调光电路原理图
- 格式:pdf
- 大小:89.06 KB
- 文档页数:1
3. 双向可控硅调光电路分析左图是一个典型的双向可控硅调光器电路,电位器POT1和电阻R1、R2 与电容C2构成移相触发网络,当C2的端电压上升到双向触发二极管D1的阻断电压时,D1击穿,双向可控硅TRIAC被触发导通,灯泡点亮。
调节POT1可改变C2的充电时间常数,TRAIC的电压导通角随之改变,也就改变了流过灯泡的电流,结果使得白炽灯的亮度随着POT1的调节而变化。
POT1上的联动开关SW1在亮度调到最暗时可以关断输入电源,实现调光器的开关控制。
可控硅可控硅一旦被触发导通后,将持续导通到交流电压过零时才会截止。
可控硅承担着流过白炽灯的工作电流,由于白炽灯在冷态时的电阻值非常低,再考虑到交流电压的峰值,为避免开机时的大电流冲击,选用可控硅时要留有较大的电流余量。
触发电路触发脉冲应该有足够的幅度和宽度才能使可控硅完全导通,为了保证可控硅在各种条件下均能可靠触发,触发电路所送出的触发电压和电流必须大于可控硅的触发电压UGT与触发电流I GT的最小值,并且触发脉冲的最小宽度要持续到阳极电流上升到维持电流(即擎住电流I L)以上,否则可控硅会因为没有完全导通而重新关断。
保护电阻 R2是保护电阻,用来防止POT1调整到零电阻时,过大的电流造成半导体器件的损坏。
R2太大又会造成可调光范围变小,所以应适当选择。
功率调整电阻 R1决定白炽灯可调节到的最小功率,若不接入R1,则在POT1调整到最大值时,白炽灯将完全熄灭,这在家庭应用中会造成一定不便。
接入R1后,当POT1调整到最大值时,由于R1的并联分流作用,仍有一定电流给C2充电,实现白炽灯的最小功率可以调节,若将R1换为可变电阻器,则可实现更精确的调节,以确保量产的一致性。
同时R1还有改善电位器线性的作用,使灯光变化更适合人眼的感光特性。
电位器小功率调光器一般都选择带开关的电位器,在调光至最小时可以联动切断电源,这种电位器通常分为推动式(PUSH)和旋转式(ROTARY )两种。
正弦波调光器的工作原理、关键词名词解释(1)可控硅(SCR):正式名称是反向阻断三端晶闸管,简称晶闸管(thyristor)(2)绝缘栅双极晶体管(insulated gate bipolar transistor,IGBT):新一代半导体电力开关器件,是一种复合器件,其输入部控制部分为MOSTER,输出级为双极结型三极晶体管。
(3)IGBT正弦波调光器:采用绝缘栅双极型晶体管(IGBT)做大功率器件,将输入有正负弦谐振波的交流电和电压变成输出无谐振波的交流电和电压称为连贯性正弦波的调光器.二、可控硅调光器的工作原理在论述正弦波调光器的工作原理之前,首先回顾一下可控硅调光器的工作原理。
如下图所示:图1可控硅调光器的主回路原理图ui 输入电源电压,在我国为220V。
uo调光器输出电压,外接灯泡。
S1,S2 两个可控硅或一个双向可控硅。
控制电路在交流电压过零点后延迟一个相位角去触发可控硅S1导通,直到下一个过零点可控硅被反相截止,下一个相位角再触发可控硅S2导通,直到再下一个过零点又被反相截止,这样周而复始地工作。
输入和输出波形如下:图2 输入电压电流随时间变化的波形注:为使波形图整齐,纵坐标采用%,最大100%,最小-100%。
横坐标采用°/周期,最大360°/周期。
原因是这些波形适合一个宽广的电压和频率范围。
如果给定一个固定电压和频率,其适用范围将很小。
图3可控硅调光器的输出波形这种输出电压波形在触发点处有一个很陡的前沿,电压突然从零跳变到输入值。
如果用它去控制电阻性负载或电感性负载没有什么问题,如果用它去控制具有电容性负载的灯源时,由于电容器二端电压不能实变,于是会产生峰值很高的浪涌电流,这种浪涌电流会产生电磁干扰,破坏电网质量,甚至会损坏电气设备,一般通过串联电感性扼流线圈来降低它的上升时间,减少电磁干扰。
因此可控硅调光器引入LC滤波环节。
L2 输出滤波电感,C2输出滤波电容(其实这个电容主要指分布电容和负载电容)。
光敏电阻原理及应用大全 The Standardization Office was revised on the afternoon of December 13, 2020光敏电阻的应用光敏电阻可广泛应用于各种光控电路,如对灯光的控制、调节等场合,也可用于光控开关,下面给出几个典型应用电路。
