高等数学 第九章 第五节 隐函数的求导公式
- 格式:pdf
- 大小:1.01 MB
- 文档页数:23
第五节 隐函数的求导法则一、一个方程的情形隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有d d x yF yx F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入(,)0F x y =,得恒等式(,())0F x f x ≡,等式两边对x 求导得d 0d F F y x y x∂∂+=∂∂, 由于0y F ≠ 于是得d d x yF yx F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数:22d d ()()d d x x y y F F y y x x F y F x∂∂=-+-⋅∂∂ 22()x x y y x xx y y y y xxy y yF F F F F F F F F F F F --=---2232x x y x y x y y y x yF F F F F F F F-+=-.例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =,并求22d d ,00d d y yx x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠.因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =.d 0d y x x =0x y F x F =-=e 10,0cos x yx y y x -=-=-==-,22d 0d y x x = d e ()0,0,1d cos x yx y y x y x -=-'===-- 0201(e )(cos )(e )(sin 1)(cos )x x x y y y y x y y y y x =='=-''-----⋅-=--3=-.隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有x z F z x F ∂=-∂,y zF zy F ∂=-∂. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入(,,)0F x y z =, 得(,,(,))0F x y f x y ≡,将上式两端分别对x 和y 求导,得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y .因为z F 连续且000(,,)0z F x y z ≠,于是得x z F z x F ∂=-∂, y zF zy F ∂=-∂. 例2 设22240x y z z ++-=,求22zx∂∂.解 设222(,,)4F x y z x y z z =++-,则2x F x =,24z F z =-,2242x z F z x x x F z z∂=-=-=∂--,2222223(2)(2)()(2)2(2)(2)(2)z xx xx x zx x x z xz z z ∂-+-+∂-+∂-===∂---. 二、方程组的情形在一定条件下, 由方程组(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩ 可以确定一对二元函数(,)(,)u u x y v v x y =⎧⎨=⎩, 例如方程0xu yv -=和1yu xv +=可以确定两个二元函数22y x yu +=,22y x x v +=. 事实上,0xu yv -=u y x v =1=⋅+u yx x yu 22y x yu +=, 2222yx x y x yy x v +=+⋅=. 下面讨论如何由组求u ,v 的导数.隐函数存在定理3 设(,,,)F x y u v ,(,,,)G x y u v 点0000(,,,)P x y u v 的某一邻域内具有对各个变量的连续偏导数,又0000(,,,)0F x y u v =,0000(,,,)0G x y u v =,且偏导数所组成的函数行列式(或称雅可比(Jacobi )行列式)(,)(,)FF FG u v J G G u v uv∂∂∂∂∂==∂∂∂∂∂ 在点0000(,,,)P x y u v 不等于零,则方程组(,,,)0F x y u v =,(,,,)0G x y u v =,在点0000(,,,)P x y u v 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数(,)(,)u u x y v v x y =⎧⎨=⎩,. 它们满足条件000(,)u u x y =,000(,)v v x y =,且有1(,)(,)xvxv u v u v F F G G u F G F F x J x v G G ∂∂=-=-∂∂,1(,)(,)ux u xu v uvF FG G v F G F F x J u x G G ∂∂=-=-∂∂, 1(,)(,)yv y vu v uv F F G G u F G F F y J y v G G ∂∂=-=-∂∂,1(,)(,)u yu y u v u vF FG G v F G F F y J u y G G ∂∂=-=-∂∂. 