第十四讲 线性空间的同构;商空间 ;总结_wlkc-14
- 格式:ppt
- 大小:381.00 KB
- 文档页数:18
线性空间的同构与同态线性空间是很多高阶数学领域所需要用到的基本概念,因此在线性代数的学习中,我们不得不对线性空间基本的性质、定义、等价性、基础定理等有一个深刻的理解。
当然,线性空间的同构与同态作为线性变换的代名词,也是我们学习线性空间理论时,需要重点关注的。
一、线性空间同构同构,是数学中一个十分重要的概念。
它指的是两个结构相同、具有相同性质的数学对象。
更准确地说,如果两个集合之间存在一一对应,且它们之间的映射不仅是单射还是满射,那么这两个集合就是同构的。
对于线性空间,它满足向量的加法和数量的乘法这两个运算规则,因此,我们可以要求用以下方式定义两个线性空间的同构:定义:若存在双射映射$f:V\to W$,并满足:1. $\forall u,v\in V$,有$f(u+v)=f(u)+f(v)$。
2. $\forall u\in V$和$c\in F$,有$f(cu)=cf(u)$。
则称线性空间$V$和$W$之间存在同构,称$f$为同构映射。
其中,$F$是一个数域,它是一个固定的标量(标量乘法满足分配律、结合律、单位元和逆元等基本性质)。
同构可以理解为两个向量空间“外形”相同,尽管它们之间的标量乘法、向量加法的具体运算方式可能不同。
关于线性空间同构,我们有如下三个重要结论:(1)同构是一种双射关系,即两个线性空间同构当且仅当它们的维度相等。
(2)两个线性空间同构,则它们必须同构于数域$F$上的$n$维线性空间$F^n$。
(3)两个线性空间同构,当且仅当它们的基底个数相等。
通过上述结论,我们可以发现,实际上同构所关注的是两个线性空间的向量基。
只有当两个线性空间的维度相等、同构映射满足条件时,它们才是同构的。
因此,为了构造同构映射,我们通常需要找到两个向量空间之间的一个映射,满足一一对应、线性、满射的性质,这样才能实现同构。
二、线性空间同态同态是另一个重要的概念。
它们也是线性代数中常用的术语,他们主要与线性空间中的变换相关。
第六章 线性空间和欧式空间§1 线性空间及其同构一 线性空间的定义设V 是一个非空集合,K 是一个数域,在集合V 的元素之间定义了一种代数运算,叫做加法;这就是说,给出了一个法则,对于V 中任意两个元素α和β,在V 中都有唯一的一个元素γ与他们对应,成为α与β的和,记为βαγ+=。
在数域K 与集合V 的元素之间还定义了一种运算,叫做数量乘法,即对于数域K 中任一数k 与V 中任一元素α,在V 中都有唯一的一个元素δ与他们对应,称为k 与α的数量乘积,记为αδk =,如果加法与数量乘法满足下述规则,那么V 称为数域K 上的线性空间。
加法满足下面四条规则:1)αββα+=+;交换律2))()(γβαγβα++=++;结合律3)在V 中有一个元素0,对于V 中任一元素α都有αα=+0(具有这个性质的元素0称为V 的零元素); 存在零元4)对于V 中每一个元素α,都有V 中的元素,使得0=+βα(β称为α的负元素).存在负元数量乘法满足下面两条规则:5)αα=1; 存在1元6)αα)()(kl l k =. 数的结合律数量乘法与加法满足下面两条规则:7)αααl k l k +=+)(; 数的分配律8)βαβαk k k +=+)(. 元的分配律在以上规则中,l k ,表示数域中的任意数;γβα,,等表示集合V 中任意元素。
例1. 元素属于数域K 的n m ⨯矩阵,按矩阵的加法和矩阵的与数的数量乘法,构成数域K 上的一个线性空间,记为,()m n M K 。
例2. 全体实函数(连续实函数),按函数的加法和数与函数的数量乘法,构成一个实数域上的线性空间。
例3. n 维向量空间n K 是线性空间。
例4. 向量空间的线性映射的集合(,)m n K Hom K K 是线性空间。
二.简单性质1.零元素是唯一的。
2.负元素唯一。
3.00=α,00=k ,αα-=-)1(。
4.若0=αk ,则0=k 或者0=α。
向量空间的同构知识点总结一、引言向量空间是线性代数中的一个重要概念,它是一个具有加法和数乘运算的集合,同时满足一定的性质。
