下 (0,0) y 轴在区间(,0]-∞上是增函数,在区间[0,)+∞上是减函数当x =0时,max 0y =要点诠释:函数2(0)y ax a =≠中的系数a 对函数图象的影响:(1)当a >0时,开口向上,a 越小,开口越大,在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)当a <0时,开口向下,a 的绝对值越小,开口越大,在(-∞,0)上单调递增,在(0,+∞)单调递减.2.二次函数2(0)y ax bx c a =++≠的图象和性质 (1)二次函数2(0)y ax bx c a =++≠的图象和性质如下表: 函数 二次函数2(0)y ax bx c a =++≠图象a >0a <0性质抛物线开口向上,并向上无限延伸 抛物线开口向上,并向下无限延伸 对称轴是直线2b x a =-, 顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭对称轴是直线2b x a=-, 顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭在区间,2b a ⎛⎤-∞-⎥⎝⎦上是减函数, 在区间,2b a ⎡⎫-+∞⎪⎢⎣⎭上是增函数 在区间,2b a ⎛⎤-∞-⎥⎝⎦上是增函数, 在区间,2b a ⎡⎫-+∞⎪⎢⎣⎭上是减函数 抛物线有最低点,当2bx a=-时, y 有最小值,2min44ac b y a-=抛物线有最高点,当2bx a=-时, y 有最大值,2max44ac b y a-=(2)配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数幂和的形式.通过配方解决数学问题的方法叫配方法.其中,用的最多的是配成完全平方式.配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明不等式和等式、求函数最值和解析式等方面都经常用到它.对任何二次函数2()(0)y f x ax bx c a ==++≠都可通过配方化为:2224()24b ac b y a x a x h k a a -⎛⎫=++=-+ ⎪⎝⎭.其中2bh a=-,244ac b k a -=.(3)关于配方法要注意两点:①要把二次项系数化为1,方法是提取二次项的系数; ②找准一次项的系数,加上它的一半的平方(目的是配成完全平方式),再减去这个平方数(目的是保持恒等).3.二次函数的解析式(1)一般式:2()(0)f x ax bx c a =++≠.(2)顶点式:2()()(0)f x a x h k a =-+≠,顶点(h ,k ).(3)交点式:12()()()(0)f x a x x x x a =--≠g ,x 1,x 2为二次函数的图象与x 轴两个交点的横坐标. 求二次函数解析式的方法,应根据已知条件的特点,灵活地运用解析式的形式,选取最佳方案,利用待定系数法求之.要点诠释:①若已知条件是图象上的三个点,则设所求二次函数为一般式2y ax bx c =++,a 、b 、c 为常数,a ≠0的形式.②若已知二次函数图象的顶点坐标或对称轴方程与最大(小)值,则设所求二次函数为顶点式2()y a x h k =-+,其中顶点为(h ,k ),a 为常数,且a ≠0.③若已知二次函数的图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),则设所求二次函数为交点式12()()y a x x x x =--,a 为常数,且a ≠0.4.二次函数的图象画法与平移(1)二次函数2y ax bx c =++的图象的画法:因为二次函数的图象是一条抛物线,它的基本特征:①有顶点;②有对称轴;③有开口方向.所以,画二次函数的图象通常采用简化了的描点法——五点法,其步骤如下:(i )先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点时,并用虚线画出对称轴; (ii )求抛物线2y ax bx c =++与坐标轴的交点.当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 的对称点D .将这五个点按从左到右的顺序连起来,并向上或向下延伸,就得到二次函数的图象.当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D .由C 、M 、D 三点可粗略地画出二次函数的草图.如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后连线,画出二次函数的图象.(2)二次函数的平移规律.任意抛物线2y ax bx c =++都可转化为2()y a x h k =-+的形式,都可由2y ax =的图象经过适当的平移得到,具体平移方法,如图所示.即上述平移规律“h 值正、负,右、左移”,亦即“加时左移,减时右移”;“k 值正、负,上、下移”,即“加时上移,减时下移”. 5.二次函数的最值求解二次函数的最大值与最小值,可以从函数解析式的变形和函数的图象两方面去理解.(1)从函数的解析式来研究,对于2y ax bx c =++,通过配方可化为2()y a x h k =-+的形式,再对2()y a x h k =-+进行研究.一般地,对于二次函数2y ax bx c =++,当a >0时,y 有最小值2442ac b b x a a -⎛⎫=- ⎪⎝⎭;当a <0时,y 有最大值2442ac b b x a a -⎛⎫=- ⎪⎝⎭.(2)从函数的图象来研究,二次函数的图象是抛物线,又称抛物线2y ax bx c =++,一般描出五个点可画出图象.二次函数2y ax bx c =++的图象如图所示.当a >0时,抛物线开口向上,它的顶点恰是抛物线的最低点,显然纵坐标y 有最小值,最小值是244ac b a -;当a <0时,抛物线开口向下,它的顶点恰是抛物线的最高点,显然纵坐标y 有最大值,最大值是244ac b a-.6.