隐函数的求导方法总结
- 格式:doc
- 大小:410.50 KB
- 文档页数:8
隐函数求导法则隐函数求导法则是微积分中的重要内容,它用于求解含有隐函数的导数。
在实际问题中,很多函数并不是显式地以y=f(x)的形式给出,而是以隐式方程的形式存在。
这时就需要用到隐函数求导法则来求解导数。
本文将介绍隐函数求导法则的原理和具体应用。
1. 隐函数的概念在代数中,如果一个方程中存在两个变量,并且其中一个变量无法用另一个变量表示,那么这个方程就是一个隐函数。
例如,方程x^2+y^2=1就是一个隐函数,因为无法用y=f(x)的形式来表示。
在实际问题中,很多函数都是以隐函数的形式存在的,因此需要用到隐函数求导法则来求解导数。
2. 隐函数求导法则的原理隐函数求导法则是通过对含有隐函数的方程两边求导来求解导数的方法。
假设有一个隐函数方程F(x, y)=0,其中y是x的函数,即y=g(x)。
为了求解y关于x的导数,可以对方程两边关于x求导,然后通过链式法则来求解。
具体来说,如果F(x, y)=0两边关于x求导,得到∂F/∂x+∂F/∂y*dy/dx=0,然后可以解出dy/dx的表达式。
3. 隐函数求导法则的具体应用隐函数求导法则的具体应用包括求解曲线的切线斜率、求解参数方程的导数、求解隐函数的高阶导数等。
在求解曲线的切线斜率时,可以将方程两边关于x求导,然后代入切点的坐标来求解斜率。
在求解参数方程的导数时,可以将参数方程化为隐函数方程,然后利用隐函数求导法则来求解导数。
在求解隐函数的高阶导数时,可以多次对方程两边求导,然后通过链式法则来求解高阶导数。
4. 隐函数求导法则的应用举例下面通过一个具体的例子来说明隐函数求导法则的应用。
假设有一个隐函数方程x^2+y^2=1,要求解y关于x的导数。
首先对方程两边关于x求导,得到2x+2y*dy/dx=0,然后可以解出dy/dx=-x/y。
这样就求得了y关于x的导数。
5. 隐函数求导法则的总结隐函数求导法则是微积分中的重要内容,它用于求解含有隐函数的导数。
通过对隐函数方程两边关于自变量求导,然后利用链式法则来求解导数。
隐函数的求导公式
隐函数是一种无法显式表达的函数,其表示为F(x,y)=0,其中x和y 是变量,F是一个用x和y表示的函数。
为了求解隐函数的导数,我们可以利用隐函数定理和导数的定义来推导隐函数的求导公式。
假设我们有一个由隐函数表示的方程F(x, y) = 0,并且y是x的函数,即y = f(x)。
我们要计算y关于x的导数dy/dx。
首先,根据隐函数定理,假设F(x, y)在一些区域内连续且可导,并且在该区域内F_y(x, y) ≠ 0,那么我们就能通过求F(x, y) = 0对x 求导来获得dy/dx的表达式。
1.对F(x,y)=0两边同时对x求导,利用链式法则,得到:
dF/dx = ∂F/∂x + ∂F/∂y * dy/dx = 0
2. 我们知道y = f(x),所以dy/dx = df(x)/dx。
我们将这个表达式代入到上面的方程中,得到:
∂F/∂x + ∂F/∂y * df(x)/dx = 0
∂F/∂x + ∂F/∂y * df(x)/dx = 0
3. 然后我们可以将df(x)/dx移项,得到:
∂F/∂y * df(x)/dx = -∂F/∂x
4.最后,我们可以得到隐函数的求导公式:
df(x)/dx = -∂F/∂x / ∂F/∂y
这就是隐函数的求导公式,在满足隐函数定理的条件下,我们可以使用这个公式计算隐函数的导数。
需要注意的是,这个公式的前提是隐函数定理的条件成立,并且存在F_y(x,y)≠0。
如果不满足这些条件,就无法使用这个公式来求解隐函数的导数。
此外,公式中的∂表示对变量求偏导数。
隐函数的求导公式首先,我们假设存在一个方程f(x,y)=0,其中y是x的函数,即y=g(x)。
我们希望求解函数g(x)的导数。
为了实现这一目标,我们需要对方程两边同时对x求导。
首先,我们对方程f(x,y)=0两边对x求导,得到:∂f/∂x + ∂f/∂y * dy/dx = 0在这个方程中,∂f/∂x 是 f(x, y) 对 x 的偏导数,∂f/∂y 是 f(x, y) 对 y 的偏导数,dy/dx 是 y 对 x 的导数,也就是 g'(x)。
然后,我们将其整理成关于g'(x)的方程:dy/dx = - (∂f/∂x) / (∂f/∂y)最终,我们得到了隐函数的求导公式,即:g'(x)=-(∂f/∂x)/(∂f/∂y)这个公式告诉我们,要求隐函数的导数,只需对方程中的偏导数进行求解并代入到公式中即可。
我们来看几个求解隐函数导数的例子。
例子1:求解方程x^2+y^2=1的导数。
首先,我们对方程两边求导,得到:2x + 2y * dy/dx = 0然后,我们整理得到:dy/dx = -2x / 2y = -x / y所以,方程 x^2 + y^2 = 1 的导数为 dy/dx = -x / y。