同构是一个重要的概念,它指的是两个向量空间之间存在一个双射线性变换,使得它们具有相同的结构。
在本文中,我们将对向量空间的同构进行详细的介绍和总结。
二、向量空间的定义和性质向量空间是一个非空集合V,集合中的元素被称为向量,同时满足以下性质:1.加法封闭性:对于任意的向量u,v∈V,u+v∈V。
2.数乘封闭性:对于任意的向量u∈V和标量α,αu∈V。
3.加法结合律:对于任意的向量u,v,w∈V,有(u+v)+w=u+(v+w)。
4.加法交换律:对于任意的向量u,v∈V,有u+v=v+u。
5.加法单位元:存在一个向量0∈V,对于任意的向量u∈V,有u+0=u。
6.加法逆元:对于任意的向量u∈V,存在一个向量-v∈V,使得u+(-v)=0。
7.数乘结合律:对于任意的向量u∈V和标量α,β,有(αβ)u=α(βu)。
8.数乘分配律:对于任意的向量u∈V和标量α,β,有(α+β)u=αu+βu。
9.数乘分配律:对于任意的向量u∈V和标量α,β,有α(u+v)=αu+αv。
在向量空间中,我们可以定义向量的长度和夹角,从而引出内积和范数的概念。
内积和范数是向量空间的重要性质,它们在向量的运算和分析中起着重要的作用。
三、同构的概念同构是指两个向量空间之间存在一个一一对应的线性变换,使得它们具有相同的结构。
具体定义如下:设V和W是两个向量空间,如果存在一个线性变换T:V→W是一个一一对应,同时满足T(u+v)=T(u)+T(v)和T(αu)=αT(u),则称V与W同构。
此时,我们将T称为从V到W的同构映射。
同构的概念是非常重要的,在许多情况下,我们需要将一个向量空间映射到另一个向量空间,通过同构,我们可以保持向量空间的结构不变,从而方便我们进行运算和分析。
四、同构的性质同构具有一些重要的性质,这些性质在研究向量空间的同构时起着重要的作用:1.同构是一一对应的:同构映射T是一个双射。
第六章线性空间和欧式空间§ 1线性空间及其同构线性空间的定义设V是一个非空集合,K是一个数域,在集合V的元素之间定义了一种代数运算,叫做加法;这就是说,给出了一个法则,对于V中任意两个元素和,在V中都有唯一的一个元素与他们对应,成为与的和,记为。
在数域K与集合V的元素之间还定义了一种运算,叫做数量乘法,即对于数域K中任一数k与V中任一元素,在V中都有唯一的一个元素与他们对应,称为k与的数量乘积,记为k ,如果加法与数量乘法满足下述规则,那么V称为数域K上的线性空间。
加法满足下面四条规则:1);交换律2)( ) ( );结合律3)在V中有一个元素0,对于V中任一元素都有0 (具有这个性质的元素0称为V的零元素);存在零元4)对于V中每一个元素,都有V中的元素,使得0( 称为的负元素)•存在负元数量乘法满足下面两条规则:5) 1 ;存在1元6)k(l ) (kl). 数的结合律数量乘法与加法满足下面两条规则:7)(k l) k l ;数的分配律8)k( ) k k .元的分配律在以上规则中,k,l表示数域中的任意数;,,等表示集合V中任意元素。
例1. 元素属于数域K的m n矩阵,按矩阵的加法和矩阵的与数的数量乘法,构成数域K上的一个线性空间,记为M m,n(K)。
例2. 全体实函数(连续实函数),按函数的加法和数与函数的数量乘法,构成一个实数域上的线性空间。
例3. n维向量空间K n是线性空间。
例4. 向量空间的线性映射的集合Hom K(K m, K n)是线性空间。
二.简单性质1.零元素是唯一的。
2.负元素唯一。
3. 0 0, k0 0 , ( 1) 。
4.若k 0,则k 0或者0。
三•同构映射定义:设V,V是数域K上的线性空间• A Hom K(V,V )是一个线性映射•如果A是一- 映射,则称A是线性空间的同构映射,简称同构。
线性空间V与V'称为同构的线性空间。
定理数域P上两个有限维线性空间同构的充分必要条件是他们有相同的维数。
线性空间与线性变换总结线性空间(向量空间)定义:设集合V ≠f, F 是一个数域,在V 上定义加法与数乘:若对任意a ∈ V, b ∈ V , 有 a+b ∈ V;若对任意a ∈ V , l ∈ F, 有 la ∈ V; 则称集合V 为数域F 上的线性空间。
