XRD衍射方向和强度.
- 格式:doc
- 大小:3.98 MB
- 文档页数:25
xrd衍射原理
X射线衍射(X-ray diffraction,XRD)是一种通过散射X射
线来研究物质的结构和性质的技术。
它基于X射线与晶体中
的原子发生散射的现象,可以获取关于晶体内原子排列的信息。
X射线是高能量的电磁波,具有很短的波长。
当X射线通过
晶体时,它们被晶体中的原子吸收,并随后重新散射出来。
由于晶体中原子的周期性排列,散射出的X射线将呈现出干涉
的现象,类似于光波通过光栅时的衍射效应。
X射线衍射的主要原理是布拉格方程,它描述了在晶体内发生衍射的条件:
nλ = 2dsinθ
其中n为正整数,λ为X射线的波长,d为晶面间的距离,θ
为入射角。
当满足布拉格方程时,散射出的X射线将会相长
干涉,产生强度峰。
X射线衍射实验通常使用粉末衍射法,将晶体粉末散布在衍射仪器上。
入射的X射线会与晶粉中的各个晶面发生散射,形
成一系列衍射峰。
通过测量和分析这些衍射峰的位置和强度,可以推断晶体的晶胞参数以及晶格结构。
通过X射线衍射技术,可以确定晶体的晶胞结构、晶格常数、晶体的对称性以及晶体内原子的相对位置。
这对于材料科学、固态物理、化学以及生物学等领域的研究都具有重要意义。
材料课堂——XRD常见问题详解(二),超实用!!展开全文衍射峰的强度和很多因素有关,比如样品的衍射能力,性质,还有仪器功率,测试方法,检测器的灵敏度等等。
XRD 衍射强度和峰的宽度与样品颗粒大小,还是与晶体颗粒大小有关?样品中晶粒越小,衍射峰的峰高强度越来越低,但是峰越来越宽,实际上利用X 射线衍射峰的宽化对样品的结晶颗粒度分析就是根据这个原理的(Scherrer 公式)。
晶粒大小和颗粒大小有关系,但是其各自的含义是有区别的。
一颗晶粒也可能就是一颗颗粒,但是更可能的情况是晶粒抱到一起 , 二次聚集, 成为颗粒。
颗粒不是衍射的基本单位, 但是微小的颗粒能产生散射。
你磨的越细, 散射就越强.。
对于晶粒, 你磨过头了, 晶体结构被破坏了, 磨成非晶, 衍射能力就没有了。
磨得太狠的话,有些峰可能要消失了,而且相邻较近的衍射峰会由于宽化而相互叠加,最终会变成1 个或几个'鼓包'。
一般晶面间距大的峰受晶粒细化的影响会明显一些,因为 d 值大的晶面容易被破坏。
衍射强度变弱本质的原因是由于晶体颗粒变小,还是样品颗粒变小?强度除了和晶粒度有关外,还和晶粒的表面状态有关。
一般颗粒越细,其表面积越大,表面层结构的缺陷总是比较严重的。
结构缺陷将导致衍射强度降低和衍射峰宽化。
XRD 研究的应该是晶粒、晶体的问题,与晶体结构关联的问题,不是样品颗粒的大小问题,谢乐公式算的应该也是晶粒的大小。
样品颗粒的大小要用别的方法测定.,例如光散射、X 射线散射、电镜等。
细针状微晶粉末样品做 XRD 重复性很差。
(制作粉末衍射样品片)怎么可以避免择优取向?择优取向是很难避免的,只能尽力减少他的影响。
首先,你要讲样品磨得尽量细(但要适度,要注意样品的晶体结构不要因研磨过度而受到损坏);不要在光滑的玻璃板上大力压紧(压样时可以在玻璃板上衬一张粗糙的纸张),样品成形尽可能松一些;制样过程中也可以掺一些玻璃粉,或加一些胶钝化一下样品的棱角。
X 射线衍射仪(XRD )1、X 射线衍射仪(XRD )原理当一束单色 X 射线照射到晶体上时,晶体中原子周围的电子受X 射线周期变化的电场作用而振动,从而使每个电子都变为发射球面电磁波的次生波源。
所发射球面波的频率与入射的X 射线相一致。
基于晶体结构的周期性,晶体中各个原子(原子上的电子)的散射波可相互干涉而叠加,称之为相干散射或衍射。
X 射线在晶体中的衍射现象,实质上是大量原子散射波相互干涉的结果。
每种晶体所产生的衍射花样都反映出晶体内部的原子分布规律。
根据上述原理,某晶体的衍射花样的特征最主要的是两个:(1)衍射线在空间的分布规律;(2)衍射线束的强度。
其中,衍射线的分布规律由晶胞大小,形状和位向决定,衍射线强度则取决于原子的品种和它们在晶胞的位置,因此,不同晶体具备不同的衍射图谱。
在混合物中,一种物质成分的衍射图谱与其他物质成分的存在与否无关,这就是利用X 射线衍射做物相分析的基础。
X 射线衍射是晶体的“指纹”,不同的物质具有不同的X 射线衍射特征峰值(点阵类型、晶胞大小、晶胞中原子或分子的数目、位置等),结构参数不同则X 射线衍射线位置与强度也就各不相同,所以通过比较X射线衍射线位置与强度可区分出不同的物质成分。
布拉格方程,其中n 为衍射级数图1.1 布拉格衍射示意图布拉格方程反映的是衍射线方向和晶体结构之间的关系。
对于某一特定的晶体而言,只有满足布拉格方程的入射线角度才能够产生干涉增强,才会出现衍射条纹,这就是XRD 谱图的根本意义所在。
对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在X 射线衍射(XRD )图谱上就是具有不同的衍射强度的衍射峰。
对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的X 射线衍射(XRD )图谱为一些漫散射馒头峰。
n λ=2dsin θ应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料中查出试样中所含的元素。
xrd的工作原理
X射线衍射(X-ray diffraction,XRD)是一种用于材料结构分
析和晶体学研究的技术。
其工作原理基于X射线与晶体原子
的相互作用。
当X射线入射到晶体上时,它会与晶体的原子发生相互作用。
晶体中的原子会对入射的X射线进行散射。
这种散射是由晶
体的结构决定的,因为不同的晶体结构会产生不同的散射效果。
根据布拉格定律,当入射的X射线与晶体的晶面平行时,会
发生衍射现象。
衍射是X射线经过晶体之后在不同方向上发
生干涉的结果。
干涉的结果会在X射线探测器上形成一系列
的衍射峰。
通过测量这些衍射峰的位置和强度,可以得到晶体的结构信息。
根据衍射峰的位置和强度,可以确定晶体的晶面间距、晶胞参数和晶体的对称性等参数。
XRD技术通常使用旋转X射线源和X射线探测器。
晶体被安
放在旋转台上,并通过适当的角度旋转以使不同晶面平行于入射X射线。
X射线通过晶体后,探测器会检测到经过散射的
X射线,并将其转化为电信号。
通过分析这些电信号,可以确定晶体的结构。
总的来说,XRD利用入射的X射线与晶体的相互作用,通过
测量衍射峰的位置和强度来分析晶体的结构。
这种技术在材料科学、矿物学、生物化学和固体物理等领域具有广泛的应用。