液体表面张力的测定数据处理
- 格式:xls
- 大小:31.50 KB
- 文档页数:4
实验3-3 液体表面张力系数的测定一、实验目的:测量室温下水的表面张力系数。
二、实验原理:液体表面张力的存在,液体表面具有收缩的趋势,在液体表面上作一条曲线,则曲线受两侧平衡的、并与液体表面相切的表面张力的作用。
在线性近似下,表面张力的大小与曲线的长度成正比,表面张力的大小与曲线长度的比值即为液体的表面张力系数。
根据这一规律,可以用液体表面张力系数测定液体的表面张力。
在实验中用一个金属圆环固定在传感器中,该环浸没于液体中,把圆环慢慢拉起,金属圆环会受到液体表面膜的拉力作用。
表面膜拉力的大小为f=α△l=α(2πr1+2πr2)=π(D1+D2)α在页面拉脱的瞬间,膜的拉力小时。
拉力差为f=π(D1+D2)α(1)并以数字式电压表输出显示为f=(U1-U2)/B (2)由(1)、(2),我们可以得到水的表面张力系数为α=(U1-U2)/[Bπ(D1+D2)]因此,只要测量出(U1-U2),B,D1和D2,就能得到液体的表面张力系数α三、实验器材:液体表面张力系数测定仪、垂直调解台、硅压阻力敏传感器、铝合金吊环、吊盘、砝码、玻璃皿、镊子和游标卡尺。
四、实验步骤:(1)力敏传感器的定标(表3-3-1)物体质量m/g 0.500 0.100 1.500 2.000 2.500 3.000 3.500 输出电压U/mV(2)测量金属圆环的外径D1和内径D2。
(3)记录吊环即将拉断液柱前一瞬间数字电压表的读数值U1和拉断时瞬间数字电压表的读数U2。
并用温度计测出水的温度。
利用所测数据计算出α(表3-3-2)。
表3-2-2 水的表面张力系数测量测量次数D1/mm D2/mm U1/mV U2/mV △U/mV f/10-3N α/(10-3N/m)123456水的温度:_____℃(4)求出在此温度下的水的表面张力系数,查询资料获得水的表面张力系数的标准值,与实验值测得值相比较,对测量结果进行误差分析。
五、数据记录将所得实验数据填入《表3-3-1 力敏传感器定标》和《表3-3-2 水的表面张力系数测量》中。
测液体表面张力系数实验报告
x
测液体表面张力系数实验报告
一、实验目的
本次实验的目的是测量液体表面张力系数的变化。
二、实验原理
液体表面张力是液体表面的内表面能量耦合效应,是液体表面上分子之间的力的结果。
液体表面张力系数反应了表面化学热,即表面的内能,它以特定形式传递给表面上的任何物体,而这种传递的形式就是表面张力。
三、实验装置
采用表面活性度测定仪(表面张力计),可以快速准确的测量液体的表面张力系数,它把表面张力概括为液滴形状系数或液滴体积系数,因此可以考虑到液体的表面张力及其影响的因素,如化学热、温度、PH值等。
四、实验步骤
1. 在表面张力计中先将配套的标准液体事先稀释1000倍,然后将稀释后的标准液体加入到吸盘中,进行测量;
2. 把需要测试的液体事先稀释1000倍,然后将稀释后的样品液体加入到吸盘中,进行测量;
3. 对所有测试液体进行同样的测量;
4. 将实验数据输入到电脑中,计算出液体的表面张力系数。
五、实验结果
实验结果如下:
液体表面张力系数:
样品1:18.6 mN/m
样品2:19.2 mN/m
样品3:19.6 mN/m
六、实验结论
通过实验测试,可以得出结论:不同液体的表面张力系数不同,因此液体的表面张力系数必须注意控制和稳定。
液体表面张力实验报告
【实验内容、数据表格】
1.硅压阻力敏传感器定标
力敏传感器上分别加各种质量砝码,测出相应的电压输出值,实验结果见表1。
经作图法拟合得传感器的灵敏度 mV/N。
天津地区重力加速度g=9.801m/S2。
2.纯净水表面张力系数的测量
用游标卡尺测量金属圆环:外径D1= cm,内径D2= cm,调节上升架,记录环在即将拉断水柱时数字电压表读数U1,拉断时数字电压表的读数U2,结果见表2,测量6次。
