2019-2020年上海市杨浦区初三上册期末考试数学试卷有答案
- 格式:doc
- 大小:296.34 KB
- 文档页数:9
上海杨浦初级中学初三数学九年级上册期末模拟试卷通用版(含答案)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒ 2.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°3.下列方程中,是关于x 的一元二次方程的为( ) A .2210x x += B .220x x --=C .2320x xy -=D .240y -=4.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =5.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定6.若x=2y ,则xy的值为( )A .2B .1C .12D .137.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A .15B .25C .35D .458.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=9.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )A .40°B .80°C .100°D .120°10.sin30°的值是( ) A .12B .22C .32D .111.函数y=(x+1)2-2的最小值是( ) A .1B .-1C .2D .-212.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .13.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个 14.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10015.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>二、填空题16.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.17.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .18.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________. 19.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 20.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)21.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.22.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____. 23.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).24.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______. 25.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC =_____.26.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.27.已知二次函数y =ax 2+bx +c 的图象如图,对称轴为直线x =1,则不等式ax 2+bx +c >0的解集是_____.28.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.29.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在ABC ∆中,90C ∠=︒,若3cos 2B =,则sin A 的值为( ) A .3B .3C .3D .12【答案】C 【分析】根据特殊角的三角函数值求出∠B ,再求∠A ,即可求解.【详解】在ABC ∆中,90C ∠=︒,若3cos 2B =,则∠B=30° 故∠A=60°,所以sinA=32故选:C【点睛】 本题考查的是三角函数,掌握特殊角的三角函数值是关键.2.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表。
如图是一个根据北京的地理位置设计的圭表,其中,立柱AC 的高为a 。
已知,冬至时北京的正午日光入射角ABC ∠约为26.5︒,则立柱根部与圭表的冬至线的距离(即BC 的长)作为( )A .sin 26.5a ︒B .cos26.5a ︒C .tan 26.5a ︒D .tan 26.5a ︒【答案】D 【解析】在Rt △ABC 中利用正切函数即可得出答案.【详解】解:在Rt △ABC 中,tan ∠ABC=AC BC, ∴立柱根部与圭表的冬至线的距离(即BC 的长)为tan AC ABC ∠=tan 26.5a . 故选:D .【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答.3.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A .3cm 2B .332cm 2C .932cm 2D .2732cm 2 【答案】C 【解析】试题解析:∵△ABC 为等边三角形, ∴∠A=∠B=∠C=60°,AB=BC=AC . ∵筝形ADOK ≌筝形BEPF ≌筝形AGQH ,∴AD=BE=BF=CG=CH=AK .∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK ,四边形ODEP 、四边形PFGQ 、四边形QHKO 都为矩形.∴∠ADO=∠AKO=90°. 连结AO ,在Rt △AOD 和Rt △AOK 中, {AO AO OD OK==, ∴Rt △AOD ≌Rt △AOK (HL ).∴∠OAD=∠OAK=30°.设OD=x ,则AO=2x ,由勾股定理就可以求出3,∴3,∴纸盒侧面积=3x (3)3x 2+18x ,33293,∴当x=32时,纸盒侧面积最大为932.故选C.考点:1.二次函数的应用;2.展开图折叠成几何体;3.等边三角形的性质.4.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于()A.3cm B.4cm C.5cm D.6cm【答案】D【分析】根据垂径定理可知AC的长,再根据勾股定理即可求出OC的长.【详解】解:连接OA,如图:∵AB=16cm,OC⊥AB,∴AC=12AB=8cm,在Rt OAC中,OC=22OA AC-=22108-=6(cm),故选:D.【点睛】本题考查的是垂径定理、勾股定理,熟练掌握垂径定理,构造出直角三角形是解答此题的关键.5.学校要举行“读书月”活动,同学们设计了如下四种“读书月”活动标志图案,其中是中心对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形的概念作答.在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:A、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;B、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;C 、图形中心绕旋转180°以后,能够与它本身重合,故是中心对称图形,符合题意;D 、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意.故选:C .【点睛】本题考查了中心对称图形的概念.特别注意,中心对称图形是要寻找对称中心,旋转180°后两部分重合. 6.下列二次函数的开口方向一定向上的是( )A .23y x =-B .2y ax =C .23y x =D .2(1)y a x =-【答案】C【分析】利用抛物线开口方向向上,则二次项系数大于0判断即可.【详解】二次函数的开口方向一定向上,则二次项系数大于0,故选:C .【点睛】此题主要考查了二次函数的性质,熟练掌握二次函数y =ax 2+bx +c 中,当a >0,开口向上解题是解题关键.7.