第二部分xrd衍射方向和强度
- 格式:pdf
- 大小:2.43 MB
- 文档页数:70
导言z晶体学基础z X-射线粉末衍射的基本原理z X-射线粉末衍射仪的构造和组成z X-射线粉末衍射技术z X-射线粉末衍射在催化中的应用物相分析晶粒大小的计算晶体与非晶体的区别¾均匀性-相同的密度、化学组成等¾各向异性-电导率、热膨胀系数、折光率等¾多面体外形¾有确定的熔点¾晶体具有对称性¾晶体对X-射线的衍射晶体:晶体是由原子(离子或分子)在三维空间中周期性排列而构成的。
理想的晶体结构是具有一定对称性关系的、周期的、无限的三维点阵结构。
晶体学基础z230种空间群X-射线粉末衍射的基本原理X-射线是1895年由德国物理学家伦琴(Röntgen)发现,因此也叫伦琴射线。
X-射线是一种波长很短的电磁波(1—10,000pm),能量高,穿透力强,不折射不反射。
而用于测定晶体结构的X-射线,波长为50—250pm,此数值正好与晶体中原子间的数量级相当,因而晶体可作为X-射线的天然光栅。
光波遇到障碍物会或多或少地偏离几何光学传播定律的现象。
包括:单缝衍射、圆孔衍射、圆板衍射及泊松亮斑光在传播过程中,遇到障碍物或小孔(窄缝)时,它有离开直线路径绕道障碍物阴影里去的现象。
这种现象叫光的衍射。
衍射时产生的明暗条纹或光环,叫衍射图样。
衍射是一切波所共有的传播行为。
日常生活中声波的衍射、水波的衍射、广播段无线电波的衍射是随时随地发生的,易为人觉察。
但是,光的衍射现象却不易为人们所觉察,这是因为可见光的波长很短,以及普通光源是非相干的面光源。
当用一束强光照明小孔、圆屏、狭缝、细丝、刀口、直边等障碍物时,在足够远的屏幕上会出现一幅幅不同的衍射图样。
例1. (2000年全国卷)图1为X射线管的结构示意图,E为灯丝电源.要使射线管发出X射线,须在K、A两电极间加上几万伏的直流高压。
(A)高压电源正极应接在P点,X射线从K极发出.(B)高压电源正极应接在P点,X射线从A极发出.(C)高压电源正极应接在Q点,X射线从K极发出.(D)高压电源正极应接在Q点,X射线从A极发出.解析:灯丝电源对灯丝加热,灯丝放出电子,电子速度很小,要使电子到达对阴极A并高速撞击A,使原子内层电子受到激发才能发出X射线,因此K、A之间应有电子加速的电场,故Q应接高压电源正极.故正确选项为(D).9由于内部结构具有周期性,晶体可以对X-射线、电子流、中子流等产生衍射,而在测定晶体结构上,最为重要、应用最为广泛的是X射线。
导言z晶体学基础z X-射线粉末衍射的基本原理z X-射线粉末衍射仪的构造和组成z X-射线粉末衍射技术z X-射线粉末衍射在催化中的应用物相分析晶粒大小的计算¾物质的性质、材料的性能决定于它们的组成和微观结构。
¾如果你有一双X-射线的眼睛,就能把物质的微观结构看个清清楚楚明明白白!¾X-射线衍射将会有助于你探究为何成份相同的材料,其性能有时会差异极大.¾X-射线衍射将会有助于你找到获得预想性能的途径。
晶体与非晶体的区别¾均匀性-相同的密度、化学组成等¾各向异性-电导率、热膨胀系数、折光率等¾多面体外形¾有确定的熔点¾晶体具有对称性¾晶体对X-射线的衍射晶体:晶体是由原子(离子或分子)在三维空间中周期性排列而构成的。
理想的晶体结构是具有一定对称性关系的、周期的、无限的三维点阵结构。
晶体学基础z230种空间群X-射线粉末衍射的基本原理X-射线是1895年由德国物理学家伦琴(Röntgen)发现,因此也叫伦琴射线。
X-射线是一种波长很短的电磁波(1—10,000pm),能量高,穿透力强,不折射不反射。
而用于测定晶体结构的X-射线,波长为50—250pm,此数值正好与晶体中原子间的数量级相当,因而晶体可作为X-射线的天然光栅。
光波遇到障碍物会或多或少地偏离几何光学传播定律的现象。
包括:单缝衍射、圆孔衍射、圆板衍射及泊松亮斑光在传播过程中,遇到障碍物或小孔(窄缝)时,它有离开直线路径绕道障碍物阴影里去的现象。
这种现象叫光的衍射。
衍射时产生的明暗条纹或光环,叫衍射图样。
衍射是一切波所共有的传播行为。