例子2:求解方程x^2+y^2-x*y=0的导数。
首先,我们对方程两边求偏导数,得到:2x - y - x * dy/dx + dy/dx = 0然后,我们整理得到:dy/dx = (2x - y) / (y - x)所以,方程 x^2 + y^2 - x * y = 0 的导数为 dy/dx = (2x - y) / (y - x)。
通过这些例子,我们可以看出,在求解隐函数的导数时,我们需要根据具体的方程进行偏导数的计算,然后将其代入到隐函数的求导公式中。
总结起来,隐函数的求导公式为g'(x)=-(∂f/∂x)/(∂f/∂y),其中f(x,y)=0是隐函数所满足的方程,∂f/∂x和∂f/∂y分别是方程对x和y的偏导数。
河北地质大学
课程设计(论文)题目:隐函数求偏导的方法
学院:信息工程学院
专业名称:电子信息类
小组成员:史秀丽
角子威
季小琪
2016年05月27日
摘要 (3)
一.隐函数的概念 (3)
二.隐函数求偏导 (3)
1.隐函数存在定理1 (3)
2.隐函数存在定理2 (4)
3.隐函数存在定理3 (4)
三. 隐函数求偏导的方法 (5)
1.公式法 (5)
2.直接法 (6)
3.全微分法 (6)
参考文献 (8)
摘要
本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法
一.隐函数的概念
一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一
值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确
定了一个隐函数。
例如,方程013
=-+y x 表示一个函数,因为当变量x 在()∞+∞-,
内取值时,变量y 有确定的值与其对应。
如等时时321,10=-===y x y x 。
二.隐函数求偏导
1.隐函数存在定理1 设函数0),(=y x F 在P (x 。
,y 。
)在某一领域内具有连续偏导数,
且0),(=οοy x F ,0),(≠οοy x F y ,则方程0),(=y x F 在点(x 。
,y 。
)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)(οοx f y =,并有
y
x
y F F d d x -
=。
例1:验证方程2x -2
y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx
dy
在x=1处的值。
解 令),(y x F =2x -2
y ,则
x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0
由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有
dx dy =y x F F -=y x 22=y
x
故
1=x dx
dy
=
)
1,(!y
x
=1 2.隐函数存在定理2 设函数()z y x F ,,在点)(οοοz y x P ,,的某一邻域内具有连续偏
导数,且)(οοοz y x F ,,=0,0,,≠)(οοοz y x F z ,则方程()0,,=z y x F 在点()οοοz y x ,,的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数()y x f z ,=,它满足条件()οοοy x f z ,=并有
z
y z x F F y z
F F x z -=∂∂-=∂∂,。
例2:设函数()y x z z ,=由方程z y x z xy ++=2
所确定,求y
z
∂∂ 解:设()z y x z xy z y x F ---=2
,,
则012
≠-=xy F z (将x ,y 当常数,对z 求偏导)
12-=xyz F z (将x ,y 当做常数,对y 求偏导)
根据定理2:2
211
2112xy xyz xy xyz F F y z z y --=
---=-=∂∂ 3.隐函数存在定理3 设()v u y x F ,,,、()v u y x G ,,,在点()0000,,,v u y x P 的某一邻域内具有对各个变量的连续偏导数,又()()0,,,,0,,,00000000==v u y x G v u y x F ,且偏导数所组成的函数行列式(或称雅可比
(Jacobi))
()()
v F v
G u F u G v u G F J ∂∂∂∂∂∂∂∂=∂∂=,,
在点()0000,,,v u y x P 不等于零,则方程组()()0,,,,0,,,00000000==v u y x G v u y x F 在点
