计量经济学 5 模型设定与变量选择
- 格式:ppt
- 大小:452.50 KB
- 文档页数:57
简述建立与应用计量经济模型的主要步骤建立与应用计量经济模型的主要步骤一、引言计量经济学是经济学中的一个重要分支,其主要研究经济现象与经济理论之间的定量关系。
而建立和应用计量经济模型正是计量经济学的核心内容之一。
本文将对建立和应用计量经济模型的主要步骤进行简述,并探讨其在经济学研究中的重要性。
二、理解研究问题在建立计量经济模型之前,首先需要对研究问题有清晰的认识和理解。
这包括明确研究的目的、假设条件以及研究对象等。
只有对研究问题有明确的理解,才能有效地进行模型的建立和应用。
三、数据收集与整理在建立计量经济模型时,数据的收集与整理是不可或缺的一步。
有效的数据可以为模型的建立提供充分的支持和验证。
在这一步骤中,研究者需要确定需要收集的数据类型,选择合适的数据来源,并进行数据的整理和清洗,以确保数据的准确性和一致性。
四、变量选择与模型设定在建立计量经济模型时,变量选择和模型设定是至关重要的步骤。
研究者需要根据研究问题选择合适的自变量和因变量,并设定模型的函数形式和结构。
变量选择和模型设定的合理性将直接影响到模型的可靠性和准确性。
五、模型估计与诊断在模型的建立过程中,模型估计和诊断是不可或缺的环节。
模型估计通过对数据进行统计分析,找出模型中参数的最优估计值。
诊断则是对模型的拟合程度和假设的检验。
在这一步骤中,研究者需要选择合适的估计方法和诊断技术,以确保模型的可靠性和有效性。
六、模型解释与评估模型的解释和评估是模型建立的重要目标之一。
在完成模型的估计和诊断后,研究者需要对模型进行解释和评估,以深入理解模型的经济意义和影响因素。
通过解释和评估,研究者可以对模型的有效性和适用性进行判断,并提出相应的政策建议。
七、模型的稳定性和鲁棒性模型的稳定性和鲁棒性是模型应用的重要考虑因素。
在建立计量经济模型时,研究者需要对模型进行稳定性和鲁棒性分析,以确保模型的可靠性和适用性。
这包括通过敏感性分析、蒙特卡洛模拟等方法对模型进行检验和验证,以降低模型的风险和误差。
计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究主体是经济现象及其发展变化的规律。
2、运用计量分析研究步骤:模型设定——确定变量和数学关系式估计参数——分析变量间具体的数量关系模型检验——检验所得结论的可靠性模型应用——做经济分析和经济预测3、模型变量:解释变量:表示被解释变量变动原因的变量,也称自变量,回归元。
被解释变量:表示分析研究的对象,变动结果的变量,也成应变量。
内生变量:其数值由模型所决定的变量,是模型求解的结果。
外生变量:其数值由模型意外决定的变量。
外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。
前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响,但能够影响我们所研究的本期的内生变量。
前定变量:前定内生变量和外生变量的总称。
数据:时间序列数据:按照时间先后排列的统计数据。
截面数据:发生在同一时间截面上的调查数据。
面板数据:虚拟变量数据:表征政策,条件等,一般取0或1.4、估计评价统计性质的标准无偏:E(^β)=β 随机变量,变量的函数?有效:最小方差性一致:N趋近无穷时,β估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比CH2 CH3 线性回归模型模型(假设)——估计参数——检验——拟合优度——预测1、模型(线性)(1)关于参数的线性 模型就变量而言是线性的;模型就参数而言是线性的。
