spss一元回归分析详细操作与结果分析
- 格式:dps
- 大小:350.00 KB
- 文档页数:16
SPSS回归分析SPSS(统计包统计软件,Statistical Package for the Social Sciences)是一种强大的统计分析软件,广泛应用于各个领域的数据分析。
在SPSS中,回归分析是最常用的方法之一,用于研究和预测变量之间的关系。
接下来,我将详细介绍SPSS回归分析的步骤和意义。
一、回归分析的定义和意义回归分析是一种对于因变量和自变量之间关系的统计方法,通过建立一个回归方程,可以对未来的数据进行预测和预估。
在实际应用中,回归分析广泛应用于经济学、社会科学、医学、市场营销等领域,帮助研究人员发现变量之间的关联、预测和解释未来的趋势。
二、SPSS回归分析的步骤1. 导入数据:首先,需要将需要进行回归分析的数据导入SPSS软件中。
数据可以以Excel、CSV等格式准备好,然后使用SPSS的数据导入功能将数据导入软件。
2. 变量选择:选择需要作为自变量和因变量的变量。
自变量是被用来预测或解释因变量的变量,而因变量是我们希望研究或预测的变量。
可以通过点击"Variable View"选项卡来定义变量的属性。
3. 回归分析:选择菜单栏中的"Analyze" -> "Regression" -> "Linear"。
然后将因变量和自变量添加到正确的框中。
4.回归模型选择:选择回归方法和模型。
SPSS提供了多种回归方法,通常使用最小二乘法进行回归分析。
然后,选择要放入回归模型的自变量。
可以进行逐步回归或者全模型回归。
6.残差分析:通过检查残差(因变量和回归方程预测值之间的差异)来评估回归模型的拟合程度。
可以使用SPSS的统计模块来生成残差,并进行残差分析。
7.结果解释:最后,对回归结果进行解释,并提出对于研究问题的结论。
要注意的是,回归分析只能描述变量之间的关系,不能说明因果关系。
因此,在解释回归结果时要慎重。
spss一元回归分析详细操作与结果分析Case1:降水&纬度Case1数据说明:⏹53个台站的年降水量、年蒸发量、纬度和海拔数据⏹在本例中,把降水量P作为因变量,纬度作为自变量Case1目的:⏹分析降水量和纬度之间的数量关系Case1操作要点:⏹做散点图,查看两因素之间是否线性相关⏹如果线性相关,接着做线性回归分析,揭示其数量关系⏹对回归方程做显著性检验打开spss的数据编辑器,编辑变量视图注意:因为我们的数据中“台站名”最多是5个汉字,所以字符串宽度最小为10才能全部显示。
编辑数据视图,将excel数据复制粘贴到spss中⏹从菜单上依次点选:图形—旧对话框—散点/点状⏹定义简单分布,设置Y为年降水量,X为纬度⏹由散点图发现,降水量与纬度之间线性相关给散点图添加趋势线的方法:•双击输出结果中的散点图•在“图表编辑器”的菜单中依次点击“元素”—“总计拟合线”,由此“属性”中加载了“拟合线”•拟合方法选择“线性”,置信区间可以选95%个体,应用step3:线性回归分析⏹从菜单上依次点选:分析—回归—线性⏹设置:因变量为“年降水量”,自变量为“纬度”⏹“方法”:选择默认的“进入”,即自变量一次全部进入的方法。
⏹“统计量”:•勾选“模型拟合度”,在结果中会输出“模型汇总”表•勾选“估计”,则会输出“系数”表⏹“绘制”:在这一项设置中也可以做散点图⏹“保存”:•注意:在保存中被选中的项目,都将在数据编辑窗口显示。
•在本例中我们勾选95%的置信区间单值,未标准化残差⏹“选项”:只需要在选择方法为逐步回归后,才需要打开【统计量】按钮⏹“回归系数”复选框组:定义回归系数的输出情况•勾选“估计”可输出回归系数B及其标准误差,t值和p值•勾选“误差条图的表征”则输出每个回归系数的95%可信区间•勾选“协方差矩阵”则会输出各个自变量的相关矩阵和方差、协方差矩阵。
⏹“残差”复选框组:•用于选择输出残差诊断的信息,可选的有Durbin-Watson残差序列相关性检验、个案诊断。
SPSS实现一元线性回归分析实例2009-12-14 15:311、准备原始数据。
为研究某一大都市报开设周日版的可行性,获得了34种报纸的平日和周日的发行量信息(以千为单位)。
数据如图1所示。
SPSS17.0图12、判断是否存在线性关系。
制作直观散点图:(1)SPSS:菜单Analyze/Regression/linear Regression,如图2所示:图2 (2)打开对话框如图3图3图3中,Dependent是因变量,Independent是自变量,分别将左栏中的sunday选入因变量,daily选入自变量,newspaper作为标识标签选入case labels.(3)点击图3对话框中的plots按钮,如图4所示:图4将因变量DEPENTENT 选入Y:,自变量 ZPRED 选入X: continue 返回上级对话框。