日常生活中声波的衍射、水波的衍射、广播段无线电波的衍射是随时随地发生的,易为人觉察。
但是,光的衍射现象却不易为人们所觉察,这是因为可见光的波长很短,以及普通光源是非相干的面光源。
当用一束强光照明小孔、圆屏、狭缝、细丝、刀口、直边等障碍物时,在足够远的屏幕上会出现一幅幅不同的衍射图样。
X 射线晶体学作业参考答案第三章:晶体结构与空间点阵1. 六角晶系的晶面指数一般写成四个(h k -h-k l ),但在衍射的计算和处理软件中,仍然用三个基矢(hkl )。
计算出六角晶系的倒格基矢,并写出六角晶系的两个晶面之间的夹角的表达式。
已知六角晶系的基矢为解:根据倒格子的定义式,计算可得:()ka c jac b ji ac a 2***323Ω=Ω=+Ω=πππ任意两个晶面(hkl)和(h ’k ’l ’)的晶面夹角θ是:()()()()22222222222222222222222222'''''''3''''434'3)''(2)''(4'3''''434'3)'2')(2('3arccos l a k k h h c l a k hk h c ll a k h hk c kk hh c l a k k h h c l a k hk h c ll a k h k h c hh c G G G G l k h hkl l k h hkl +++⨯+++++++=+++⨯+++++++=⎪⎪⎪⎭⎫ ⎝⎛∙= θ2. 分别以晶格常数为单位和以实际大小写出SrTiO 3晶胞中各离子的坐标,并计算SrTiO3的质量密度和电子数密度。
解:Sr 原子量87.62,电子数38;Ti 原子量47.9,电子数22;O 原子量15.999,电子数8 (数据取自国际衍射数据中心)。
质量密度: -2733330(87.6247.915.9993) 1.6610 5.11610/3.90510kg m -++⨯⨯⨯=⨯⨯ kc c j i a b i a a =+-==)2321(电子数密度:3031033822831.41110(3.90510)m --++⨯=⨯⨯3.*为什么位错不能终止于晶体内部?请说明原因。
材料课堂——XRD常见问题详解(二),超实用!!展开全文衍射峰的强度和很多因素有关,比如样品的衍射能力,性质,还有仪器功率,测试方法,检测器的灵敏度等等。
XRD 衍射强度和峰的宽度与样品颗粒大小,还是与晶体颗粒大小有关?样品中晶粒越小,衍射峰的峰高强度越来越低,但是峰越来越宽,实际上利用X 射线衍射峰的宽化对样品的结晶颗粒度分析就是根据这个原理的(Scherrer 公式)。
晶粒大小和颗粒大小有关系,但是其各自的含义是有区别的。
一颗晶粒也可能就是一颗颗粒,但是更可能的情况是晶粒抱到一起 , 二次聚集, 成为颗粒。
颗粒不是衍射的基本单位, 但是微小的颗粒能产生散射。
你磨的越细, 散射就越强.。
对于晶粒, 你磨过头了, 晶体结构被破坏了, 磨成非晶, 衍射能力就没有了。
磨得太狠的话,有些峰可能要消失了,而且相邻较近的衍射峰会由于宽化而相互叠加,最终会变成1 个或几个'鼓包'。
一般晶面间距大的峰受晶粒细化的影响会明显一些,因为 d 值大的晶面容易被破坏。
衍射强度变弱本质的原因是由于晶体颗粒变小,还是样品颗粒变小?强度除了和晶粒度有关外,还和晶粒的表面状态有关。
一般颗粒越细,其表面积越大,表面层结构的缺陷总是比较严重的。
结构缺陷将导致衍射强度降低和衍射峰宽化。
XRD 研究的应该是晶粒、晶体的问题,与晶体结构关联的问题,不是样品颗粒的大小问题,谢乐公式算的应该也是晶粒的大小。
样品颗粒的大小要用别的方法测定.,例如光散射、X 射线散射、电镜等。
细针状微晶粉末样品做 XRD 重复性很差。
(制作粉末衍射样品片)怎么可以避免择优取向?择优取向是很难避免的,只能尽力减少他的影响。
首先,你要讲样品磨得尽量细(但要适度,要注意样品的晶体结构不要因研磨过度而受到损坏);不要在光滑的玻璃板上大力压紧(压样时可以在玻璃板上衬一张粗糙的纸张),样品成形尽可能松一些;制样过程中也可以掺一些玻璃粉,或加一些胶钝化一下样品的棱角。