Y i =β1+β2lnX i +u i线性影响 随机影响Y i =E (Y i |X i )+u i E (Y i |X i )=f(X i )=β1+β2lnX i引入随机扰动项,(3)古典假设A 零均值假定 E (u i |X i )=0B 同方差假定 Var(u i |X i )=E(u i 2)=σ2C 无自相关假定 Cov(u i ,u j )=0D 随机扰动项与解释变量不相关假定 Cov(u i ,X i )=0E 正态性假定u i ~N(0,σ2)F 无多重共线性假定Rank(X)=k2、估计在古典假设下,经典框架,可以使用OLS方法:OLS 寻找min ∑e i2 ^β1ols = (Y 均值)-^β2(X 均值)^β2ols = ∑x i y i /∑x i 23、性质OLS 回归线性质(数值性质)(1)回归线通过样本均值 (X 均值,Y 均值)(2)估计值^Y i 的均值等于实际值Y i 的均值(3)剩余项e i 的均值为0(4)被解释变量估计值^Y i 与剩余项e i 不相关 Cov(^Y i ,e i )=0(5)解释变量X i 与剩余项e i 不相关 Cov(e i ,X i )=0在古典假设下,OLS 的统计性质是BLUE 统计 最佳线性无偏估计4、检验(1)Z 检验Ho:β2=0 原假设 验证β2是否显著不为0标准化: Z=(^β2-β2)/SE (^β2)~N (0,1) 在方差已知,样本充分大用Z 检验拒绝域在两侧,跟临界值判断,是否β2显著不为0(2)t 检验——回归系数的假设性检验方差未知,用方差估计量代替 ^σ2=∑e i 2/(n-k) 重点记忆t =(^β2-β2)/^SE (^β2)~t (n-2)拒绝域:|t|>=t 2/a (n-2)拒绝,认为对应解释变量对被解释变量有显著影响。
建立经典单方程计量经济学模型的步骤和要点
1、确定研究对象和目标:首先需要明确研究的目的和研究对象,
并确定需要解决的问题和实现的目标。
2、收集数据:收集与研究对象和目标相关的数据,包括宏观经济
指标、市场数据、公司财务数据等。
3、确定自变量和因变量:根据研究目的和收集到的数据,选择合
适的自变量和因变量,自变量是影响因变量的变量,因变量是受自变量影响变化的变量。
4、模型设定和假设:根据经济学理论和实际情况,设定经典单方
程计量经济学模型的方程形式和假设条件,考虑线性或非线性关系、时间趋势、季节性等因素。
5、数据预处理:对收集到的数据进行预处理,包括缺失值填充、
异常值处理、数据转换等,以确保数据的准确性和可靠性。
6、模型拟合和参数估计:使用统计软件或编程语言进行模型拟合
和参数估计,根据设定的方程形式和假设条件,计算出自变量和因变量之间的参数估计值和误差等指标。
7、模型检验和调整:对拟合后的模型进行检验和调整,包括统计
显著性检验、经济意义检验、模型的多重共线性检验等,对不符合要求的模型进行修正和改进。
8、应用和解释:根据拟合好的经典单方程计量经济学模型,进行
应用和解释,包括预测未来趋势、政策评估、结构分析等。
建立计量经济学模型的基本步骤计量经济学是经济学中的一个重要分支,通过使用统计工具和模型解决经济问题。
建立计量经济学模型是进行计量经济学研究的核心内容之一。
下面将详细介绍建立计量经济学模型的基本步骤。
第一步:明确研究问题和目标在建立计量经济学模型之前,首先需要明确研究问题和目标。
这一步是非常关键的,因为它决定了后续研究的方向和方法。
研究问题可以来自实际社会或经济现象,例如就业、通货膨胀、财政政策等。
目标可以是找出影响某一经济现象的主要因素,或者预测未来的经济走势等。
第二步:选择合适的模型类型根据研究问题和目标,选择合适的计量经济学模型类型。
常见的模型类型包括回归分析、时间序列分析、面板数据分析等。
回归分析是最常用的模型类型之一,通过建立因变量和自变量之间的关系,来解释因变量的变化。
时间序列分析适用于研究随时间变化的现象,例如经济增长率、股票价格等。
面板数据分析则可以同时考虑个体和时间的变化,适用于追踪个体之间的差异和变化。
第三步:收集和整理数据在建立计量经济学模型之前,需要收集和整理相关的数据。
数据的来源可以是各个部门的统计年鉴、调查问卷、社会调查数据等。
数据的质量和准确性对研究结果的可靠性有重要影响,因此在这一步需要特别注意数据的选择和处理。