1、光敏电阻调光电路图1是一种典型的光控调光电路,其工作原理是:当周围光线变弱时引起光敏电阻R G的阻值增加,使加在电容C上的分压上升,进而使可控硅的导通角增大,达到增大照明灯两端电压的目的。
反之,若周围的光线变亮,则R G的阻值下降,导致可控硅的导通角变小,照明灯两端电压也同时下降,使灯光变暗,从而实现对灯光照度的控制。
图1光控调光电路注意:上述电路中整流桥给出的是必须是直流脉动电压,不能将其用电容滤波变成平滑直流电压,否则电路将无法正常工作。
原因在于直流脉动电压既能给可控硅提供过零关断的基本条件,又可使电容C的充电在每个半周从零开始,准确完成对可控硅的同步移相触发。
2、光敏电阻式光控开关以光敏电阻为核心元件的带继电器控制输出的光控开关电路有许多形式,如自锁亮激发、暗激发及精密亮激发、暗激发等等,下面给出几种典型电路。
图2是一种简单的暗激发继电器开关电路。
其工作原理是:当照度下降到设置值时由于光敏电阻阻值上升激发VT1导通,VT2的激励电流使继电器工作,常开触点闭合,常闭触点断开,实现对外电路的控制。
图2 简单的暗激发光控开关图3是一种精密的暗激发时滞继电器开关电路。
其工作原理是:当照度下降到设置值时由于光敏电阻阻值上升使运放IC的反相端电位升高,其输出激发VT导通,VT的激励电流使继电器工作,常开触点闭合,常闭触点断开,实现对外电路的控制。
图3精密的暗激发光控开关光敏电阻原理及应用简介1、光敏电阻器是利用的制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。
2、结构。
(2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。
若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。
由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。
Y#z3l"a;o!Zs((3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔.j H0q"r6N K(4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。
半值角的2倍为视角(或称半功率角)。
k5D-~6m%r F6e l$? Z?@!`5E`W s0@图3N8X!g*L0|-G b Y图3给出的二只不同型号发光二极管发光强度角分布的情况。
中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。
显然,法线方向上的相对发光强度为1,离开法线方向的角度越大,相对发光强度越小。
由此图可以得到半值角或视角值。
LED的发光强度Iv与照度E之间如何进行换算?发光强度, LED, 换算先了解以下照度的定义:照度是指照射在光接收面上一点处的面元上的光通量dφ,与该面元面积ds的比值,照度用勒克斯作单位,用符号lux表示,可表示为:E=dφ/ds(71-1)显然在同等光通量下,照射面元的面积越大,照度越小,反之亦然。
如果知道了LED的光通量φ和需照射的面积,就可换算出照度E,如果知道了LED的发光强度Iv和射出角θ,则同样可换算出照射在面元面积为S的面上的照度。
例如:一个发射角为60°,光强Iv=1cd的LED,在向其法向距离为0.1M的平面上照射时,它的照度可以从下述步骤求得:由上述Iv与φ的换算可以知道,发射角为60°,发光强度为1cd 的LED光源的等效光通量φ=4π×(60°/360°)≈21m,而在照射到0.1M距离的面元时,该被照面元的面积S为:S=π(dtan30°)2≈3.14×(0.1×0.58) 2≈0.0105M 2于是有:E=φ/S=21m/0.0105≈190lux。