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0 【答案】A【分析】根据数轴判断出a 、b 的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b <﹣1<0,0<a <1,∴a+b <0,故选项A 符合题意,选项B 不合题意;a ﹣b >0,故选项C 不合题意;ab <0,故选项D 不合题意.故选:A .【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a 、b 的符号,熟知有理数的运算法则是解题关键.8.下列条件中,能判断四边形是菱形的是( )A .对角线互相垂直且相等的四边形B .对角线互相垂直的四边形C .对角线相等的平行四边形D.对角线互相平分且垂直的四边形【答案】D【解析】利用菱形的判定方法对各个选项一一进行判断即可.【详解】解:A、对角线互相垂直相等的四边形不一定是菱形,此选项错误;B、对角线互相垂直的四边形不一定是菱形,此选项错误;C、对角线相等的平行四边形也可能是矩形,此选项错误;D、对角线互相平分且垂直的四边形是菱形,此选项正确;故选:D.【点睛】本题考查了菱形的判定,平行四边形的性质,熟练运用这些性质是本题的关键.9.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,根据题意列方程组正确的是()A.4.5,12x yyx +=⎧⎪⎨+=⎪⎩B.4.5,12x yyx=+⎧⎪⎨+=⎪⎩C.4.5,12x yxy=+⎧⎪⎨=+⎪⎩D.4.5,12x yyx+=⎧⎪⎨=-⎪⎩【答案】A【解析】本题的等量关系是:木长 4.5+=绳长,12⨯绳长1+=木长,据此可列方程组即可.【详解】设木条长为x尺,绳子长为y尺,根据题意可得:4.5112x yy x+=⎧⎪⎨+=⎪⎩.故选:A.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组. 10.如图下列条件中不能判定ACD ABC∆∆的是()A.ACD ABC∠=∠B.ADC ACB∠=∠C.AB ADBC CD=D.2AC AD AB=⋅【答案】C【分析】根据相似三角形的判定定理对各个选项逐一分析即可.【详解】A. ACD ABC ∠=∠,A A ∠=∠可以判定ACDABC ∆∆,不符合题意; B. ADC ACB ∠=∠,A A ∠=∠可以判定ACDABC ∆∆,不符合题意; C. AB AD BC CD=不是对应边成比例,且不是相应的夹角,不能判定ACD ABC ∆∆,符合题意; D. 2AC AD AB =⋅即AD AC AC AB=且A A ∠=∠,可以判定ACD ABC ∆∆,不符合题意. 故选C .【点睛】本题考查了相似三角形的判定定理,熟练掌握判定定理是解题的关键.11.已知OA=5cm ,以O 为圆心,r 为半径作⊙O .若点A 在⊙O 内,则r 的值可以是( ) A .3cmB .4cmC .5cmD .6cm 【答案】D【解析】试题分析:根据题意可知,若使点A 在⊙O 内,则点A 到圆心的大小应该小于圆的半径,因此圆的半径应该大于1.故选D考点:点与圆的位置关系12中,最简二次根式的个数为( ) A .1个B .2个C .3个D .4个 【答案】A【分析】根据最简二次根式的条件进行分析解答即可.是最简二次根式. 故选A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.二、填空题(本题包括8个小题)13.若3a=2b ,则a:b=________.【答案】2:3【解析】试题分析:根据比例的基本性质:两内项之积等于两外项之积,可知a:b=2:3考点:比例的意义和基本性质点评:比例的基本性质是解题的关键14.如图,已知圆周角∠ACB=130°,则圆心角∠AOB=______.【答案】100゜【分析】根据圆周角定理,由∠ACB=130°,得到它所对的圆心角∠α=2∠ACB=260°,用360°-260°即可得到圆心角∠AOB.【详解】如图,∵∠α=2∠ACB,而∠ACB=130°,∴∠α=260°,∴∠AOB=360°-260°=100°.故答案为100°.15.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限,若反比例函数kyx=的图象经过点B,则k的值是_____.3.【分析】已知△ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于Rt△OBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B的坐标;将点B的坐标代入反比例函数的解析式kyx=中,即可求出k的值.【详解】过点B作BC垂直OA于C,∵点A的坐标是(2,0),∴AO=2,∵△ABO是等边三角形,∴OC=1,BC=3, ∴点B 的坐标是()1,3,把()1,3代入k y x =,得3k =. 故答案为3.【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;16.如图,四边形ABCD 内接于⊙O ,连结AC ,若∠BAC =35°,∠ACB =40°,则∠ADC =_____°.【答案】1 【解析】根据三角形内角和定理求出ABC ∠,根据圆内接四边形的性质计算,得到答案.【详解】180105ABC BAC ACB ∠=-∠-∠=,四边形ABCD 内接于O ,18075ADC ABC ∴∠=-∠=,故答案为1.【点睛】本题考查的是圆内接四边形的性质、三角形内角和定理,掌握圆内接四边形的对角互补是解题的关键. 1727tan60°=_____.【答案】3.【分析】先运用二次根式的性质和特殊角的三角函数进行化简,然后再进行计算即可.27tan60°=33=3故答案为:23. 【点睛】本题考查了基本运算,解答的关键是灵活运用二次根式的性质对二次根式进行化简、牢记特殊角的三角函数值.18.已知抛物线y =ax 2+bx +3在坐标系中的位置如图所示,它与x 轴、y 轴的交点分别为A ,B ,点P 是其对称轴x =1上的动点,根据图中提供的信息,给出以下结论:①2a +b =0;②x =3是ax 2+bx +3=0的一个根;③△PAB 周长的最小值是10+32.其中正确的是________.【答案】①②③【分析】①根据对称轴方程求得a b 、的数量关系;②根据抛物线的对称性知抛物线与x 轴的另一个交点的横坐标是3;③利用两点间线段最短来求△PAB 周长的最小值. 【详解】①根据图象知,对称轴是直线12b x a=-=,则2b a =-,即20a b +=,故①正确; ②根据图象知,点A 的坐标是()10,-,对称轴是1x =,则根据抛物线关于对称轴对称的性质知,抛物线与x 轴的另一个交点的坐标是()30,,所以3x =是230ax bx ++=的一个根,故②正确; ③如图所示,点A 关于1x =对称的点是A ',即抛物线与x 轴的另一个交点.连接BA '与直线x=1的交点即为点P ,此时PAB 的周长最小,则PAB 周长的最小值是BA AB '+的长度.∵()()0330B A ',,,, ∴223332BA =+='221310AB +,∴PAB 周长的最小值是3210,故③正确.综上所述,正确的结论是:①②③.故答案为:①②③.【点睛】本题考查的是二次函数综合题,涉及到二次函数图象与系数的关系,二次函数图象的性质以及两点之间直线最短.解答该题时,充分利用了抛物线的对称性.三、解答题(本题包括8个小题)19.如图,正方形ABCD 的过长是3,BP =CQ ,连接AQ ,DP 交于点O ,并分别与边CD 、BC 交于点F 、E ,连接AE .(1)求证:AQ ⊥DP ;(2)求证:AO 2=OD •OP ;(3)当BP =1时,求QO 的长度.【答案】(1)详见解析;(2)详见解析;(3)QO =135. 【分析】(1)由四边形ABCD 是正方形,得到AD =BC ,∠DAB =∠ABC =90°,根据全等三角形的性质得到∠P =∠Q ,根据余角的性质得到AQ ⊥DP .(2)根据相似三角形的性质得到AO 2=OD•OP(3根据相似三角形的性质得到BE =34,求得QE =134,由△QOE ∽△PAD ,可得QO QE PA PD =,解决问题. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD =BC ,∠DAB =∠ABC =90°,∵BP =CQ ,∴AP =BQ ,在△DAP 与△ABQ 中,AD AB DAP ABQ AP BQ =⎧⎪∠∠⎨⎪=⎩=,∴△DAP ≌△ABQ ,∴∠P =∠Q ,∵∠Q+∠QAB =90°,∴∠P+∠QAB =90°,∴∠AOP =90°,∴AQ ⊥DP ;(2)证明:∵∠DOA =∠AOP =90°,∠ADO+∠P =∠ADO+∠DAO =90°,∴∠DAO =∠P ,∴△DAO ∽△APO , ∴AO OP OD OA=, ∴AO 2=OD•OP .