可以使用数据库软件如Excel或专业的数据分析软件如SPSS来整理和处理数据。
第四步:变量选择与设定在建立计量经济学模型之前,需要选择合适的变量。
变量包括因变量和自变量。
因变量是要解释和预测的经济现象,自变量是影响因变量的因素。
变量选择的关键是具有经济学理论基础,并与研究问题和目标密切相关。
同时,还需要对变量进行设定,在回归模型中,可以选择线性关系、非线性关系或者其他形式的关系。
第五步:建立和估计模型在变量选择和设定完成之后,就可以建立计量经济学模型并进行估计。
对于回归模型,可以使用最小二乘法进行参数估计。
其他模型类型也有不同的估计方法,例如时间序列模型可以使用自相关函数(ACF)和偏自相关函数(PACF)来估计模型参数。
1.计量经济学的研究过程及内容:(1)模型设定(要有科学的理论依据、选择适当的数学形式、模型要兼顾真实性和实用性、包含随机误差项、方程中的变量要具有可观测性);(2)估计参数(参数是未知的,又是不可直接观测的。
由于随机误差项的存在,参数也不能通过变量值去精确计算。
只能通过变量样本观测值选择适当方法去估计);(3)模型检验(经济意义检验、统计推断检验、计量经济学检验、模型预测检验)(4)模型应用(经济结构分析、经济预测、政策评价、检验发展经济理论)2.数据的要求:真实性、完整性、可比性3.可利用来建立计量经济模型的关系:行为关系(如生产、投资、消费)、生产技术关系(如投入产出关系)、制度关系(如税率)、定义关系(根据定义表达的恒等式) 6.相关关系的特点(1)X 和Y 都是相互对称的随机变量YX XYγγ=(2)线性相关系数只反映变量间的线性相关程度,不能说明非线性相关关系(3)样本相关系数是总体相关系数的样本估计值,由于抽样波动,样本相关系数是个随机变量,其统计显著性有待检验(4)相关系数只能反映线性相关程度,不能确定因果关系,不能说明相关关系具体接近哪条直线7.回归是关于一个变量对另一个变量或多个变量依存关系的研究,用适当的数学模型去近似地表达或估计变量之间的平均变化关系,其目的是要根据解释变量的估计数值去估计所研究的被解释变量的总体平均值。
8.回归函数:应变量Y 的条件期望E(Y/Xi)随解释变量X 的的变化而有规律的变化,如果把Y 的条件期E(Y/Xi)望表现为X 的某种函数()()i i E Y X f X =,这个函数称为回归函数。
9.线性回归模型主要指就参数而言是“线性”,因为只要对参数而言是线性的,都可以用类似的方法估计其参数。
10.引入随机扰动项的原因:是未知影响因素的代表(理论的模糊性)、是无法取得数据的已知影响因素的代表(数据欠缺)、 是众多细小影响因素的综合代表(非系统性影响)、模型的设定误差(变量、函数形式的设定)、变量的观测误差(变量数据不符合实际)、经济现象的内在随机性(人类经济行为的内在随机性)11.样本回归函数与总体回归函数的区别:(1)总体回归函数虽然未知,但它是确定的;样本回归线却是随抽样波动而变化的,可以有许多条。
计量经济学的研究方法教案一、引言计量经济学是研究经济现象的数量关系以及对这些关系进行实证分析的一门学科。
研究方法是计量经济学的核心,正确的方法能够帮助我们获取准确可靠的研究结果。
本文将介绍计量经济学的研究方法,并提供一份针对此课程的教案。
二、理论框架1. 研究问题的设定- 确定研究问题:明确需要回答的经济问题,例如市场供求关系、生产效率等。
- 文献综述:对相关领域的研究现状进行深入了解,寻找已有研究成果和思路。
2. 数据采集和变量选择- 数据来源:选择可靠的数据源,例如统计局、调查数据等。
- 样本选择:确定研究样本的特征,如时间范围、地区等。
- 变量选择:根据研究问题确定需要使用的自变量和因变量。
3. 建立经济模型- 确定模型类型:根据研究问题选择适合的模型类型,如线性回归模型、时间序列模型等。
- 模型假设:明确模型所假设的前提条件,例如误差项独立同分布等。
- 模型设定:根据变量选择和理论框架构建经济模型。
