Mo= ∑Mo(Fi左) 或 MO= ∑Mo(Fi右) 当力矩使脱离体产生下凸变形时,其值取正号, 反之,取负号。
*剪力和弯矩都按正方向假设。
.
29
【例5-7】图(a)所示外伸梁,q=3kN/m,用简易内力计 算法求两1-1、2-2截面的剪力和弯矩。
【解】 (1)求支反力 ∑MA=0:FBy ×6 –(q×8)×4=0 A
A
F
B
l/2 C l/2
若集中力作用在梁的中点,
l
(e)
如图(e)
则:FQmax=F/2 Mmax=FL/4
F/2
FQ图(kN) (f)
F/2
其剪力图和弯矩图分别如
图(f)和(g).
M图(kN.m) FL/4
.
(g)
36
5.4.4用微分关系法绘制剪力图和弯矩图
1.荷载集度、剪力和弯矩之间的微分关系
1、用简易法计算内力
2、利用微分关系绘制内力图的方法,尤其是 平面弯曲梁的剪力图和弯矩图
.
2
5.1基本概念
5.1.1内力的概念
由于外力作用而引起的物体内部相互作用 力的改变量,称为附加内力,简称内力。
5.1.2求内力的截面法
为了显示某一截面的内力,必须用一假 想的截面截开物体,才能显示出作用在该截 面上的内力。
Fab
故,AC段和CB段的弯矩图都是斜
M图(kN.m) (d)
l
直线。
AC段:x1=0时 MA=0 , x1=a时 MC=Fab/l CB段:x2=a时 MC=Fab/l ,. x2=l时 MB=0.如图(d)。 35
由图(d)可知,在集中力作用处的截面上的弯 矩值最大,其值为
Mmax=Fab/l