(3)解:∵BP =1,AB =3,∴AP =4,∵△PBE ∽△PAD , ∴43PB PA EB DA ==, ∴BE =34,∴QE =134, ∵△QOE ∽△PAD , ∴QO QE PA PD ==1345∴QO =135. 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.20.已知关于x 的一元二次方程2210x px p -++=.(1)请判断1x =-是否可为此方程的根,说明理由.(2)是否存在实数p ,使得12124x x x x p ⋅--=+成立?若存在,请求出p 的值;若不存在,请说明理由.【答案】(1)1x =-不是此方程的根,理由见解析;(2)存在,13p =或21p =-【分析】(1)将1x =-代入一元二次方程2210x px p -++=中,得到一个关于p 的一元二次方程,然后用根的判别式验证关于p 的一元二次方程是否存在实数根即可得出答案;(2)根据一元二次方程根与系数的关系可知,21212,1x x p x x p +=⋅=+,然后代入到12124x x x x p ⋅--=+中,解一元二次方程,若有解,则存在这样的p,反之则不存在.【详解】(1)若1x =-是方程2210x px p -++=的根,则220p p ++=. 14120∆=-⨯⨯<,∴1x =-不是此方程的根.(2)存在实数p ,使得12124x x x x p ⋅--=+成立.∵21212,1x x p x x p +=⋅=+,且12124x x x x p ⋅--=+.∴214p p p +-=+即2230p p --=. ∴123,1p p ==-∴存在实数p ,当13p =或21p =-时,12124x x x x p ⋅--=+成立【点睛】本题主要考查一元二次方程根与系数的关系,根的判别式,掌握一元二次方程根与系数的关系是解题的关键.21.计算()22019118sin 602-⎛⎫--+︒ ⎪⎝⎭的值.【答案】5-【分析】分别根据有理数的乘方、负整数指数幂、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;【详解】解:原式148=---5=-+5=-【点睛】本题主要考查了特殊角的三角函数值,负整数指数幂,掌握特殊角的三角函数值,负整数指数幂是解题的关键.22.如图,已知,,A B C 均在O 上,请用无刻度的直尺作图.()1如图1,若点D 是AC 的中点,试画出B 的平分线;()2如图2,若//BD AC.试画出ABC∠的平分线.【答案】()1见解析;()2见解析【分析】(1)根据题意连接OD并延长交圆上一点E,连接BE即可;(2)根据题意连接AD与BC交与一点,连接此点和O,并延长交圆上一点E,连接BE即可.【详解】()1如图: BE即为所求;()2如图: BE即为所求;【点睛】本题主要考查复杂作图、圆周角定理、垂径定理以及切线的性质的综合应用,解决问题的关键是掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.23.小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果X Y(手机号码由11个数字组成),用X,Y表示这两个看不清的数字,那么小李的号码为187781752小王记得这11个数字之和是20的整数倍.(1)求X Y +的值;(2)求出小王一次拨对小李手机号的概率.【答案】(1)14;(2)15. 【分析】(1)根据题意求出11个数字之和,再根据和是20的整数倍进行求解;(2)先求出X 、Y 的可能值,再根据概率公式进行求解.【详解】(1)11个数字之和为187781752X Y ++++++++++=46+X Y +=20n ,∵这11个数字之和是20的整数倍,2<X Y +<18∴当n=3时,14X Y +=即14X Y +=;(2)∵14X Y +=X 、Y 的可能值为9和5,8和6,7和7,6和8,5和9, ∴小王一次拨对小李手机号码的概率15【点睛】此题主要考查概率的求解,解题的关键是熟知概率公式.24.(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元. ①设10月份厂方的打折数为m ,求m 的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP 客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP 客户的降价率和对普通客户的提价率相等,结果一个VIP 客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP 客户享受的降价率.【答案】(1)面料的单价为3元/米,里料的单价为2元/米;(2)①5;②5%.【分析】(1)、设里料的单价为x 元/米,面料的单价为(2x+10)元/米,根据成本为1元列出一元一次方程,从而得出答案;(2)、设打折数为m ,根据利润不低于4元列出不等式,从而得出m 的值;(3)、设vip 客户享受的降价率为x ,根据题意列出分式方程,从而得出答案【详解】解:(1)、设里料的单价为x 元/米,面料的单价为(2x+10)元/米.根据题意得:0.5x+1.2(2x+10)=1.解得:x=2.2x+10=2×2+10=3.答:面料的单价为3元/米,里料的单价为2元/米.(2)、设打折数为m .根据题意得:13×10m ﹣1﹣14≥4.解得:m≥5.∴m 的最小值为5. 答:m 的最小值为5.(3)、13×0.5=12元.设vip 客户享受的降价率为x . 根据题意得:912010080120(1)120(1)x x =-+,解得:x=0.05 经检验x=0.05是原方程的解.答;vip 客户享受的降价率为5%.【点睛】本题考查(1)、分式方程的应用;(2)、一元一次方程的应用;(3)、不等式的应用,正确理解题目中的等量关系是解题关键25.解下列方程(1)x 2+4x ﹣1=0(2)(y+2)2=(3y ﹣1)2【答案】 (1) x 1=﹣x 2=﹣2(2) y 1=﹣14,y 2=32. 【解析】(1)把常数项1移项后,在左右两边同时加上4配方求解.(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】(1)移项可得:x 2+4x=1,两边加4可得:x 2+4x+4=4+1,配方可得:(x+2)2=5,两边开方可得:∴x1=﹣x 2=﹣2(2)移项可得:(y+2)2﹣(3y ﹣1)2=0,分解因式可得:(y+2+3y ﹣1)(y+2﹣3y+1)=0,即(4y+1)(3﹣2y )=0,∴4y+1=0或3﹣2y=0,∴y 1=﹣14,x 2=32. 【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解题的关键.26.在平面直角坐标系xOy 中,存在抛物线2y mx 2=+以及两点()A 3,m -和()B 1,m .(1)求该抛物线的顶点坐标;(2)若该抛物线经过点()A 3.m -,求此抛物线的表达式;(3)若该抛物线与线段AB 只有一个公共点,结合图象,求m 的取值范围.【答案】(1)(0,2);(2)21y x 24=-+;(3)m=2或1m 4≤-. 【分析】(1)2mx 2y =+是顶点式,可得到结论;(2)把A 点坐标代入2mx 2y =+得方程,于是得到结论;(3)分两种情况:当抛物线开口向上或向下时,分别画出图形,找到临界位置关系,求出m 的值,再进行分析变化趋势可得到结论. 【详解】(1)2mx 2y =+是顶点式,顶点坐标为,2(0);(2)∵抛物线经过点()3.A m -,∴m=9m +2,解得: 1m 4=-, ∴21y x 24=-+ (3)如图1,当抛物线开口向上时,抛物线顶点在线段AB 上时,m 2= ;当m>2时,直线x=1交抛物线于点(1,m+2),交点位于点B 上方,所以此时线段AB 与抛物线一定有两个交点,不符合题意;如图2,当抛物线开口向下时,抛物线顶过点A 时,1m 4=-; 直线x=-3交抛物线于点(-3,9m+2),当1m<4-时,9m+2<m ,交点位于点A 下方,直线x=1交抛物线于点(1,m+2),交点位于点B 上方,所以此时线段AB 与抛物线一定有且只有一个交点,符合题意; 综上所述,当m 2=或1m 4≤- 时,抛物线与线段AB 只有一个公共点.【点睛】本题考查了抛物线的性质,直线与抛物线的位置关系,考虑特殊情况是关键,考查了数形结合的数学思想. 27.如图,A 为反比例函数k y x =(x>0)图象上的一点,在x 轴正半轴上有一点B ,4OB =.连接OA ,AB ,且210OA AB ==.