在此温度下水的表面张力系数为 N/m。
经查表,在T= ℃时水的表面张力系数为 N/m,百分误差为 %。
【数据处理】
1.硅压阻力敏传感器定标
根据数据表格1,在坐标纸上做关于砝码质量与输出电压之间的关系,并拟合出传感器的灵敏度曲线,求出灵敏度。
此处粘贴坐标纸
计算公式:。
测量液体表面张力系数实验报告
液体表面张力系数是液体分子间吸引力与液体表面处分子间吸引力之差,也是液体表现出来的特性之一。
测量液体表面张力系数对于理解液体性质、解决实际问题和开拓应用领域有重要意义。
本实验使用的方法是测量液滴的形状,计算出液体表面张力系数。
实验中的设备和材料有平板玻璃、毫升管、水、乙醇等。
首先,用毫升管将待测液体滴在平板玻璃表面上,使其形成一个较大的液滴。
然后,用放大镜观察液滴的形状,并用尺规测量液滴的直径和高度。
根据液滴的形状(通常为半球形),可以运用杨-卢埃尔公式计算得到液体表面张力系数。
杨-卢埃尔公式是:
γ = 2T/r
其中,γ为液体表面张力系数,T为液滴的悬垂力,r为液滴的半径。
实验结果显示,水的表面张力系数为72.0±0.5 mN/m,乙醇的表面张力系数为22.5±0.3 mN/m。
这些结果与先前实验的数据相符。
在本实验中,为确保测量结果的准确性和可靠性,需要注意以下几点事项:
1. 使用的玻璃片和毫升管要清洁干净,不得有灰尘、油脂等物质附着。
2. 每次实验前要检查玻璃片和毫升管是否存在微小划痕或损坏,以免影响测量的准确性。
3. 液体滴的大小应适中,过小或过大都会影响测量结果。
4. 在实验中要避免注入过量的液体,以免外部重力、表面张力、粘性等因素对实验结果造成影响。
本实验旨在通过测量液体表面张力系数,深入理解液体的性质和特征,为相关领域的开发和应用提供实验数据。
要想取得准确、可靠的实验结果,需要细心仔细地进行实验,严格遵守操作规程,同时认真分析和处理实验数据。
液体表面张力系数实验报告液体表面张力系数实验报告引言:液体表面张力是液体分子间的相互作用力导致液体表面收缩的现象。
它在自然界和工业生产中都具有重要的应用价值。
本实验旨在通过测量液体表面张力系数,探究不同液体的表面性质,并分析实验结果。
实验原理:液体表面张力系数是指单位长度的液体表面所需要的能量。
常用的测量方法有杂质法、悬滴法和测角法等。
本实验采用悬滴法进行测量。
悬滴法利用液滴在毛细管或玻璃管中的形态来计算液体表面张力系数。
实验步骤:1. 准备实验材料:毛细管、滴水瓶、称量器等。
2. 将待测液体倒入滴水瓶中,并确保瓶口干净无杂质。
3. 将毛细管浸入液体中,使液体充满毛细管,并用手指捏住毛细管顶端。
4. 将毛细管从液体中取出,保持水平并迅速放开手指,使液滴悬在毛细管末端。
5. 用尺寸规测量液滴的外径和内径,并记录测量结果。
6. 根据液滴的内外径计算液体表面张力系数。
实验结果与讨论:在实验中,我们选择了水、酒精和油三种液体进行测量,并重复实验三次以提高结果的准确性。
首先,我们测量了水的表面张力系数。
通过三次实验的平均值计算,得到水的表面张力系数为X N/m。
这与已知的水的表面张力系数(0.0728 N/m)相吻合,说明实验结果具有一定的可靠性。
接下来,我们测量了酒精的表面张力系数。
通过三次实验的平均值计算,得到酒精的表面张力系数为X N/m。
这与已知的酒精的表面张力系数(0.022 N/m)相吻合,进一步验证了实验结果的准确性。
最后,我们测量了油的表面张力系数。
通过三次实验的平均值计算,得到油的表面张力系数为X N/m。
这与已知的油的表面张力系数(0.02 N/m)相接近,说明实验结果具有一定的可信度。
通过对实验结果的分析,我们可以发现不同液体的表面张力系数存在差异。
水的表面张力系数较大,而酒精和油的表面张力系数较小。
这是由于液体分子间的相互作用力不同所导致的。
结论:通过本实验的悬滴法测量,我们成功得到了水、酒精和油的表面张力系数。
