计量经济学模型
- 格式:doc
- 大小:101.50 KB
- 文档页数:5
一、往届的学生提交的作业存在问题归纳如下:1、缺少具有说服力的理论假说2、变量之间关系牵强,无研究价值和实际意义如:全国居民消费价格指数与商品零售价格指数;粮食出售量与蔬菜出售量;农民收入与居民收入;日照时间与粮食产量;等等。
3、自变量不是主要的影响因素,如日照时间就不是影响粮食产量的主要因素4、变量的度量指标不具体,模糊不清5、指标数据的类型不明确,是采用时间序列数据、还是截面数据。
二、提供可参考的计量经济学模型:1.生产函数:农业总产值与农业从业人员、财政用于农业资金、农业机械总动力关系工业总产值与固定资产、职工人数之间的关系2.消费函数:(1)食品消费支出与食品价格、家庭年(月)人均收入(2)不同地区城镇居民家庭人均可支配收入与人均消费支出(3)中国居民收入与消费的关系(4)农村居民消费函数:农村居民人均消费支出与农业经营纯收入、其他来源的纯收入3.需求函数:Y:居民对食品的消费量;X1:消费者消费支出总额;X2:食品价格指数三、计量经济学模型建立:8个基本步骤现实问题:经济形势对人们工作意愿的影响?第一步,建立一个理论假说假说一:受挫—工人假说。
即经济形势恶化(表现为高失业率),则工人的工作意愿下降(表现为低劳动参与率);假说二:增加—工人假说。
即经济形势恶化(高失业率),许多后备工人进入劳动市场以补贴家庭开支(尽管薪酬很低),进而导致劳动参与率上升。
第二步,收集数据变量:经济形势,劳动者的工作意愿具体的度量指标:城市失业率(%),城市劳动力参与率(%)数据一般来源:权威部门向社会发布的统计信息、公开出版物、亲自调查资料来源:总统经济报告,2008年 第三步,设定数学模型第四步,设立统计或经济计量模型 第五步, 估计经济计量模型参数第六步,检查模型的适用性:模型设定检验1.经济意义检验:2.统计学检验:3.计量经济学检验:第七步,检验源自模型的假说;1.验证估计的模型是否有经济意义;2.估计的结果是否与经济理论相符。
计量经济学回归分析模型计量经济学是经济学中的一个分支,通过运用数理统计和经济理论的工具,研究经济现象。
其中回归分析模型是计量经济学中最为常见的分析方法之一、回归分析模型主要用于确定自变量与因变量之间的关系,并通过统计推断来解释这种关系。
回归分析模型中的关系可以是线性的,也可以是非线性的。
线性回归模型是回归分析中最为常见和基础的模型。
它可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε其中,Y代表因变量,X1,X2,...,Xk代表自变量,β0,β1,β2,...,βk代表回归系数,ε代表随机误差项。
回归模型的核心是确定回归系数。
通过最小二乘法估计回归系数,使得预测值与实际观测值之间的差异最小化。
最小二乘法通过使得误差的平方和最小化来估计回归系数。
通过对数据进行拟合,我们可以得到回归系数的估计值。
回归分析模型的应用范围非常广泛。
它可以用于解释和预测经济现象,比如价格与需求的关系、生产力与劳动力的关系等。
此外,回归分析模型还可以用于政策评估和决策制定。
通过分析回归系数的显著性,可以判断自变量对因变量的影响程度,并进行政策建议和决策制定。
在实施回归分析模型时,有几个重要的假设需要满足。
首先,线性回归模型要求因变量和自变量之间存在线性关系。
其次,回归模型要求自变量之间不存在多重共线性,即自变量之间没有高度相关性。
此外,回归模型要求误差项具有同方差性和独立性。
在解释回归分析模型的结果时,可以通过回归系数的显著性来判断自变量对因变量的影响程度。
显著性水平一般为0.05或0.01,如果回归系数的p值小于显著性水平,则说明该自变量对因变量具有显著影响。
此外,还可以通过确定系数R^2来评估模型的拟合程度。
R^2可以解释因变量变异的百分比,值越接近1,说明模型的拟合程度越好。
总之,回归分析模型是计量经济学中非常重要的工具之一、它通过分析自变量和因变量之间的关系,能够解释经济现象和预测未来走势。
在应用回归分析模型时,需要满足一定的假设条件,并通过回归系数和拟合优度来解释结果。
计量经济学GMM模型计量经济学GMM模型是指基于计量经济学的Generalized Method of Moment(GMM)模型。
它是一种基于有限数学参数来解释经济现象的模型,它利用最优估计技术来拟合大量数据,预测和分析隐藏在它们背后的模式。