(1)求k 的值;(2)过点B 作BC OB ⊥,交反比例函数k y x=(x>0)的图象于点C ,连接OC 交AB 于点D ,求AD DB 的值.【答案】 (1)k=12;(2)32. 【分析】(1)过点A 作AH OB ⊥交x 轴于点H ,交OC 于点M ,易知OH 长度,在直角三角形OHA 中得到AH 长度,从而得到A 点坐标,进而算出k 值;(2)先求出D 点坐标,得到BC 长度,从而得到AM 长度,由平行线得到ADM BDC ∴△∽△,所以32AD AM BD BC == 【详解】解:(1)过点A 作AH OB ⊥交x 轴于点H ,交OC 于点M .210,4OA AB OB ===2OH ∴=6AH ∴=()2,6A ∴12k ∴= (2)124x y x ==将代入 ()4,3C 得3BC ∴=1322MH BC == 92AM ∴=AH x BC x ⊥⊥轴,轴AH BC ∴∥ADM BDC ∴△∽△32AD AM BD BC ∴==【点睛】本题主要考查反比例函数与相似三角形的综合问题,难度不大,解题关键在于求出k九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点A在反比例函数y=3x(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )A.3 B.2 C.32D.1【答案】C【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB,再根据反比例函数的比例系数k的几何意义得到S△OAB=12|k|,便可求得结果.【详解】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=12|k|=32,∴S△CAB=32,故选C.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.2.如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a 的值为()A.3 B.﹣3 C.13 D.﹣13【答案】B【分析】【详解】∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x1+x2=﹣4,x1x2=a.∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2(x1+x2)﹣5=a﹣2×(﹣4)﹣5=0,即a+1=0,解得,a=﹣1.故选B3.已知下列命题:①对角线互相平分的四边形是平行四边形;②内错角相等;③对角线互相垂直的四边形是菱形;④矩形的对角线相等,其中假命题有()A.1个B.2个C.3个D.4个【答案】B【分析】利用平行四边形的判定、平行线的性质、菱形的判定和矩形的性质分别对各命题进行判断即可.【详解】解:①根据平行四边形的判定定理可知,对角线互相平分的四边形是平行四边形,故①是真命题;②两直线平行,内错角相等,故②为假命题;③根据菱形的判定定理,对角线互相垂直且平分的四边形是菱形,故③是假命题;④根据矩形的性质,矩形的对角线相等,故④是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行四边形的判定、平行线的性质、菱形的判定及矩形的性质,难度不大.4.如图,在平面直角坐标系中,点A的坐标为()4,3,那么sinα的值是()A.34B.43C.45D.35【答案】D【分析】过A作AB⊥x轴于点B,在Rt△AOB中,利用勾股定理求出OA,再根据正弦的定义即可求解. 【详解】如图,过A作AB⊥x轴于点B,∵A的坐标为(4,3)∴OB=4,AB=3,在Rt△AOB中,2222OA=OB AB=43++∴AB3 sin==OA5α故选:D.【点睛】本题考查求正弦值,利用坐标求出直角三角形的边长是解题的关键.5.下列对抛物线y=-2(x-1)2+3性质的描写中,正确的是( )A.开口向上B.对称轴是直线x=1 C.顶点坐标是(-1,3) D.函数y有最小值【答案】B【分析】由抛物线的解析式可求得开口方向、对称轴及顶点坐标,再逐一进行判断即可.【详解】解:A、∵−2<0,∴抛物线的开口向下,故A错误,不符合题意;B、抛物线的对称轴为:x=1,故B正确,符合题意;C、抛物线的顶点为(1,3),故C错误,不符合题意;D、因为开口向下,故该函数有最大值,故D错误,不符合题意.故答案为:B.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,顶点坐标为(h,k),对称轴为x=h.6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2 -1 0 1 2 …y …0 4 6 6 4 …观察上表,得出下面结论:①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+C的最大值为6;③抛物线的对称轴是x=;④在对称轴左侧,y 随x 增大而增大.其中正确有( )A .1个B .2个C .3个D .4个【答案】C【解析】从表中可知,抛物线过(0,6),(1,6),所以可得抛物线的对称轴是x=,故③正确.当x=-2时,y=0,根据对称性当抛物线与x 轴的另一个交点坐标为x=×2+2=3.故①;当x=2时,y=4,所以在对称轴的右侧,随着x 增大,y 在减小,所以抛物线开口向下.故其在顶点处取得最大值,应大于6,故②错,④对.选C.7.下列事件中,必然发生的事件是( ) A .随意翻到一本书的某页,这页的页码是奇数 B .通常温度降到0℃以下,纯净的水结冰 C .地面发射一枚导弹,未击中空中目标 D .测量某天的最低气温,结果为-150℃ 【答案】B【解析】解:A . 随意翻到一本书的某页,这页的页码是奇数,是随机事件; B . 通常温度降到0℃以下,纯净的水结冰,是必然事件; C . 地面发射一枚导弹,未击中空中目标,是随机事件; D . 测量某天的最低气温,结果为-150℃,是不可能事件. 故选B .8.如图所示的中心对称图形中,对称中心是( )A .1OB .2OC .3OD .4O【答案】B【分析】直接利用中心对称图形的性质得出答案.【详解】解:如图所示的中心对称图形中,对称中心是O 1. 故选:B . 【点睛】本题考查中心对称图形,解题关键是熟练掌握中心对称图形的性质. 9.下列事件中,必然事件是( ) A .2a 一定是正数B .八边形的外角和等于360C.明天是晴天D.中秋节晚上能看到月亮【答案】B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、a2一定是非负数,则a2一定是正数是随机事件;B、八边形的外角和等于360°是必然事件;C、明天是晴天是随机事件;D、中秋节晚上能看到月亮是随机事件;故选B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.已知一个单位向量e,设a、b是非零向量,那么下列等式中正确的是().A.1a ea=;B.e a a=;C.b e b=;D.11a ba b=.【答案】B【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】解:A、左边得出的是a的方向不是单位向量,故错误;B、符合向量的长度及方向,正确;C、由于单位向量只限制长度,不确定方向,故错误;D、左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故选:B.【点睛】本题考查了向量的性质.11.如图,四边形ABCD是正方形,以BC为底边向正方形外部作等腰直角三角形BCE,连接AE,分别交BD,BC于点F,G,则下列结论:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正确的有().A.①③B.②④C.①②D.③④【答案】B【解析】连接AC,交BD于O,过点E作EH⊥BC于H,由正方形的性质及等腰直角三角形的性质可得∠ADF=∠ABD=∠BCE=∠CBE=45°,可得∠ABE=135°,根据外角性质可得∠AFD=∠FAB+∠ABF>45°,利用平角定义可得∠AFB<135°,即可证明∠AFB≠∠ABE,可对①进行判断;由EH⊥BC可证明EH//AB,根据平行线的性质可得∠HEG=∠FAB,根据角的和差关系可证明∠DAF=∠CEG,即可证明△ADF∽△GCE;可对②进行判断,由EH//AB可得△HEG∽△BAG,根据相似三角形的性质即可得出BG=2HG,根据等腰直角三角形性质可得CH=BH,进而可得CG=2BG,可对③进行判断;根据正方形的性质可得OA=BE,∠AOF=∠FBE=90°,利用AAS可证明△AOF≌△EBF,可得AF=EF,可对④进行判断;综上即可得答案.【详解】如图,连接AC,交BD于O,过点E作EH⊥BC于H,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠ADF=∠ABD=∠BCE=∠CBE=45°,∴∠ABE=135°,∵∠AFD=∠BAF+∠ABF=∠BAF+45°>45°,∴∠AFB=180°-∠AFD<135°,∴∠AFB≠∠ABE,∴△AFB与△ABE不相似,故①错误,∵EH⊥BC,∠ABC=90°,∴EH//AB,∴∠HEG=∠FAB,∴∠AFD=∠FAB+∠ABD=45°+∠HEG=∠CEG,又∵∠ADB=∠GCE=45°,∴△ADF∽△GCE,故②正确,∵EH//AB,∴△HEG∽△BAG,∴EH HG AB BG,∵△BCE是等腰直角三角形,∴EH=CH=BH=12BC=12AB,。