三、数据处理与分析1. 数据清洗与描述性统计- 数据清洗:对数据进行清洗、筛选和处理,确保数据的可靠性和一致性。
- 描述性统计:对数据的基本特征进行描述,例如平均值、方差等。
2. 模型检验与估计- 检验模型假设:通过统计方法对模型的假设进行检验,如正态性检验、异方差性检验等。
- 模型估计:使用最小二乘法等方法对模型进行参数估计。
3. 模型评价与解释- 模型评价:使用统计指标如R平方、调整R平方等对模型进行评价。
- 解释结果:对模型结果进行解释,并根据经济理论进行论证和分析。
四、案例分析为了进一步加深对计量经济学研究方法的理解,我们将进行一个案例分析。
请同学们使用所学的计量经济学方法,选择一个感兴趣的经济问题,并进行相应的研究设计,数据收集,模型建立,结果分析等。
五、结论通过本教案的学习,我们了解了计量经济学的研究方法,并使用一个案例进行了实际操作。
学生可以通过本教案的学习,获得一定的计量经济学研究方法的基础,为今后的研究打下坚实的基础。
在撰写文章之前,我们需要先了解什么是计量经济学以及建立与应用计量经济模型的主要步骤。
计量经济学是经济学的一个重要分支,其核心在于利用统计方法和数学模型来分析经济现象和经济政策。
而建立与应用计量经济模型的主要步骤是指在实际研究中,如何根据研究目的和数据特点,进行模型的建立与应用。
下面,我们将逐步深入探讨这个主题。
一、收集数据建立计量经济模型的第一步是收集相关数据。
数据的质量和数量对于模型的建立和应用至关重要,因此需要确保数据的准确性、完整性和代表性。
选择合适的时间跨度和样本范围也是非常重要的。
二、变量选择在收集到数据之后,需要根据研究目的和假设,选择合适的自变量和因变量。
自变量是影响因变量的因素,而因变量是需要进行分析和解释的变量。
在选择变量时,需要考虑变量之间的相关性以及可能存在的内生性问题。
三、建立模型接下来是建立计量经济模型。
根据变量的选择和研究目的,可以选择合适的计量经济模型,常见的模型包括线性回归模型、时间序列模型、面板数据模型等。
建立模型时需要考虑模型的功能形式、假设前提以及模型的适配性。
四、模型估计模型建立完成后,需要对模型进行参数估计。
通过统计方法对模型的参数进行估计,得到模型的具体数值结果。
常见的估计方法包括最小二乘法、极大似然估计等。
五、模型诊断一旦模型估计完成,需要对模型进行诊断。
模型诊断是为了检验模型的假设前提是否成立,以及模型是否符合统计要求。
常见的诊断方法包括残差分析、异方差检验、多重共线性检验等。
六、模型应用建立的计量经济模型可以用于实际问题的应用。
根据模型的估计结果,可以进行政策效果评估、市场预测、风险控制等实际应用。
建立与应用计量经济模型的主要步骤包括数据收集、变量选择、模型建立、模型估计、模型诊断和模型应用。
在实际操作中,需要根据具体问题和数据特点来灵活应用这些步骤,以达到科学、准确地分析和解释经济现象的目的。
从个人观点来看,建立与应用计量经济模型是经济研究中非常重要的一部分。
计量经济学知识点1.假设检验:在计量经济学中,研究者通常会提出一些假设,然后使用统计方法来检验这些假设的有效性。
例如,研究者可能提出一个关于变量之间关系的假设,并使用样本数据来检验这个假设是否成立。
2.回归分析:回归分析是计量经济学中一种常用的统计方法,用于分析因变量与自变量之间的关系。
通过回归分析,研究者可以确定自变量对因变量的影响程度,并进一步预测因变量的数值。
回归模型的选择和估计是计量经济学中的核心内容之一3.模型设定:在计量经济学中,研究者通常会基于对经济理论的理解来设定一个经济模型,并使用实证分析来验证模型的有效性。
模型设定是计量经济学研究的第一步,决定了后续研究的方向和方法。
4.面板数据分析:面板数据是一种具有时间序列和截面维度的数据,可以用于研究变量的动态关系。
在面板数据分析中,研究者可以使用固定效应模型或者随机效应模型来估计变量的影响。
5.工具变量法:工具变量法是计量经济学中一种常用的估计方法,用于解决内生性问题。