单击主对话框OK.便生成散点图如图5所示:图5从以上散点图可看出,二者变量之间关系趋势呈线性关系。
2、回归方程菜单Analyze/Regression/linear Regression,在图3对话框的右边单击statistics如图6所示:图6regression coefficient回归系数,estimates估计值,confidence intervals level:95%置信区间,model fit拟合模型。
点击continue返回主对话框,单击OK.结果如图7、图8所示:图7图7中第一个图是变量的输入与输出,从图下的提示可知所有变量均输入与输出,没有遗漏。
图7中的第二图是模型总和R值,R平方值,R调整后的平方值,及标准误。
图8图8中第一图为方差统计图,包括回归平方和,自由度,方程检验F值及P值。
图8第二图为回归参数图,从图中可知,constant为回归方程截距,即13.836,回归系数为1.340,标准误分别为:35.804和0.071,及t检验值和95%的置信区间的最大值和最小值。
中国计量学院现代科技学院实验报告实验课程:应用统计学实验名称:回归分析班级:学号:姓名:实验日期: 2012.05.23 实验成绩:指导教师签名:一.实验目的一元线性回归简单地说是涉及一个自变量的回归分析,主要功能是处理两个变量之间的线性关系,建立线性数学模型并进行评价预测。
本实验要求掌握一元线性回归的求解和多元线性回归理论与方法。
二.实验环境中国计量学院现代科技学院机房310三.实验步骤与内容1打开应用统计学实验指导书,新建excel表地区供水管道长度(公里)全年供水总量(万平方米)北京15896 128823 天津6822 64537 河北10771.2 160132 山西5669.3 77525 内蒙古5635.5 59276 辽宁21999 280510 吉林6384.9 159570 黑龙江9065.9 153387 上海22098.8 308309 江苏36632.4 380395 浙江24126.9 235535 安徽7389.4 204128 福建6270.4 118512 江西5094.7 143240 山东26073.9 259782 河南11405.6 185092 湖北15668.6 257787 湖南9341.8 262691 广东35728.8 568949 广西6923.1 134412 海南1726.7 20241 重庆6082.7 71077 四川12251.3 165632 贵州3275.3 45198 云南5208.5 52742 西藏364.9 5363陕西4270 73580甘肃5010 62127青海893 14390宁夏1538.2 22921新疆3670.2 766852.打开SPSS,将数据导入3.打开分析,选择回归分析再选择线性因变量选全年供水总量,自变量选供水管道长度统计里回归系数选估计,再选择模型拟合按继续再按确定会出来分析的结果对以上结果进行分析:(1)回归方程为:y=28484.712+11.610X(X是自变量供水管道长度,Y是因变量全年供水总量)(2)检验1)拟合效果检验根据表2可知,R2=0.819,即拟合效果好,线性成立。
用SPSS做回归分析回归分析是一种统计方法,用于研究两个或多个变量之间的关系,并预测一个或多个因变量如何随着一个或多个自变量的变化而变化。
SPSS(统计软件包的统计产品与服务)是一种流行的统计分析软件,广泛应用于研究、教育和业务领域。
要进行回归分析,首先需要确定研究中的因变量和自变量。
因变量是被研究者感兴趣的目标变量,而自变量是可能影响因变量的变量。
例如,在研究投资回报率时,投资回报率可能是因变量,而投资额、行业类型和利率可能是自变量。
在SPSS中进行回归分析的步骤如下:1.打开SPSS软件,并导入数据:首先打开SPSS软件,然后点击“打开文件”按钮导入数据文件。
确保数据文件包含因变量和自变量的值。
2.选择回归分析方法:在SPSS中,有多种类型的回归分析可供选择。
最常见的是简单线性回归和多元回归。
简单线性回归适用于只有一个自变量的情况,而多元回归适用于有多个自变量的情况。
3.设置因变量和自变量:SPSS中的回归分析工具要求用户指定因变量和自变量。
选择适当的变量,并将其移动到正确的框中。
4.运行回归分析:点击“运行”按钮开始进行回归分析。
SPSS将计算适当的统计结果,包括回归方程、相关系数、误差项等。
这些结果可以帮助解释自变量如何影响因变量。