杨浦区2019学年度第一学期期末质量调研初三数学试卷2019.12(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.把抛物线向左平移1个单位后得到的抛物线是A.;B.;C.;D..2.在R t△A B C中,∠C=90°,如果A C=2,,那么A B的长是A.;B.;C.;D..3.已知、和都是非零向量,下列结论中不能判定的是A.;B.,;C.;D..4.如图,在6×6的正方形网格中,联结小正方形中两个顶点A、B,如果线段A B与网格线的其中两个交点为M、N,那么A M∶M N∶N B的值是A.3∶5∶4;B.3∶6∶5;C.1∶3∶2;D.1∶4∶2.5.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠和喷头的水平距离x(米)的函数解析式是,那么水珠的高度达到最大时,水珠与喷头的水平距离是A.1米;B.2米;C.5米;D.6米.6.如图,在正方形A B C D中,△A B P是等边三角形,A P、B P的延长线分别交边C D于点E、F,联结A C、C P,A C与B F相交于点H,下列结论中错误的是A.A E=2D E;B.△C F P∽△A P H;C.△C F P∽△A P C;D.C P2=P H•P B.二、填空题:(本大题共12题,每题4分,满分48分)7.如果,那么锐角=▲度.8.如果抛物线经过原点,那么=▲.9.二次函数的图像与y轴的交点坐标为▲.A DB CEP FH第6题图第4题图10.已知点、为抛物线上的两点,如果,那么▲.(填“>”、“<”或“=”)11.在比例尺为1:8000000地图上测得甲、乙两地间的图上距离为4厘米,那么甲、乙两地间的实际距离为▲千米.12.已知点P 是线段A B 上的一点,且,如果A B =10c m ,那么B P =▲c m .13.已知点G 是△A B C 的重心,过点G 作M N ∥B C 分别交边A B 、A C 于点M 、N ,那么=▲.14.如图,某小区门口的栏杆从水平位置A B 绕固定点O 旋转到位置D C ,已知栏杆A B 的长为3.5米,O A 的长为3米,点C 到A B 的距离为0.3米,支柱O E 的高为0.6米,那么栏杆端点D 离地面的距离为▲米.15.如图,某商店营业大厅自动扶梯A B 的坡角为31°,A B 的长为12米,那么大厅两层之间B C 的高度为▲米.(结果保留一位小数)【参考数据:s i n 31°=0.515,c o s 31°=0.867,ta n 31°=0.601】16.如图,在四边形AB C D 中,∠B=∠D =90°,AB =3,BC =2,,那么C D =▲.17.定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线.在四边形A B C D 中,对角线B D 是它的相似对角线,∠A B C =70°,B D 平分∠A B C ,那么∠A D C =▲度.18.在R t △A B C 中,∠A =90°,A C =4,A B =a ,将△A B C 沿着斜边B C 翻折,点A 落在点A 1处,点D 、E 分别为边A C 、B C 的中点,联结D E 并延长交A 1B 所在直线于点F ,联结A 1E ,如果△A 1E F 为直角三角形时,那么a =▲.三、解答题:(本大题共7题,满分78分)19.(本题满分10分,第(1)小题6分,第(2)小题4分)抛物线y =a x 2+b x +c 中,函数值y 与自变量x 之间的部分对应关系如下表:x ……y……(1)求该抛物线的表达式;ABC第15题图31°BCDA第16题图O AB D EC第14题图(2)如果将该抛物线平移,使它的顶点移到点M (2,4)的位置,那么其平移的方法是▲.20.(本题满分10分,第(1)小题6分,第(2)小题4分)如图,已知在梯形A B C D 中,A B //C D ,A B =12,C D =7,点E 在边A D 上,,过点E 作E F //A B交边B C 于点F .(1)求线段E F 的长;(2)设,,联结A F ,请用向量、表示向量.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知在△A B C 中,∠A C B =90º,,延长边B A 至点D ,使A D =A C ,联结C D .(1)求∠D 的正切值;(2)取边A C 的中点E ,联结B E 并延长交边C D 于点F ,求的值.22.(本题满分10分)某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D 处用测角仪测得楼顶M 的仰角为,再沿D F 方向前行40米到达点E 处,在点E处测得楼顶M 的仰角为,已知测角仪的高A D 为1.5米.请根据他们的测量数据求此楼M F 的高.(结果精确到0.1m ,参考数据:,,)23.(本题满分12分,每小题各6分)如图,已知在中,是的中线,,点E 在边上,.(1)求证:;(2)求证:.第21题图ABCDABC D EF第20题图ABCDE30º45º第22题图A B C DFE M24.(本题满分12分,每小题各4分)已知在平面直角坐标系x O y 中,抛物线与x 轴交于点A 、B (点A 在点B 的左侧),且A B =6.(1)求这条抛物线的对称轴及表达式;(2)在y 轴上取点E,点F 为第一象限内抛物线上一点,联结B F 、E F ,如果,求点F 的坐标;(3)在第(2)小题的条件下,点F 在抛物线对称轴右侧,点P 在x 轴上且在点B 左侧,如果直线P F 与y 轴的夹角等于∠E B F ,求点P 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题5分,第(3)小题6分)已知在菱形A B C D 中,A B =4,,点P 是直线A B 上任意一点,联结P C ,在∠P C D 内部作射线C Q 与对角线B D 交于点Q (与B 、D 不重合),且∠P C Q =.(1)如图,当点P 在边A B 上时,如果,求线段P C 的长;(2)当点P 在射线B A 上时,设B P =x ,C Q =y ,求y 关于x 的函数解析式及定义域;(3)联结P Q ,直线P Q 与直线B C 交于点E ,如果△Q C E 与△B C P 相似,求线段B P 的长.O xy123412345-1-2-3-1-2-3第24题图A BC D PQ第25题图备用图A BCD。
第2题D2019—2020学年度九年级第一学期期末数学试卷及答案九年级数学试题(沪教版)考试时间:120分钟 考试分值:150分一、选择题(本大题共10小题,每小题4分,共40分.)1.在平面直角坐标系中,抛物线21y x x =+-与x 轴的交点的个数是( )A .3B .2C .1D .02.在□ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F , 若EC =2BE ,则BFFD的值是( ) A .12 B .13C .14D .153.已知△ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c,且c =3b,则cosA 等于( ) A .31B .32C .332D .3104.在Rt△ABC 中,∠C =90°,若sinA =23,则tanB =( ) A .53B5.函数221y x x =-+的图象可以由函数2y x =的图象( )A .向上平移1个单位得到B .向下平移1个单位得到C .向左平移1个单位得到D .向右平移1个单位得到 6.如图,为测量某物体AB 的高度,先在C 点测得A 点的仰角为30º,再向物体AB 方向前进20米到达点D ,此时测得A 点的仰角为60º,则物体AB 的高度为()A .米B .10米C .米D 米 7.