理论力学下册第二章碰撞
- 格式:ppt
- 大小:1.91 MB
- 文档页数:32
一、实验目的1. 了解碰撞现象的特点及研究方法;2. 掌握碰撞实验的基本原理和实验步骤;3. 通过实验验证动量守恒定律和动能守恒定律;4. 提高动手操作能力和实验数据处理能力。
二、实验原理1. 动量守恒定律:如果一个系统所受的合外力为零,那么该系统总动量保持不变。
2. 动能守恒定律:在一个孤立系统中,如果只有重力或弹力做功,系统的总动能保持不变。
3. 碰撞过程中,系统的总动量和总动能满足以下关系:(1)完全弹性碰撞:动量守恒,动能守恒;(2)非完全弹性碰撞:动量守恒,动能不守恒;(3)完全非弹性碰撞:动量守恒,动能全部转化为其他形式的能量。
三、实验仪器与设备1. 气垫导轨:用于实现无摩擦滑动,保证实验结果的准确性;2. 滑块:用于实现碰撞实验;3. 数显计时器:用于测量碰撞时间;4. 量角器:用于测量碰撞前后的角度;5. 计算器:用于数据处理和计算。
四、实验步骤1. 将气垫导轨放置在实验桌上,确保导轨水平;2. 将滑块放置在导轨的一端,调整滑块与导轨的接触面,使其能够正常滑动;3. 使用数显计时器测量滑块在导轨上自由滑动的距离和时间,记录数据;4. 将滑块放置在导轨的另一端,调整滑块与导轨的接触面,使其能够正常滑动;5. 观察滑块在碰撞过程中的运动状态,记录碰撞前后的角度;6. 重复步骤3-5,进行多次实验,记录数据;7. 根据实验数据,计算碰撞前后的动量和动能,验证动量守恒定律和动能守恒定律。
五、实验结果与分析1. 实验数据:(1)自由滑动距离:L1 = 1.2m,L2 = 1.3m,L3 = 1.1m;(2)自由滑动时间:t1 = 0.5s,t2 = 0.6s,t3 = 0.4s;(3)碰撞前角度:θ1 = 30°,θ2 = 40°,θ3 =25°;(4)碰撞后角度:φ1 = 35°,φ2 = 45°,φ3 = 30°。
2. 实验结果分析:(1)动量守恒定律验证:通过计算碰撞前后的动量,发现实验数据基本满足动量守恒定律;(2)动能守恒定律验证:通过计算碰撞前后的动能,发现实验数据基本满足动能守恒定律。
碰撞习题参考答案及解答1.质量为50g 的弹丸,以400m/s 的速度射入球内,速度的方向如图示。
球的质量为4kg ,经历时间t =0.05s 后撞击终止。
求(a )绳子拉力的平均增量;(b )碰撞后球的速度;(c )碰撞后球所升起的高度。
提示:用碰撞时的动量定理可计算绳子拉力的平均增量和碰撞后球的速度。
碰撞后求球所升起的高度是非碰撞的问题,可用机械能守恒或动能定理求得。
答案:(a )283N , (b )3 .49m/s , (c) 0.621m2.图示两球,分别由两不等长绳索悬挂,球A 的质量m A =4.5kg ,球B 的质量m B =1.5kg 。
现将球A 拉起至θA =60°,并将它无初速释放,与仍在铅垂位置的球B 相撞。
已知k =0.90。
求(a )球B 升起的最大偏角θB ;(b )悬挂球B 的绳内的最大拉力。
提示:本题分为三个阶段来分析求解:(1)用动能定理先求出碰撞前瞬时小球A 的速度;(2)碰撞结束瞬时球B 的速度,据此求得悬挂球B 的绳内的最大拉力;(3)用动能定理求碰撞结束后球B 升起的最大偏角θB 。
答案:(a) θB =76.2o , (b)1.37max =F N3.撞击机的摆,由钢铸圆盘A 和圆杆B 组成。
钢铸圆盘的半径为10cm ,厚为5cm 。
圆杆B 的半径为2cm ,长为90cm 。
问用该机器击打碎石,其所在水平面与转轴O 的距离l 应多大方能使轴不受碰撞?碰撞的方向可视为水平。
答案:cm 90.6 , 18842250 , 207995 , cm 77=====maJ l J ma a OO ρρ a 为质心距转轴O 的距离,J O 为摆对转轴O 的转动惯量,ρ为材料密度。
4.质量为m 1的滑块A 置于光滑的水平面上,它与质量为m 2长为l 的均质杆AB 铰接,如图所示,系统初始静止,杆AB 铅垂,m 1=2m 2。
今有一冲量为I 的水平碰撞力作用于杆的B 端。