线性空间的定义
- 格式:ppt
- 大小:418.00 KB
- 文档页数:24
线性空间与线性映射的基本理论线性空间是数学中一种重要的结构,广泛应用于线性代数、函数分析等领域。
线性映射作为线性空间之间的一种变换方式,对于研究线性空间的性质及其应用有着重要的作用。
本文将介绍线性空间与线性映射的基本理论,包括定义、性质以及相关定理的证明。
一、线性空间的定义与性质线性空间是指一个具有加法运算和数乘运算的集合,且满足一定的公理。
设V为一个集合,如果满足以下条件:1. 加法运算:对于任意的u、v∈V,存在一个元素u+v∈V,使得加法对于V中元素的操作满足交换律、结合律和存在零元素的性质。
2. 数乘运算:对于任意的α∈F(其中F为一个数域)和u∈V,存在一个元素αu∈V,使得数乘对于V中元素的操作满足结合律、分配律和单位元素的性质。
3. 加法单位元:存在一个元素0∈V,使得对于任意的u∈V,有u+0=u。
4. 相反元素存在:对于任意的u∈V,存在一个元素-v∈V,使得u+(-v)=0。
5. 数乘单位元:对于任意的u∈V,有1u=u。
若V满足上述条件,则称V为线性空间,V中的元素称为向量。
线性空间的定义体现了加法和数乘运算的基本性质。
二、线性映射的定义与性质线性映射是指将一个线性空间的向量映射到另一个线性空间的映射。
设V和W为两个线性空间,f: V→W是一个映射。
如果满足以下条件:1. 直线性:对于任意的u、v∈V和任意的α、β∈F,有f(αu+βv)=αf(u)+βf(v)。
2. 零元映射:f(0_V)=0_W,即零向量在V中的映射值为0_W。
则称f为从V到W的线性映射。
线性映射的定义保持了线性空间的运算性质,即通过映射后仍然保持加法和数乘的运算性质。
三、线性映射的性质与定理1. 线性映射的零核与满射性质:设f: V→W是一个线性映射,则f是满射(surjective)当且仅当它的像空间W即为整个目标空间W;f是单射(injective)当且仅当它的核空间(即所有映射为零向量的V中的向量构成的集合)为零空间{0_V}。