如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,4cos 5A =,则下列结论: ①DE =3cm ;②EB =1cm ; ③215ABCD S cm =菱形,其中正确的个数为( )A .3个B .2个C .1个D .0个8.如图,在△ABC 中,∠C =90°,MN∥AB .将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MC =6,NC =,则四边形MABN 的面积是()A .B .C .D .60°30°BAD C第6题第7题E DCBA'B '9.如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点B’重合,若AB =2,BC =3,则△ECB '与△B DG '的面积之比为( )A .9︰4B .3︰2C .4︰3D .16︰910.如图,已知正△ABC 的边长为1,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数的图象大致是( )二、填空题(本大题共4小题,每小题5分,共20分.)11.已知△ABC ∽△DEF ,△ABC 的面积为9,△DEF 的面积为1,则△ABC 与△DEF 的周长之比为__________. 12.某人沿着坡面前进了10米,此时他与水平地面的垂直距离为,则这个坡面的坡度为_________. 13.如图,在□ABCD 中,AD =10 cm ,CD =6 cm ,E 为AD 上一点,且BE =BC ,CE =CD ,则DE = cm . 14.二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)图象的对 称轴是直线x =1,其图像的一部分如图所示,对于下列说法:① 0abc <;② 当13x -<<时,0y >; ③0a b c -+< ; ④ 30a c +<. 其中正确的是__________(把正确说法的序号都填上). 三、解答题(本大题共9小题,共90分.)15、(8分)计算:(1)∣-5∣+3sin30°-(-6)2+(tan45°)-1(2) cos30°tan60°-cos45°sin45°-sin 260°.16、(8分)如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,-1)、(2,1) .(1)以0点为位似中心在y 轴的左侧将△OBC 放大到两倍(即新图与原图的相似比为2),画出图形; (2)分别写出B 、C 两点的对应点B ′、C ′的坐标;GFECBA 第10题图 A. B. C. D.第14题第13题EDCA B17、(8分)如图,点A (3,2)在反比例函数ky x的图象上,点B 的坐标为(0,-2). (1)求反比例函数的解析式;(2)若过A 、B 的直线与x 轴交于点C ,求sin ∠BCO 的值.18、(10分)如图,在△ABC 中,AB =AC ,若△ABC ≌△DEF ,且点A 在DE 上,点E 在BC 上,EF 与AC 交于点M .求证:△ABE ∽△ECM .19、(10分)如图,一块三角形的铁皮,BC 边为4m,BC 边上的高AD 为3m,要将 它工成一块矩形铁皮,使矩形的一边FG 在BC 上,其余两个顶点E,H 分别在AB,AC 上,且矩形的面积是三角形面积的一半,求这个矩形的长和宽。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.点(1,)-P k 在反比例函数y =3x -的图象上,则k 的值是( ) A .1B .3C .﹣1D .﹣3 【答案】B【解析】把P (﹣1,k )代入函数解析式即可求k 的值.【详解】把点P (﹣1,k )代入y =3x -得到:k =31--=1. 故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点的坐标适合解析式是解题的关键.2.如图,把正三角形绕着它的中心顺时针旋转60°后,是( )A .B .C .D .【答案】A【分析】根据旋转的性质判断即可.【详解】解:∵把正三角形绕着它的中心顺时针旋转60°,∴图形A 符合题意,故选:A .【点睛】本题考查的是图形的旋转,和学生的空间想象能力,熟练掌握旋转的性质是解题的关键.3.二次函数y =x 2﹣6x 图象的顶点坐标为( )A .(3,0)B .(﹣3,﹣9)C .(3,﹣9)D .(0,﹣6)【答案】C【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标.【详解】解:∵y =x 2﹣6x =x 2﹣6x+9﹣9=(x ﹣3)2﹣9,∴二次函数y =x 2﹣6x 图象的顶点坐标为(3,﹣9).故选:C .【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.4.在一块半径为2cm 的圆形钢板中裁出一个最大的等边三角形,此等边三角形的边长( ) A .1cmB .3cmC .2cmD .23cm【答案】D 【分析】画出图形,作OC AB ⊥于点C ,利用垂径定理和等边三角形的性质求出AC 的长即可得出AB 的长. 【详解】解:依题意得3603120AOB ∠=︒÷=︒,连接OA ,OB ,作OC AB ⊥于点C ,∵OA OB =,∴2AB AC =,60AOC ∠=︒,∴sin 603cm AC OA =⋅︒=,∴223cm AB AC ==.故选:D .【点睛】本题考查了圆的内接多边形,和垂径定理的使用,弄清题意准确计算是关键.5.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、不是轴对称图形,是中心对称图形,故本选项不合题意;B 、不是轴对称图形,是中心对称图形,故本选项不合题意;C 、是轴对称图形,不是中心对称图形,故本选项不合题意;D 、是轴对称图形,也是中心对称图形,故本选项符合题意;故选:D .【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原来的图形重合.6.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于( )A .30°B .40°C .50°D .60°【答案】C 【解析】试题分析:∵DC ∥AB ,∴∠DCA=∠CAB=65°.∵△ABC 绕点A 旋转到△AED 的位置,∴∠BAE=∠CAD ,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC ﹣∠DCA="50°." ∴∠BAE=50°.故选C .考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.7.为了得到函数22y x =的图象,可以将函数2241y x x =--+的图象( )A .先关于x 轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度B .先关于x 轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度C .先关于y 轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度D .先关于y 轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度【答案】A【分析】先求出两个二次函数的顶点坐标,然后根据顶点坐标即可判断对称或平移的方式.【详解】2241y x x =--+的顶点坐标为(1,3)- 22y x =的顶点坐标为(0,0)∴点(1,3)-先关于x 轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度可得到点(0,0) 故选A【点睛】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.8.如图,在ABC ∆中,90C =∠,AB =5,BC =4,点D 为边AC 上的动点,作菱形DEFG ,使点E 、F 在边AB 上,点G 在边BC 上.若这样的菱形能作出两个,则AD 的取值范围是( )A .369378AD <≤B .1575837AD ≤< C.575337AD ≤< D .51538AD ≤≤ 【答案】B【分析】因为在ABC ∆中只能作出一个正方形,所以要作两个菱形则AD 必须小于此时的AD ,也即这是AD 的最大临界值;当AD 等于菱形边长时,这时恰好可以作两个菱形,这是AD 最小临界值.然后分别在这2种情形下,利用相似三角形的性质求出AD 即可.