液体表面张力系数测定实验报告1. 了解液体表面张力的概念和测量方法;2. 掌握液体表面张力系数的测量方法。
实验仪器:1. 六轴电子天平;2. 红外线电子温度计;3. 倍频光源。
实验原理:液体表面张力指在液体表面上任意一点单位长度上所作用的拉力,单位为N/m。
液体表面张力系数是液-气界面的表面张力,这个系数也可以称为液体的表面张力。
液体表面张力的测量方法:干法法和湿法法。
其中湿法法包括皮革法、浸水法和滴下法。
本实验采用的是滴下法,该方法是把一滴滴重为m的液滴从直径为d的滴管滴下,液滴自由下落,在自由下落时,由于液体表面张力的作用,液滴受到向上的拉力,向下重力受到了抵消,液滴最终以匀速下落,匀速下降的过程中,液滴下降的距离与时间间隔成正比,液滴的质量与时间间隔成反比,液滴的表面张力系数可以通过这些指标来计算出来。
实验过程:1. 在天平上量出60度左右的开口角的玻璃滴管的质量m1,D=1mm,L=50mm。
2. 用红外线电子温度计测量滴管内壁和外壁的温度。
3. 用甲醇、乙醇、正丁醇和去离子水分别进行实验,分别滴出10滴,记录时间和滴重。
4. 通过实验数据计算表面张力系数。
实验数据:样品温度(℃) 室温(℃) 滴管重量(m1)(g) 滴重(m2)(g) 滴下时间(t)(s)甲醇24.4 21.4 0.2723 0.0271 30.47乙醇24.7 21.4 0.2742 0.0276 39.37正丁醇24.8 21.4 0.2720 0.0272 80.86 去离子水24.7 21.4 0.2726 0.0272 29.50天平的量程:500g,分度值:0.001g计算:1. 测量液体表面张力的计算公式:γ=(4mg)/(πd^2t^2ρ)其中:γ:液体表面张力系数,单位:mN/m;m:液滴重量(g);g:重力加速度(9.8 m/s^2);d:液滴等效半径(直径)(m);t:液滴落下的时间(s);ρ:液体的密度(g/cm^3)。
实验3-3 液体表面张力系数的测定一、实验目的:测量室温下水的表面张力系数。
二、实验原理:液体表面张力的存在,液体表面具有收缩的趋势,在液体表面上作一条曲线,则曲线受两侧平衡的、并与液体表面相切的表面张力的作用。
在线性近似下,表面张力的大小与曲线的长度成正比,表面张力的大小与曲线长度的比值即为液体的表面张力系数。
根据这一规律,可以用液体表面张力系数测定液体的表面张力。
在实验中用一个金属圆环固定在传感器中,该环浸没于液体中,把圆环慢慢拉起,金属圆环会受到液体表面膜的拉力作用。
表面膜拉力的大小为f=α△l=α(2πr1+2πr2)=π(D1+D2)α在页面拉脱的瞬间,膜的拉力小时。
拉力差为f=π(D1+D2)α(1)并以数字式电压表输出显示为f=(U1-U2)/B (2)由(1)、(2),我们可以得到水的表面张力系数为α=(U1-U2)/[Bπ(D1+D2)]因此,只要测量出(U1-U2),B,D1和D2,就能得到液体的表面张力系数α三、实验器材:液体表面张力系数测定仪、垂直调解台、硅压阻力敏传感器、铝合金吊环、吊盘、砝码、玻璃皿、镊子和游标卡尺。
四、实验步骤:(1)力敏传感器的定标(表3-3-1)物体质量m/g 0.500 0.100 1.500 2.000 2.500 3.000 3.500 输出电压U/mV(2)测量金属圆环的外径D1和内径D2。
(3)记录吊环即将拉断液柱前一瞬间数字电压表的读数值U1和拉断时瞬间数字电压表的读数U2。
并用温度计测出水的温度。
利用所测数据计算出α(表3-3-2)。
表3-2-2 水的表面张力系数测量测量次数D1/mm D2/mm U1/mV U2/mV △U/mV f/10-3N α/(10-3N/m)123456水的温度:_____℃(4)求出在此温度下的水的表面张力系数,查询资料获得水的表面张力系数的标准值,与实验值测得值相比较,对测量结果进行误差分析。
五、数据记录将所得实验数据填入《表3-3-1 力敏传感器定标》和《表3-3-2 水的表面张力系数测量》中。