()0000,,,v u y x 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数
),(),,(y x v v y x u u ==,它们满足条件),(000y x u u =,),(000y x v v =,并有
Gv
Gu Fv Fu Gv Gx Fv
Fx v x G F J u -=∂∂-=∂∂)
,()
,(1x
Gv
Gu Fv Fu Gx Gu Fx
Fu
x u G F J v -=∂∂-=∂∂)
,()
,(1x
Gv Gu Fv Fu Gv Gy Fv
Fy
v y G F J u -=∂∂-=∂∂),(),(1y
Gv
Gu Fv Fu Gy Gu Fy
Fu
y u G F J v -=∂∂-=∂∂),()
,(1y
例3:设1,0=+=-xv yu yv xu ,求
.,,,y
v
x v y u x u ∂∂∂∂∂∂∂∂ 解:⎩⎨⎧→⎪⎩
⎪⎨⎧⎩⎨⎧−−−−−→−-=∂∂⋅-∂∂⋅-=∂∂⋅+∂∂⋅=⋅∂∂-∂∂⋅+=∂∂⋅++∂∂⋅=-=+u x
v
y x u x v x v x x u y y x v x u x u x v x v x u y x yv xu xv yu 0001求导方程两边对
由定理3可求 022≠+==
=
-∂∂∂∂∂∂∂∂J y x J y x
x y v F v
G u F u
G 且
则2
2y
x yv
xu x
u y x
x y y x u v +=-
==∂∂----
2
2y x xv
yu x
v y x
x y u v x y +-=
=∂∂---
{
⎪⎩⎪⎨⎧→⎪⎩⎪⎨⎧−−−−−→−=∂∂⋅-∂∂⋅-=∂∂⋅+∂∂⋅=∂∂⋅--∂∂⋅=∂∂⋅+∂∂⋅+=-=+v y v y y u x u y
v x y u y y
v y v y u x y v
x y u y u yv xu xv yu 00y 01
求导方程两边对
同上可求得
22y x yu xv y u +-=∂∂ 22y
x yu
xv y v +--=∂∂
三. 隐函数求偏导的方法
1.公式法:即将方程中所有非零项移到等式一边,并将其设为函数F,注意应将x,y,z 看作
独立变量,对F(x,y,z)=0分别求导,利用公式
=x z -Z X F F ,=y z
-z
y F F 。
2.直接法:分别将F(x,y,z)=0两边同时对x,y 看作独立变量,z 是x,y 的函数,得到含y
z x z ,的
两个方程,解方程可求出y
z x z ,.
3.全微分法:利用微分形式的不变性,对所给方程两边求微分,整理成
,),,(),,(dy z y x v dx z y x u dz +=则dy dx ,的系数便是y
z x z ,,在求全微分时,z 应看做自变量.
例1.已知x y y x arctan ln 22=+,求2
2
dx
y d . 解. 方法一:
令22ln ),(y x y x F +=-)ln(21arctan 22y x x y +=x
y arctan -
则2
222),(,),(y x x
y y x F y x y x y x F y
x +-=++=
所以
=dx dy =-y x F F x
y y x -+-
上式再对x 求导得
3
222'22)
()
(2)(22y x y x y x y xy dx y d -+=--= 方法二: 方程,0arctan
ln
22=-+x
y
y x 两端分别对x 求导得 22'y x yy x ++02
2'=+--y x y
xy
y
x y x dx dy -+= 3
222'22)()
(2)(22y x y x y x y xy dx y d -+=
--= 方法三:
方程x
y
y x arctan ln
22=+,两端分别求微分得
)(arctan )(ln 22x
y
d y x d =+
利用全微分不定性,上式化为
x y
d x
y y x dy dx 2
22
22
21121+=
++ 由全微分运算法则计算并化简得
3
222'22)()
(2)(22)()(y x y x y x y xy dx y d x
y y x dx dy dx
y x dy y x -+=--=-+=
+=-
参考文献
【1】同济大学数学系.高等数学第七版下册【M】北京:高等教育出版社,2014.7
【2】段生贵,曹南斌.高等数学学习指导【M】成都:电子科技大学出版社,2014.8
【3】邵燕南.高等数学【M】
北京:高等教育出版社,2014.7
【4】王顺风,吴亚娟.高等数学【M】
南京:东南大学出版社,2014.5
【5】陈纪修,於崇华,金路.数学分析【M】北京:高等教育出版社,2004.4。