二次函数的对称轴及其应用根据教材中例题知道对称轴为x =-4,由此推导出(4)(4)f h f h --=-+.反过来,如果已知(4)(4)f h f h -+=--,则可得该函数的对称轴为x =-4.现总结如下:(1)若某函数(不一定是二次函数)满足()()f a x f a x +=-(a 为常数),则该函数的对称轴为x =a . (2)若某函数(不一定是二次函数)满足()(2)f x f a x =-(a 为常数),则该函数的对称轴为x =a . (3)若某函数(不一定是二次函数)满足()()f a x f b x -=+(a b ≠且a ,b 为常数),则该函数的对称轴为2a bx +=. 实际上(2)与(1)是等价的,在(1)中令a+x =t ,则x =t -a ,∴ ()[()]f t f a t a =--,∴ ()(2)f t f a t =-,即()(2)f x f a x =-.要点三、待定系数法 1.待定系数法的定义(1)一般地,在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写为一般形式,其中系数待定,然后再根据题设条件求出这些待定系数.这种通过求待定系数来确定变量之间关系的方法叫做待定系数法.(2)根据题设求待定系数的方法——列方程组 ①用特殊值法列方程组;②根据多项式恒等定理列方程组; ③利用定义本身的属性列方程(组); ④利用几何条件列方程(组)。
一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
高中数学知识点归纳二次函数与一次函数高中数学知识点归纳:二次函数与一次函数二次函数与一次函数是高中数学中的重要内容,它们在解决实际问题以及数学建模过程中具有广泛的应用。
本文将对二次函数与一次函数的定义、性质、图像及其应用进行详细的归纳。
一、二次函数的定义与性质二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b和c是实数且a≠0。
二次函数的定义域为全体实数集R,值域视a的正负而定。
当a>0时,二次函数的值域为[f(c), +∞);当a<0时,二次函数的值域为(-∞, f(c)]。
其次,二次函数的图像通常为抛物线,其开口方向由a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
二次函数的顶点坐标为(-b/2a, f(-b/2a))。
此外,二次函数的轴对称线方程为x = -b/2a,对称中心为顶点。
二、一次函数的定义与性质一次函数是指形式为f(x) = kx + b的函数,其中k和b是实数且k≠0。
一次函数的定义域为全体实数集R,值域也是全体实数集R。
一次函数的图像通常为一条直线,斜率k代表直线的倾斜程度。
当k>0时,直线向上倾斜;当k<0时,直线向下倾斜。
直线与y轴交点的纵坐标为b,也即是函数的截距。
三、二次函数与一次函数的比较在二次函数与一次函数的比较中,需要注意以下几个方面:1. 增长趋势:一次函数的增长趋势是线性的,即随着自变量的增加,函数值也线性增加或减小。
而二次函数的增长趋势不是线性的,其函数值的变化速率会随着自变量的变化而变化。
2. 极值点:一次函数没有极值点,而二次函数在抛物线的顶点处取得极值。
根据二次函数的性质,当抛物线开口向上时,抛物线的顶点为最小值点;当抛物线开口向下时,抛物线的顶点为最大值点。
3. 斜率:一次函数的斜率为常数,而二次函数的斜率是变化的。
在二次函数中,斜率的变化率由一次项的系数b决定,斜率随着自变量的变化而不断变化。
二次函数和一次函数的概念和性质二次函数和一次函数是数学中常见的两种函数类型。
它们在数学领
域具有重要的概念和性质。
本文将介绍二次函数和一次函数的定义、
图像特征、性质以及它们在实际问题中的应用。
一、二次函数的概念和性质
二次函数是指函数的公式中含有二次方项的函数形式。
一般来说,
二次函数的标准形式为:
f(x) = ax^2 + bx + c
其中,a、b和c是常数,且a不等于0。
二次函数的图像通常是一
个开口朝上或朝下的抛物线。
当a大于0时,抛物线开口朝上;当a小于0时,抛物线开口朝下。
二次函数的图像特征还包括顶点坐标和轴对称性。
对于标准形式的
二次函数f(x),顶点的x坐标为 -b/2a,y坐标为 f(-b/2a)。
此外,二次
函数具有轴对称性,即以顶点为对称轴。
二、一次函数的概念和性质
一次函数是指函数的公式中只含有一次方项的函数形式。
一般来说,一次函数的标准形式为:
f(x) = mx + b
其中,m和b是常数,且m不等于0。
一次函数的图像通常是一条
直线,具有斜率和截距。
一次函数的斜率表示函数图像的倾斜程度,斜率越大,函数图像的倾斜程度越大;斜率为正表示函数上升,斜率为负表示函数下降。
一次函数的截距表示函数图像与y轴的交点坐标。
三、二次函数和一次函数的比较
1. 图像特征:
二次函数的图像为抛物线,具有开口方向、顶点和轴对称性;一次函数的图像为直线,具有斜率和截距。
2. 变化趋势:
二次函数的变化趋势在抛物线上是非线性的,根据a的正负值可以分为开口向上或开口向下的情况;一次函数的变化趋势线性,变化速率恒定。
3. 特殊性质:
二次函数的顶点坐标可以通过公式 -b/2a 计算得出,具有对称性;一次函数没有特殊的对称性质。
四、二次函数和一次函数的应用
1. 二次函数的应用:
二次函数在物理学、经济学和工程学等领域有广泛的应用。
例如,自由落体运动的物体高度和时间的关系、抛物线轨迹的碰撞问题等都可以使用二次函数进行建模和解决。
2. 一次函数的应用:
一次函数在线性方程组、经济学和工程学中也有重要的应用。
例如,两个变量之间的线性关系可以通过一次函数来表示,使得问题的求解
更加简洁和方便。
一次函数的性质也在经济学的需求曲线和供给曲线
等领域得到应用。
总结:
二次函数和一次函数是数学中常见的两种函数形式。
它们在数学中
具有独特的概念和性质,包括图像特征、变化趋势和应用。
了解和掌
握二次函数和一次函数的概念和性质,有助于我们更好地理解和应用
数学知识。