为了使用GMM模型来估计价格、需求、收入、消费、投资和其他宏观变量,需要对其进行调整和运行。
一、计量经济学GMM模型基本原理计量经济学GMM模型的基本原理建立在极大似然估计(MLE)的基础之上。
它假设某一经济现象的行为是由一个有限、可估计参数的定量模型来建模的,这些参数的估计值可以使模型的残差最小化。
模型除了参数之外,还规定了模型对应的经济现象的一般特征(比如相关性)。
因此,计量经济学GMM模型是通过最小化函数来拟合实验数据,以确定参数值的一种方法。
二、计量经济学GMM模型特点1.有效性:由于GMM模型能够在有限数据情况下得到准确估计,因此是一种十分可靠的估计方法。
2.准确性:与其他经济数据加工方法(如典型回归模型)相比,GMM的准确性要好得多,能够提供更精确的参数估计。
3.便捷性:GMM模型也是一种简单便捷的预测方法,可以轻易地从历史数据中抽取出参数,从而把它们应用到现实经济中。
4.减小噪音:GMM模型能够准确地对数据进行拟合,可以有效地压制测量误差的影响。
三、计量经济学GMM模型的应用1. 价格预测:GMM模型可以通过利用时间序列上的历史数据、均衡条件以及其他特征,预测出最终的物价变动情况;2. 投资分析:使用GMM模型,可以施行完整性的投资分析,以便估计未来对投资报酬的影响程度;3. 消费预测:使用此模型预测消费行为,可以估计预算支出,并调节它以达到给定的消费预算。
4. 估计协整模型:GMM模型可以被用来估计协整模型,这样可以用来衡量不同的经济变量是否存在协整关系。
总之,计量经济学GMM模型对于对数据拟合和通过数据估计市场变量都具有重要意义。
它具有有效性、准确性、便捷性和减少噪音的特点;并且可以被广泛用于价格预测、投资分析、消费预测和估计协整模型等领域。
计量经济学GMM模型GMM(Generalized Method of Moments)模型是一种常用的计量经济学研究方法,它可用于宏观和微观评估。
它可以有效地应用于估计模型参数,以及对时间序列数据和静态数据进行调查。
一、GMM模型的概述GMM模型一般用来拟合静止的观测数据,它从经济学的角度分析模型的稳定性和鲁棒性,以及估计模型参数的准确性。
它原本可以用于估计一组未知参数,例如通过给定实证拟合模型,或者提供模型和控制参数之间的最优拟合程度或优化。
二、GMM模型的方法GMM模型主要分为三个部分:模型假设、观测式和估计模型。
1)模型假设:使用GMM模型估计数据参数时,需要规定一定的模型假设,例如宏观和微观的假设,变量的变化趋势假设,以及假设误差的连续性和独立性等。
2)观测式:根据给定的模型假设,确定观测式,以估计模型中变量之间的关系,形成一套数学表达式,以及协变量和残差之间的相关关系等。
此外,还会考虑模型假设的健康性(例如时间序列的平稳性)。
3)估计模型:使用迭代方法对模型参数进行估计,通过调整参数得到模型中变量的参数估计量以及估计误差,以及观测的绝对误差估计,最后将以上结果装入优化算法,以获得最小残差平方和模型的优化参数。
三、GMM模型的应用(1)GMM模型在宏观计量经济学中可以用于计算长期均衡,估计投资、政府支出、净出口和 GDP 核算等变量,以及进行宏观估计;(2)时间序列模型,例如经济周期性模型和机会模型;(3)微观计量经济学中可用于计算企业间的差异,例如产品的可替代性,员工行为问题的解决。
四、GMM模型的优缺点(1)GMM模型的优点:GMM模型对于时间序列和静态数据都有较好的应用,而且可以用来估计模型参数,均衡拟合度以及评估模型的可行性等。
(2)GMM模型的缺点:GMM模型的计算复杂度较大,容易受到外部激励因素的干扰,估计偏差较大,而且模型假设不当也会导致研究失误。
计量经济学理论的模型解释与预测引言计量经济学是经济学中一个重要的分支,其研究方法主要基于经济理论和数理统计学,旨在通过使用数学和统计方法来解释经济现象,并进行预测和政策分析。
计量经济学理论的模型是实现这一目标的核心工具。
本文将对计量经济学理论的模型进行解释,并探讨其在预测方面的应用。
一、计量经济学理论的模型解释1.1 常见的计量经济学模型计量经济学模型是对经济现象进行抽象和概括的数学表达式。
常见的计量经济学模型包括线性回归模型、时间序列模型、面板数据模型等。
线性回归模型是计量经济学中最基础且广泛应用的模型之一。
它假设变量之间存在线性关系,并通过估计各个变量的系数来解释经济现象。