内生性问题是由于自变量和误差项之间的相关性而导致的估计结果不准确的问题,在工具变量法中,研究者使用一个与自变量相关但与误差项无关的变量作为工具变量来解决内生性问题。
6.时间序列分析:时间序列分析是计量经济学中研究时间序列数据的方法。
研究者可以使用时间序列模型来分析和预测经济变量的发展趋势和波动性。
常用的时间序列模型包括ARMA模型、ARIMA模型等。
7.异方差问题:异方差问题是指误差项的方差不是恒定的,而是与自变量或其他变量相关的情况。
异方差问题会导致估计结果的不准确性,在计量经济学中,研究者可以使用加权最小二乘法或者稳健标准误等方法来解决异方差问题。
8.时间序列平稳性:时间序列平稳性是指时间序列数据的均值和方差在时间上不发生系统性的变化。
平稳时间序列数据能够提供可靠的统计推断结果,因此在时间序列分析中需要对数据的平稳性进行检验。
9.效应估计方法:在计量经济学中,研究者通常会使用OLS估计法来估计参数的值。
计量经济学经济数据分析和经济模型的要点计量经济学是经济学的一个重要领域,它通过运用统计学和数学方法,对经济数据进行定量分析,以揭示经济现象背后的规律性关系,并建立经济模型来解释和预测经济行为。
在本文中,我们将重点介绍计量经济学中经济数据分析和经济模型的要点。
一、经济数据分析经济数据是计量经济学的基础,它描述了经济现象以及经济变量之间的相互关系。
在经济数据分析中,我们需要掌握以下几个重要的要点:1. 数据收集:经济数据的来源多种多样,可以通过问卷调查、统计局数据、企业报表等方式进行收集。
在进行数据收集时,我们需要确保数据的准确性和全面性,避免数据的偏倚和遗漏。
2. 数据质量检验:在进行数据分析之前,我们需要对数据进行质量检验。
主要包括数据的完整性、一致性、合理性等方面的检查,以确保数据的可靠性。
3. 数据描述统计:数据描述统计是对数据进行初步的分析和概括,主要包括数据的中心位置、分散程度、分布形态等方面的统计指标。
常用的描述统计指标包括均值、方差、标准差等。
4. 数据可视化:数据可视化是将经济数据以图表的形式展现出来,以便更直观地理解和分析数据。
常用的数据可视化工具包括散点图、折线图、柱状图等。
二、经济模型经济模型是计量经济学的核心内容,它用数学语言描述经济行为和经济变量之间的关系。
在建立经济模型时,我们需要注意以下几个要点:1. 假设的设定:经济模型基于一定的假设前提,这些假设用于简化现实情况,并突出研究重点。
在建立模型时,我们需要合理设定假设,并对其进行合理性检验。
2. 变量选择:在经济模型中,我们需要选择具有经济意义的变量进行建模。
变量的选择应该考虑到其与研究主题的相关性和可测度。
3. 变量间关系的确定:在建立经济模型时,我们需要确定变量之间的关系形式。
常用的函数形式包括线性关系、非线性关系、概率分布等。
4. 模型参数的估计:经济模型的参数估计是计量经济学的核心内容之一。
常用的估计方法包括最小二乘法、极大似然法等。
计量经济学模型建立的步骤
建立计量经济学模型的步骤可以概括为以下几个阶段:
1. 模型的设定:首先确定研究的目标和问题,然后根据理论基础和研究对象的特点,选择适当的经济学理论模型作为分析框架。
2. 设定假设:根据模型设定的理论框架及前提条件,对模型中的关键变量进行假设设定,包括变量之间的函数形式、参数的取值范围以及各种约束条件。
3. 数据收集与处理:收集与研究问题相关的数据,对数据进行处理和整理,包括数据清洗、缺失值处理、数据变换等。
4. 模型估计与检验:根据设定的经济模型,利用计量经济学的方法进行模型的估计与检验,确定模型中的参数估计值,并对估计结果进行合理性检验,如参数的显著性检验、模型的拟合优度检验等。
5. 模型解释和分析:根据模型的估计结果,进行解释和分析,研究变量之间的关系、因果关系以及对实际问题的影响等,并提出相应的政策建议或研究结论。
需要注意的是,以上的步骤是一个一般性的描述,实际建立计量经济学模型时可能会因研究问题的不同而有所变化。
此外,在每个阶段都需要进行严谨的理论分
析和数据处理工作,以确保模型的可靠性和有效性。