在这么个空间内存在无数个向量,我们希望有限的向量刻画整个V ,描述V 内的所有向量。
这里有限的向量构成一个向量组,用m m k k k ααα+⋯++2211表示向量组的一个线性组合,m k k k , 21⋯,,称为该线性组合的系数。
如果m λλλ,21⋯,,存在一组数使m m b αλαλαλ+⋯++=2211,则称b 能由向量组线性表示。
若给定n 维向量组 A :α1, α2,···, αm , 如果存在不全为零的一组数λ1, λ 2,···, λ m , 使得λ1 α1 +λ 2 α2 + ··· +λ m αm= O ,则称向量组A 线性相关,否则称向量组A 线性无关.如何判定线性相关:线性维向量组)3(,...,,:21≥m A n m ααα必要...12211=+++m m x x x ααα齐次线性方程组:定理有非零解。
),...,,(:221m A A m 向量个数的秩小于所构成的矩阵定理ααα=个向量线性表示。
其余中至少有一个向量可由:定理1,...,,:321-m A m ααα 此外还有一个关于线性无关的定理:定理4:设m ααα,...,,21线性无关,如果向量组m ααα,...,,21β线性相关,则向量β能由m ααα,...,,21线性表示,并且唯一向量组等价:..,...,,:,...,,: 2121这两个向量组等价。
能相互线性表示,则称与向量组若向量组线性表示能由向量组则称向量组线性表示,向量组组中的每个向量都能由若及维向量组设有两个B A A B A B B A n s m βββααα用矩阵表示向量组.4..., 的行向量组线性表示能由的行向量组知,由定理故存在可逆矩阵,经初等行变换变成行等价,即矩阵与设矩阵A B PA B t s P B A B A =.4..,., B A 的行向量组线性表示量组能由的行向知,故由定理存在可逆矩阵,由初等变换可逆性可知行等价,故与又因为B A QB A t s Q =的行向量组等价的行向量组与于是B A线性相关性的判别定理:1. 若a1,a2,…,am 线性相关, 则a1,a2,…,am , am+1 也线性相关.。
线性空间知识点总结本文将从定义、性质、例子、拓扑结构等多个方面对线性空间进行总结,以帮助读者更全面地理解这一概念。
一、线性空间的定义线性空间的定义较为抽象,它可以用来表示向量、矩阵、多项式等各种类型的数学对象。
线性空间是一个非空集合V,配上两个操作:加法和数乘。
加法指的是将两个向量或数学对象相加得到一个新的向量或数学对象,数乘指的是将一个标量与一个向量或数学对象相乘得到一个新的向量或数学对象。
具体来说,给定一个域F,一个线性空间V满足以下条件:1. 对于V中的任意两个元素x、y,它们的和x+y也属于V。
2. 对于V中的任意元素x和任意标量c,它们的数乘cx也属于V。
3. 加法满足结合律和交换律。
4. 加法单位元(零向量)存在。
5. 数乘满足分配律。
6. 数乘满足标量乘1等于自身。
换句话说,线性空间V是一个满足上述条件的非空集合,它配备了加法和数乘这两种运算,并且这两种运算满足一定的性质。
二、线性空间的性质线性空间有许多重要的性质,这些性质不仅体现了线性空间的内在结构,也为线性空间的进一步研究提供了重要的基础。
下面介绍线性空间的一些主要性质:1. 线性空间中的元素有唯一加法逆元。
对于线性空间V中的任意元素x,存在一个唯一的元素-y,使得x+y=0,其中0表示线性空间V中的零向量。
2. 线性空间中的元素满足交换律和结合律。
即对于线性空间V中的任意元素x、y、z,有x+y=y+x,(x+y)+z=x+(y+z)。
3. 线性空间中的元素满足分配律。
即对于线性空间V中的任意元素x、y、z和任意标量c,有c(x+y)=cx+cy,(c+d)x=cx+dx。
4. 线性空间中的元素满足数乘单位元的性质。
即对于线性空间V中的任意元素x,有1∙x=x。
5. 线性空间中的元素满足数乘交换律。
即对于线性空间V中的任意元素x和任意标量c、d,有c(dx)=(cd)x。
6. 线性空间中的元素满足数乘结合律。
即对于线性空间V中的任意元素x和任意标量c、d,有(c+d)x=cx+dx。