说明:方程组所确定的隐函数的偏导数可分别对方程组中各方程两边求偏导数,然后解关于各偏导数的方程组,其中偏导数xu ∂∂,x v ∂∂由方程组0,0x u v x uv u v F F F x xu v G G G x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩确定;偏导数yu ∂∂,y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y vG y u G G yv F y u F F v u y v u y 确定.例3 设0xu yv -=,1yu xv +=,求u x ∂∂,v x∂∂,uy ∂∂和v y ∂∂.解 两个方程两边分别对x 求偏导,得关于u x ∂∂和vx∂∂的方程组 00u v u x y x xu v y v x x x ∂∂⎧+-=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xu yv x x y ∂+=-∂+,22v yu xvx x y ∂-=∂+. 两个方程两边分别对y 求偏导,得关于u y ∂∂和vy∂∂的方程组 00uv x v y y y u v u y x y y ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xv yu y x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 另解 将两个方程的两边微分得d d d d 0d d d d 0u x x u v y y v u y y u v x x v +--=⎧⎨+++=⎩,,即d d d d d d d d x u y v v y u x y u x v u y v x -=-⎧⎨+=--⎩,. 解之得2222d d d xu yv xv yu u x y x y x y +-=-+++,2222d d d yu xv xu yvv x y x y x y-+=-++. 于是22u xu yv x x y ∂+=-∂+,22u xv yu y x y ∂-=∂+,22v yu xv x x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 例 设函数(,),(,)x x u v y y u v ==在点(,)u v 的某一领域内连续且有连续偏导数,又(,)0(,)x y u v ∂≠∂. 1) 证明方程组(,)(,)x x u v y y u v =⎧⎨=⎩ 在点(,,,)x y u v (的某一领域内唯一确定一组单值连续且有连续偏导数的反函数(,),(,)u u x y v v x y ==.2)求反函数(,),(,)u u x y v v x y ==对,x y 的偏导数. 解 1)将方程组改写成下面的形式(,,,)(,)0(,,,)(,)0F x y u v x x u v G x y u v y y u v ≡-=⎧⎨≡-=⎩,,则按假设 (,)(,)0(,)(,)F G x y J u v u v ∂∂==≠∂∂,由隐函数存在定理3,即得所要证的结论.2)将方程组所确定的反函数(,),(,)u u x y v v x y ==代入原方程组,即得[(,),(,)][(,),(,)].x x u x y v x y y y u x y v x y ≡⎧⎨≡⎩,将上述恒等式两边分别对x 求偏导数,得10.x u x v u x v xy u y v u x v x ∂∂∂∂⎧=⋅+⋅⎪⎪∂∂∂∂⎨∂∂∂∂⎪=⋅+⋅⎪∂∂∂∂⎩, 由于0J ≠,故可解得1u y x J v ∂∂=∂∂, 1v yx J u∂∂=-∂∂. 同理,可得1u x y J v ∂∂=-∂∂, 1v x y J u∂∂=∂∂. .。
高数隐函数求导公式好嘞,以下是为您生成的关于“高数隐函数求导公式”的文章:在咱们学习高等数学的这个大“战场”上,隐函数求导公式就像是一把神秘又厉害的武器。
我记得有一次给学生们讲这部分内容的时候,有个学生瞪着大眼睛问我:“老师,这隐函数求导咋就这么难理解呢?”当时我就笑了,跟他说:“别着急,咱们一步步来,你会发现它其实也没那么可怕。
”咱们先来说说啥是隐函数。
比如说,方程$x^2 + y^2 = 1$,你没法直接把$y$写成关于$x$的显式表达式,但它确实确定了$x$和$y$之间的关系,这就是隐函数。
那隐函数求导公式到底是啥呢?假设我们有一个隐函数$F(x, y) = 0$,对$x$求导的时候,要记住$y$是$x$的函数。
就拿方程$x^2 + y^2 - 1 = 0$来说吧。
对$x$求导,左边就是$2x + 2y \frac{dy}{dx} = 0$,然后就能解出$\frac{dy}{dx} = -\frac{x}{y}$。
在实际做题的时候,大家可别被那些复杂的式子给吓住。
比如说有个题是这样的:$e^{xy} + \sin(xy) = 0$,要求对$x$求导。
这看起来是不是有点让人头疼?但别慌,咱们一步步来。
先对左边求导,$e^{xy}$的导数要用链式法则,先对整体求导是$e^{xy}$,再乘以$y + x\frac{dy}{dx}$;$\sin(xy)$的导数是$\cos(xy)\times (y + x\frac{dy}{dx})$。
整理一下,就能得出$\frac{dy}{dx}$的表达式。
学习隐函数求导公式的时候,大家一定要多动手练。
就像学骑自行车,刚开始可能会摇摇晃晃,但练得多了,自然就熟练了。
我曾经有个学生,一开始做隐函数求导的题目总是出错,但是他不气馁,每天都找我要几道题回去练,没过多久,他就掌握得特别好了,考试的时候这部分的题目几乎都没丢分。
总之,隐函数求导公式虽然有点复杂,但只要咱们掌握了方法,多做练习,就一定能把它拿下。