5.解释结果:在完成回归分析后,需要解释得到的统计结果。
回归方程表示因变量与自变量之间的关系。
相关系数表示自变量和因变量之间的相关性。
误差项表示回归方程无法解释的变异。
6.进行模型诊断:完成回归分析后,还应进行模型诊断。
模型诊断包括检查模型的假设、残差的正态性、残差的方差齐性等。
SPSS提供了多种图形和统计工具,可用于评估回归模型的质量。
回归分析是一种强大的统计分析方法,可用于解释变量之间的关系,并预测因变量的值。
SPSS作为一种广泛使用的统计软件,可用于执行回归分析,并提供了丰富的功能和工具,可帮助研究者更好地理解和解释数据。
通过了解回归分析的步骤和SPSS的基本操作,可以更好地利用这种方法来分析数据。
SPSS如何进行线性回归分析操作本节内容主要介绍如何确定并建立线性回归方程。
包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。
为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。
也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。
另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
一、一元线性回归分析用SPSS进行回归分析,实例操作如下:1.单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。
从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。
在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。
所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。
具体如下图所示:2.请单击Statistics…按钮,可以选择需要输出的一些统计量。
如RegressionCoefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。
Model fit 项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。
上述两项为默认选项,请注意保持选中。
设置如图7-10所示。
设置完成后点击Continue返回主对话框。
回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。
由于此部分内容较复杂而且理论性较强,所以不在此详细介绍,读者如有兴趣,可参阅有关资料。
3.用户在进行回归分析时,还可以选择是否输出方程常数。
spss一元回归分析详细操作与结果分析
Case1:降水&纬度
Case1数据说明:
⏹53个台站的年降水量、年蒸发量、纬度和海拔数据
⏹在本例中,把降水量P作为因变量,纬度作为自变量Case1目的:
⏹分析降水量和纬度之间的数量关系
Case1操作要点:
⏹做散点图,查看两因素之间是否线性相关
⏹如果线性相关,接着做线性回归分析,揭示其数量关系⏹对回归方程做显著性检验
打开spss的数据编辑器,编辑变量视图
注意:因为我们的数据中“台站名”最多是5个汉字,所以字符串宽度最小为10才能全部显示。
编辑数据视图,将excel数据复制粘贴到spss中
⏹从菜单上依次点选:图形—旧对话框—散点/点状⏹定义简单分布,设置Y为年降水量,X为纬度
⏹由散点图发现,降水量与纬度之间线性相关
给散点图添加趋势线的方法:
•双击输出结果中的散点图
•在“图表编辑器”的菜单中依次点击“元素”—“总计拟合线”,由此“属性”中加载了“拟合线”
•拟合方法选择“线性”,置信区间可以选95%个体,应用
step3:线性回归分析
⏹从菜单上依次点选:分析—回归—线性
⏹设置:因变量为“年降水量”,自变量为“纬度”
⏹“方法”:选择默认的“进入”,即自变量一次全部进入的方法。
⏹“统计量”:
•勾选“模型拟合度”,在结果中会输出“模型汇总”表
•勾选“估计”,则会输出“系数”表
⏹“绘制”:在这一项设置中也可以做散点图
⏹“保存”:
•注意:在保存中被选中的项目,都将在数据编辑窗口显示。
•在本例中我们勾选95%的置信区间单值,未标准化残差
⏹“选项”:只需要在选择方法为逐步回归后,才需要打开
【统计量】按钮
⏹“回归系数”复选框组:定义回归系数的输出情况
•勾选“估计”可输出回归系数B及其标准误差,t值和p值
•勾选“误差条图的表征”则输出每个回归系数的95%可信区间
•勾选“协方差矩阵”则会输出各个自变量的相关矩阵和方差、协方差矩阵。