双向可控硅调光电路图上图为双向可控硅调光电路图,其工作原理为:接通电源,220V经过灯泡VR4 R19对C23充电...由于电容二端电压是不能突变的...充电需要一定时间的...充电时间由VR4和R19大小决定...越小充电越快...越大充电越慢...当C23上电压充到约为33V左右的时候...DB1导通..可控硅也导通...可控硅导通后...灯泡中有电流流过...灯泡就亮了... 随着DB1导通...C23上电压被完全放掉...DB1又截止...可控硅也随之截止...灯泡熄灭...C23上又进行刚开始一样的循环...因为时间短人眼有暂留的现象,所以灯泡看起来是一直亮的,充放电时间越短...灯泡就越亮,反之...R20 C24能保护可控硅...如果用在阻性负载上可以省掉.如果是用在感性负载,比如说电动机上就要加上去,这个电路也可以用于电动机调速上.简易混合调光电路图调光电路图如附图所示,其工作原理是:根据电学原理可知,电容器接入正弦交流电路中,电压与电流的最大值在相位上相差90°。
根据这一原理,把C1 和C2串联联接,并从中间取出该差为我所用,这比电阻与电容串联更稳定。
电路中,D1和D2分别对电源的正半波及负半波进行整流,并加到A触发和C1或 C2充电。
进一步用W来改变触发时间进行移相,只要调整W的阻值,就可达到改变输出电压的目的。
D1和D2还起限制触发极的反相电压保护双向可控硅的作用。
常用调光方法的工作原理核心提示: 1、脉冲宽度调制( PWM )调光法这种调光控制法是利用调节高频逆变器中功率开关管的脉冲占空比,从而实现灯输出功率的调节。
半桥逆变器的最大占空比为 0.5 ,以确保半桥逆变器中的两个功率开关管之间有一个死时间,以避免两个功率开关管由于共态导通1、脉冲宽度调制(PWM)调光法这种调光控制法是利用调节高频逆变器中功率开关管的脉冲占空比,从而实现灯输出功率的调节。
半桥逆变器的最大占空比为0.5,以确保半桥逆变器中的两个功率开关管之间有一个死时间,以避免两个功率开关管由于共态导通而损坏。
可控硅调光电路【概述】可控硅英文名为Silicon Controlled Rectifier,缩写为SCR,意为硅的可控整流器。
SCR是一种半导体的可控整流器件,可以作为一种控制电路通断的无触点开关。
如果用它组成一定的电路,用来调节灯泡两端的电压,便可以调节灯的亮度,制成可控硅调光灯。
电路如图所示。
图中双向可控硅,它有三个电极,T1,T2和控制极G.。
双向可控硅无阴、阳极之分,且正、负触发电压Ug只要达到一定的数值都可以使它导通。
2CS为双向触发二极管,是一种配合双向可控硅工作的专用二极管。
当二极管两端电压未达到转折电压时,它呈现高阻状态,一旦达到转折电压时突然呈现低阻状态,电流迅速增大。
R2为电位器,作可变电阻用。
R1为保护电阻,以免R2减小到零时,将电容器C、双向二极管、可控硅等元件损坏。
当R2处于阻值最大时。
电容器C上充电到触发二极管转折电压所需要的时间最长,因而可控硅导通时间最短,灯泡发光最暗。
当R2逐渐减小时,相应可控硅的导通时间变长,灯逐渐变亮。
为达到开、关灯的目的,所以采用带有开关的电位器,开关K接在图中虚线的部位。
可控硅调光灯实际使用时是直接采用交流220V市电。
但是,为避免初学者在测试是发生触电的危险,所以实验是采用的是36V安全电压的交流电源。
【实验目的】1.了解可控硅调光的基本原理。
2.使用双踪示波器测量电路有关点的电压波形,以进一步理解可控硅调光灯的工作原理【知识准备】1.关键词:可控硅,双向可控硅,双向触发二极管,调光灯。
2.可控硅的符号,三个电极的名称。
在什么条件下可以使可控硅导通或截止。
可控硅的主要技术参数。
3.双向可控硅的符号及其特性。
采用双向可控硅电路调光的原理。
4.双踪示波器的使用知识。
【仪器】万用电表,双踪示波器,电路元件(包括双向可控硅,双向触发二极管,电阻,电容,电位器和变压器等),电路板等。
【实验内容】1.熟悉各电路元件的性能,记录主要参数,并考虑元件的选择。
【图】简易实用的调光灯电路图灯光控制
本文所介绍的简易实用的调光灯电路图是利用V-MOS场效应管输入阻抗极高的特点,通过调节V-MOS管栅极偏压,以控制流过灯泡的电流,从而达到改变灯泡发光亮度的目的。
在下图中,RP与R组成分压器,调节电位器RP的阻值可U改,吏V-MOS管栅极的偏压大小,由于V-MOS管是电压控制器件,其栅极偏压大小决定r其褥、源极间的电压。
当R!,阻值渊小栅,VF的栅极偏眶随之减小,VF的漏、源极电压降增大,灯泡E两端电压减小,发光亮度减弱;当R1r阻值坷大时,VF栅偏压加大,VF的漏、源极电压阵减小,灯泡两端电胜增大,发光亮度随之加大。
所栅H RP可以随心所欲地调节灯泡E的发光亮度。
该文章仅供学习参考使用,版权归作者所有。
因本网站内容较多,未能及时联系上的作者,请按本网站显示的方式与我们联系。