【详解】过C 作CN AB ⊥交DG 于M由三角形的面积公式得1122ABC S AC BC AB CN ∆=⋅=⋅ 即1134522CN ⨯⨯=⨯⋅,解得125CN = ①当菱形DEFG 为正方形时,则只能作出一个菱形设:DE x =,DG x ∴=DEFG 为菱形,//DG AB ∴CDG CAB ∴∆~∆,DG CM AB CN ∴=,即1251255x x -=,得6037x = 75sin 37DE AD A ∴==(4sin 5BC A AB ==) 若要作两个菱形,则7537AD <;②当DE DA =时,则恰好作出两个菱形设:DE y =,DE DA DG y ∴===过D 作DH AB ⊥于H ,4sin 5DH DA A y =⋅=45MN y ∴= 由①知,DG CM AB CN =,124551255y y -∴=,得158y =158AD ∴≥ 综上,1575837AD ≤< 故选:B.【点睛】本题考查了相似三角形的性质、锐角三角函数,依据图形的特点判断出两个临界值是解题关键. 9.如图所示,抛物线y =ax 2+bx+c (a≠0)与x 轴交于点A(1,0)和点B ,与y 轴的正半轴交于点C .现有下列结论:①abc >0;②4a ﹣2b+c >0;③2a ﹣b >0;④3a+c =0,其中,正确结论的个数是( )A .1B .2C .3D .4【答案】B 【分析】由抛物线的开口方向,判断a 与0的关系;由对称轴与y 轴的位置关系,判断ab 与0的关系;由抛物线与y 轴的交点,判断c 与0的关系,进而判断abc 与0的关系,据此可判断①.由x =﹣2时,y =4a ﹣2b+c ,再结合图象x =﹣2时,y >0,即可得4a ﹣2b+c 与0的关系,据此可判断②.根据图象得对称轴为x =﹣2b a>﹣1,即可得2a ﹣b 与0的关系,据此可判断③.由x =1时,y =a+b+c ,再结合2a ﹣b 与0的关系,即可得3a+c 与0的关系,据此可判断④.【详解】解:①∵抛物线的开口向下,∴a <0,∵对称轴位于y 轴的左侧,∴a 、b 同号,即ab >0,∵抛物线与y 轴交于正半轴,∴c >0,∴abc >0,故①正确;②如图,当x =﹣2时,y >0,即4a ﹣2b+c >0,故②正确;③对称轴为x =﹣2b a>﹣1,得2a <b ,即2a ﹣b <0, 故③错误; ④∵当x =1时,y =0,∴0=a+b+c ,又∵2a ﹣b <0,即b >2a ,∴0=a+b+c >a+2a+c =3a+c ,即3a+c <0,故④错误.综上所述,①②正确,即有2个结论正确.故选:B .【点睛】本题考查二次函数图象位置与系数的关系.熟练掌握二次函数开口方向、对称轴、与坐标轴交点等性质,并充分运用数形结合是解题关键.10.下列语句所描述的事件是随机事件的是( )A .经过任意两点画一条直线B .任意画一个五边形,其外角和为360°C .过平面内任意三个点画一个圆D .任意画一个平行四边形,是中心对称图形 【答案】C【分析】直接利用多边形的性质以及直线的性质、中心对称图形的定义分别分析得出答案.【详解】解:A 、经过任意两点画一条直线,是必然事件,故此选项错误;B 、任意画一个五边形,其外角和为360°,是必然事件,故此选项错误;C 、过平面内任意三个点画一个圆,是随机事件,故此选项错误;D 、任意画一个平行四边形,是中心对称图形,是必然事件,故此选项错误;故选:C .【点睛】此题主要考查了随机事件的定义,有可能发生有可能不发生的时间叫做随机时间,正确掌握相关性质是解题关键.11.如图在O 中,弦,⊥⊥AB AC OD AB 于点D OE AC ⊥,于点E ,若86AB cm AC cm ==,,则O 的半径OA 的长为( )A .7cmB .6cmC .5cmD .4cm【答案】C【分析】根据垂径定理求得OD ,AD 的长,并且在直角△AOD 中运用勾股定理即可求解. 【详解】解:弦AB AC ⊥,⊥OD AB 于点D ,OE AC ⊥于点E ,∴四边形OEAD 是矩形,142AD AB cm ==,132AE AC cm ==,3OD AE cm ∴==,2222345()OA OD AD cm ∴=+=+=; 故选:C .【点睛】本题考查了垂径定理、勾股定理、矩形的判定与性质;利用垂径定理求出AD ,AE 的长是解决问题的关键. 12.如图所示,将Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC ,连接AD ,若∠B=65°,则∠ADE=( )A .20°B .25°C .30°D .35°【答案】A 【分析】根据旋转的性质可得AC=CD ,∠CED=∠B ,再判断出△ACD 是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC ,∴AC=CD ,∠CED=∠B=65°,∴△ACD 是等腰直角三角形,∴∠CAD=45°,由三角形的外角性质得:654520ADE CED CAD ∠=∠∠=︒︒=︒﹣﹣.故选:A .【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.二、填空题(本题包括8个小题)13.自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为66cm ,中轴轴心C 到地面的距离CF 为33cm ,后轮中心A 与中轴轴心C 连线与车架中立管BC 所成夹角72ACB ∠=︒,后轮切地面l 于点D .为了使得车座B 到地面的距离BE 为90cm ,应当将车架中立管BC 的长设置为_____________cm .(参考数据: 720.95,720.31,2.1 )73sin cos tan ︒≈︒≈︒≈【答案】60【分析】先计算出AD=33cm ,结合已知可知AC ∥DF ,由由题意可知BE ⊥ED,即可得到BE ⊥AC,然后再求出BH 的长,然后再运用锐角三角函数即可求解.【详解】解:∵车轮的直径为66cm∴AD=33cm∵CF=33cm∴AC ∥DF∴EH=AD=33cm∵BE ⊥ED∴BE ⊥AC∵BH=BE-EH=90-33=57cm∴∠sinACB=sin72°=57BH BC BC==0.95 ∴BC=57÷0.95=60cm故答案为60.【点睛】本题考查了解直角三角形的应用,将实际问题中抽象成数学问题是解答本题的关键.14.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是 .【答案】13. 【详解】解:根据树状图,蚂蚁获取食物的概率是26=13.故答案为13. 考点:列表法与树状图法.15.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.【答案】7【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.16.如图,四边形ABCD 是⊙O 的外切四边形,且AB =10,CD =15,则四边形ABCD 的周长为_____.【答案】1【分析】根据切线长定理得到AE=AH ,BE=BF ,CF=CG ,DH=DG ,得到AD+BC=AB+CD=25,根据四边形的周长公式计算,得到答案.【详解】∵四边形ABCD 是⊙O 的外切四边形,∴AE =AH ,BE =BF ,CF =CG ,DH =DG ,∴AD+BC =AB+CD =25,∴四边形ABCD 的周长=AD+BC+AB+CD =25+25=1,故答案为:1.【点睛】本题考查的是切线长定理,掌握从圆外一点引圆的两条切线,它们的切线长相等是解题的关键. 17.方程111x x -=-的解是________. 【答案】2x = .【分析】方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验得到分式方程的解.【详解】去分母得:()21x x =-,解得:2x =,经检验是2x =的根,所以,原方程的解是:2x =.故答案是为:2x =【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.计算:273-=_____.【答案】23【详解】解:原式=33323-=.故答案为23.三、解答题(本题包括8个小题)19.如图,在正方形ABCD 中,点M 是BC 边上的任一点,连接AM 并将线段AM 绕M 顺时针旋转90°得到线段MN ,在CD 边上取点P 使CP =BM ,连接NP ,BP .(1)求证:四边形BMNP 是平行四边形;(2)线段MN 与CD 交于点Q ,连接AQ ,若△MCQ ∽△AMQ ,则BM 与MC 存在怎样的数量关系?请说明理由.【答案】(1)证明见解析;(2)BM=MC.理由见解析.