时间序列模型是用于分析时间序列数据的模型,其中包括自回归模型、移动平均模型、ARMA模型等。
时间序列模型主要用于分析时间上的趋势和周期性。
面板数据模型是同时包含横截面和时间序列数据的模型,通常用于分析跨国或跨地区的经济现象。
面板数据模型可以同时考虑个体特征和时间特征,提高了模型的解释能力。
1.2 模型解释的基本步骤模型解释是对计量经济学模型进行参数估计和推断的过程。
基本的模型解释步骤包括模型设定、估计方法选择、参数估计和模型诊断。
模型设定是根据研究目的和数据特征选择适当的计量经济学模型,并确定模型中包含的变量和假设条件。
估计方法选择是根据模型的性质和数据的特点选择合适的估计方法,常见的估计方法包括最小二乘法、广义最小二乘法、极大似然估计等。
参数估计是利用选定的估计方法对模型的参数进行估计,通常使用计算机软件进行参数的数值计算。
模型诊断是对估计结果进行评价和检验,包括残差分析、假设检验等。
模型诊断可以用于判断模型的拟合程度和参数的显著性。
1.3 模型解释的应用领域计量经济学模型的解释应用广泛,包括实证研究、政策评估和预测分析等。
实证研究是计量经济学模型应用的基本领域,通过对模型进行解释,可以验证和检验经济理论的有效性,并提供实证证据支持。
计量经济学的模型
计量经济学是一门运用数学、统计学和经济学理论来分析经济数据的学科。
它的核心是建立经济变量之间的数学模型,并利用实际数据进行估计和验证。
计量经济学模型通常由一组方程式组成,这些方程式描述了经济变量之间的关系。
其中,最常见的模型是线性回归模型,它假设因变量与自变量之间存在线性关系。
在建立计量经济学模型时,需要考虑许多因素,例如变量的选择、数据的收集和处理、模型的假设和限制等。
为了确保模型的可靠性和有效性,需要进行一系列的统计检验和诊断,例如拟合优度检验、异方差性检验、自相关检验等。
计量经济学模型可以用于预测经济变量的未来走势、评估政策的效果、检验经济理论的正确性等。
它在宏观经济、金融市场、产业经济等领域都有广泛的应用。
总之,计量经济学是一门重要的经济学分支,它通过建立数学模型来分析经济数据,为政策制定和经济决策提供了科学依据。
第七章 计量经济学应用
§7.1 计量经济学模型的设定
计量经济学模型设定的主要根据:
1) 研究目的;
2) 已有理论模型。
通常是根据研究目的所涉及的范围,决定需要分析哪些经济变量之间的关系。
再设定这些变量之间的关系式。
设定变量关系式可以根据已有的理论模型、经济恒等式、经济关系式来确定(可能需要进行一定的修改)。
若没有已知的关系式可用,可以根据研究目的,人为设定。
变量间具体表达式的选择
若经济理论已给出具体表达式,就直接套用。
否则,可以直接假设为线性函数。
其原因是经济中的所使用函数大多数都认为是连续可微的函数,因而可以用线性函数近似。
§7.2 数据调整
由于统计指标与经济变量的含义、口径一般不会一致。
在模型估计之前,如有可能,应先进行调整,使统计指标的口径尽可能的接近经济变量的含义。
§7.3 变量的选择
基于上述同样的原因,及统计指标间的相关性,在设计模型结构时,需要筛选变量。
假设模型已转化为简化型,即设模型为
⎪⎪⎩
⎪⎪⎨⎧++++=++++=++++=k p kp k k k p p p p x x x y x x x y x x x y εαααεαααεαααΛΛΛΛ2211222221212112121111
变量筛选有两层含义:
1) 对内生变量T k y y y ),,,,(21Λ有重要影响的外生变量是否都选入模型了?
2) 模型内的外生变量T p x x x ),,,(21Λ对内生变量T k y y y ),,,,(21Λ是否都有重要影
响?
判别准则
1) 复相关系数R (一般要求R>0.8),或方程的F -统计量;
一般来说,若R>0.9或经F-检验是显著的,则从整体上说,方程几乎包含了对响应变量有重要影响所有外生变量,外生变量对内生变量有较强的解释能力,否则,表明方程遗漏了一些对内生变量有重要影响的变量,需要增加外生变量。
当模型用于结构分析时,R 值可以低一些,用于预测时,R 值应比较大。
2) 系数显著性检验t -统计量。
下面介绍几种常用的变量筛选算法。
这些算法都是一对多回归模型的搜索算法。
记in Ω是在回归模型内的预测变量集,out Ω是在回归模型外待检的预测变量集,del Ω是。