问题导入:
1.单选题是标准化考试中常用的题型. 如果考生不会做,他从4个备选答案中 随机地选择一个作答,他答对的概率 1/4 是____.
2. 从集合 {1,2,3,4,5} 的所有子集 中任取一个, 这个集合恰是集合 8/32 {1,2,3} 的子集的概率是____.
3.抛掷两枚均匀的骰子,出现数字之积 为偶数与出现数字之积为奇数的概率 27/36 9/36 分别是_____、______.
2 1
模型2 利用试验结果的对称性,因为是计算“第二个人摸 到红球”的概率,我们可以只考虑前两个人摸球的情 况,
2 1 1 2 2
1
1 2 1
1 2 2 2
2 1 1
这个模型的所有可能结果数为12,第二个摸到红球的结果有6种:
P(A)=6/12=0.5
模型3 只考虑球的颜色,4个人按顺序摸出一个 球所有可能结果
(2)100个人依次抓阄决定1件奖品的归属,求最 后一个人中奖的概率.
分析:只考虑最后一个抓阄的情况,他可能抓到 100个阄中的任何一个,而他抓到有奖的阄的结 果只有一种,因此,最后一个人中奖的概率为 1/100.
小结: 一般来说,在建立概率模型时把什么 看作是基本事件,即试验结果是人为规定 的,也就是说,对于同一个随机试验,可以根 据需要,建立满足我们要求的概率模型。
3.2.2 建立概率模型
温故知新:
1.古典概型的概念 1)试验的所有可能结果(即基本事件)只有有限个,每次 试验只出现其中的一个结果; 2)每一个结果出现的可能 性相同。 2.古典概型的概率公式
m( A包 含 的 基 本 事 件 数 ) P( A) n( 基 本 事 件 总 数 )
3.列表法.
一般来说,在建立概率模型时把什么看作是 基本事件,即试验结果是人为规定的,也就是说,对 于同一个随机试验,可以根据需要,建立满足我们 要求的概率模型