⏹“残差”复选框组:
•用于选择输出残差诊断的信息,可选的有Durbin-Watson残差序列相关性检验、个案诊断。
⏹“模型拟合度”复选框:
•模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检验:R,R2和调整的R2, 标准误及方差分析表。
⏹“R方变化”复选框:
•显示模型拟合过程中R2、F值和p值的改变情况。
⏹“描述性”复选框:
•提供一些变量描述,如有效例数、均数、标准差等,同时还给出一个自变量间的相关矩阵。
⏹“部分相关和偏相关性”复选框:
•显示自变量间的相关、部分相关和偏相关系数。
⏹“共线性诊断”复选框:
•给出一些用于共线性诊断的统计量,如特征根(Eigenvalues)、方差膨胀因子(VIF)等。
⏹以上各项在默认情况下只有“估计”和“模型拟合度”复选框被选中。
⏹用于选择需要绘制的回归分析诊断或预测图。
•可绘制的有标准化残差的直方图和正态分布图,应变量、预测值和各自变量残差间两两的散点图等。
【保存】按钮
⏹许多时候我们需要将回归分析的结果存储起来,然后用得到的残差、
预测值等做进一步的分析,保存按钮就是用来存储中间结果的。
•可以存储的有:预测值系列、残差系列、距离(Distances)系列、预测值可信区间系列、波动统计量系列。
下方的按钮可以让我们选择将这些
新变量存储到一个新的SPSS数据文件或XML中。
•注意:选项按钮只需要在选择方法为逐步回归后,才需要打开
•“步进方法标准”单选钮组:设置纳入和排除标准,可按P值或F 值来设置。
•“在等式中包含常量”复选框:用于决定是否在模型中包括常数项,默认选中。
•“缺失值”单选钮组:用于选择对缺失值的处理方式,可以是不分析任一选入的变量有缺失值的记录(按列表排除个案)而无论该缺失变量最终是否进入模型;不分析具体进入某变量时有缺失值的记录(按对排除个案);将缺失值用该变量的均数代替(使用均值替代)。
【输入/移去的变量】
•此表是拟合过程中变量输入/移去模型的情况记录,由于我们只引入了一个自变量,所以只出现了一个模型1(在多元回归中就会依次出现多个回归模型),该模型中“纬度”为进入的变量,没有移出的变量,具体的
输入/移去方法为“输入”。
⏹【模型汇总】
此表为所拟合模型的情况汇总,显示在模型1中:
•相关系数R=0.904
•拟合优度R方=0.816
•调整后的拟合优度=0.813
•标准估计的误差=92.98256
⏹R方(拟合优度):是回归分析的决定系数,说明自变量和因变量形
成的散点与回归曲线的接近程度,数值介于0和1之间,这个数值越大说明回归的越好,也就是散点越集中于回归线上。
【Anova】(analysisofvariance方差分析)
•此表是所用模型的检验结果,一个标准的方差分析表。
•Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著性概率即P值。
当sig. <= 0.05的时候,说明回归关系具有统计学意义。
如果sig. > 0.05,说明二者之间用当前模型进行回归没有统计学意义,
应该换一个模型来进行回归。
•由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我们用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验
的结果。
•由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价与系数的检验,在多元回归中这两者是不同的。
⏹【系数】
•此表给出了包括常数项在内的所有系数的检验结果,用的是t检验,同时还会给出标化/未标化系数。
可见常数项和“纬度”都是有统
计学意义的。
•由此得到年降水量与纬度之间的一元回归方程为:
⏹Y=-82.188X+3395.584
Case2数据说明:
⏹伦敦12个月的平均气温、降雨量数据
⏹在本例中,把降雨量作为因变量,平均气温作为自变量Case2目的:
⏹分析平均气温和降雨量之间的数量关系
Case2习题要求:
⏹做散点图,查看两因素之间是否线性相关
⏹如果线性相关,接着做线性回归分析,揭示其数量关系⏹对回归方程做显著性检验,写出结论
⏹给这个例子的目的是,看大家是否真的理解做散点图的意
义
⏹当散点图都不呈现线性关系,那有多少同学接着就做了一
元线性回归?根本就没有在脑子里思考一下它究竟是不是一元线性关系。
⏹希望大家在以后的软件学习中,要问自己做每一步操作的
意义何在,不要机械的不思考的动手
⏹Case3:大家用case1的数据,分析一下年蒸发量与纬度
的关系。