【分析】(1)根据正方形的性质可得AB=BC,∠ABC=∠C,然后利用“边角边”证明△ABM和△BCP全等,根据全等三角形对应边相等可得AM=BP,∠BAM=∠CBP,再求出AM⊥BP,从而得到MN∥BP,然后根据一组对边平行且相等的四边形是平行四边形证明即可;(2)根据同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根据相似三角形对应边成比例可得AB AMMC MQ=,再求出△AMQ∽△ABM,根据相似三角形对应边成比例可得AB AMBM MQ=,从而得到AB ABMC BM=,即可得解.【详解】(1)证明:在正方形ABCD中,AB=BC,∠ABC=∠C,在△ABM和△BCP中,,∴△ABM≌△BCP(SAS),∴AM=BP,∠BAM=∠CBP,∵∠BAM+∠AMB=90°,∴∠CBP+∠AMB=90°,∴AM⊥BP,∵AM并将线段AM绕M顺时针旋转90°得到线段MN,∴AM⊥MN,且AM=MN,∴MN∥BP,∴四边形BMNP是平行四边形;(2)解:BM=MC.理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,∴∠BAM=∠CMQ,又∵∠ABC=∠C=90°,∴△ABM∽△MCQ,∴AB AMBM MQ=,∵△MCQ∽△AMQ,∴△AMQ∽△ABM,∴AB AMBM MQ=,∴AB ABMC BM=,∴BM=MC.20.如图,在等腰直角三角形MNC中,CN=MN=2,将△MNC绕点C顺时针旋转60°,得到△ABC,连接AM,BM,BM交AC于点O.(1)∠NCO的度数为________;(2)求证:△CAM为等边三角形;(3)连接AN,求线段AN的长.【答案】(1)15°;(2)证明见解析;(3)31-【解析】分析:(1)由旋转可得∠ACM=60°,再根据等腰直角三角形MNC中,∠MCN=45°,运用角的和差关系进行计算即可得到∠NCO的度数;(2)根据有一个角是60°的等腰三角形是等边三角形进行证明即可;(3)根据△MNC是等腰直角三角形,△ACM是等边三角形,判定△ACN≌△AMN,再根据Rt△ACD中,AD=3CD=3,等腰Rt△MNC中,DN=12CM=1,即可得到AN=AD﹣ND=3﹣1.详解:(1)由旋转可得∠ACM=60°.又∵等腰直角三角形MNC中,∠MCN=45°,∴∠NCO=60°﹣45°=15°;故答案为15°;(2)∵∠ACM=60°,CM=CA,∴△CAM为等边三角形;(3)连接AN并延长,交CM于D.∵△MNC是等腰直角三角形,△ACM是等边三角形,∴NC=NM=2,CM=2,AC=AM=2.在△ACN和△AMN中,∵NC NMAC AMAN AN=⎧⎪=⎨⎪=⎩,∴△ACN≌△AMN(SSS),∴∠CAN=∠MAN,∴AD⊥CM,CD=12CM=1,∴Rt△ACD中,AD=3CD=3,等腰Rt△MNC中,DN=12CM=1,∴AN=AD﹣ND=3﹣1.点睛:本题主要考查了旋转的性质,等边三角形的判定以及全等三角形的判定与性质的运用,解题时注意:有一个角是60°的等腰三角形是等边三角形.解决问题的关键是作辅助线构造直角三角形.21.瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).(2)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?(3)根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?【答案】(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解析】(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可.【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.则62196020k bk b=+⎧⎨=+⎩,解得k2b100=-⎧⎨=⎩,∴y=﹣2x+100,∴y关于x的函数表达式y=﹣2x+100,∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w=350时,350=﹣2x2+136x﹣1800,解得x=25或43,由题意可得25≤x≤32,则当x=32时,18(﹣2x+100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元.【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式.22.如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,以B 为顶点在BC 边上方作菱形DBEF ,使点D E ,分别在AB BC ,边上,另两边EF DF ,分别交AC 于点M N ,,且点M 恰好平分EF .(1)求证: DM EF ⊥;(2)请说明:2MN NF DN =⋅.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据四边形DBEF 是菱形,得到DF EF =,又60F B ∠=∠=推出DE DF =,又点M 恰好平分EF ,三线合一,DM EF ⊥(2)可证DMN F ∠=∠,再证DNMMNF ∆∆,从而求得【详解】证明:(1)连接DE ,∵90ACB ∠=,30A ∠=,∴903060B ACB A ∠=∠-∠=-=.∵四边形DBEF 是菱形,∴EF AB ∥,DF EF =,60F B ∠=∠=∴DEF ∆是等边三角形.∵M 是EF 的中点,∴DM EF ⊥(2)∵DM EF ⊥,∴90DMF ∠=.∴9030MDE F ∠=-∠=.∵EF AB ∥,∴30NMF A ∠=∠=.∴30MDE NMF ∠=∠=.∴30NMF A ∠=∠=.∴DMN F ∠=∠.∴DNMMNF ∆∆. ∴MN DN NF MN=. ∴2MN NF DN =⋅.【点睛】本题考查了菱形的性质、三线合一以及相似三角形的性质.23.解方程:(1)(23)46x x x -=-(2)(53)17x x x -=-【答案】 (1)1 1.5x =,22x =;(2)115x =,21x =-. 【分析】(1)用因式分解法求解即可;(2)用公式法求解即可.【详解】解:(1)原方程可化为(23)2(23)x x x -=-,移项得(23)2(23)0x x x ---=,分解因式得(23)(2)0x x --=,于是得230x -=,或20x -=, 1 1.5x =,22x =;(2)原方程化简得25410x x +-=,2445(1)360∆=-⨯⨯-=>,∴4462325255x -±-±-±===⨯⨯, 115x =,21x =-. 【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.24.如图,反比例函数2m y x-=的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:(1)图象的另一支在第________象限;在每个象限内,y 随x 的增大而________,常数m 的取值范围是________;(2)若此反比例函数的图象经过点()2,3-,求m 的值.【答案】(1)故答案为四;增大;2m <;(2)4m =-.【分析】(1)根据反比例函数的图象特点即可得;(2)将点()2,3-代入反比例函数的解析式即可得.【详解】(1)由反比例函数的图象特点得:图象的另一支在第四象限;在每个象限内,y 随x 的增大而增大由反比例函数的性质可得:20m -<,解得2m <故答案为:四;增大;2m <;(2)把()2,3-代入2m y x-=得到:232m -=-,则4m =- 故m 的值为4-.【点睛】本题考查了反比例函数的图象特点、反比例函数的性质,熟记函数的图象特点和性质是解题关键. 25.如图,点E 是△ABC 的内心,AE 的延长线与△ABC 的外接圆相交于点D .(1)若∠BAC=70°,求∠CBD 的度数;(2)求证:DE=DB .【答案】(1)35°;(2)证明见解析.【分析】(1)由点E 是△ABC 的内心,∠BAC=70°,易得∠CAD=o 35,进而得出∠CBD=∠CAD=35°;(2) 由点E 是△ABC 的内心,可得E 点为△ABC 角平分线的交点,可得∠ABE=∠CBE ,∠BAD=∠CAD ,可推导出∠DBE=∠BED ,可得DE=DB.【详解】(1)∵点E 是△ABC 的内心,∠BAC=70°,∴∠CAD=, ∵, ∴∠CBD=∠CAD=35°;(2)∵E 是内心,∴∠ABE=∠CBE ,∠BAD=∠CAD .∵∠CBD=∠CAD ,∴∠CBD=∠BAD ,∵∠BAD+∠ABE=∠BED ,∠CBE+∠CBD=∠DBE ,∴∠DBE=∠BED ,∴DE=DB.【点睛】此题考查了圆的内心的性质以及角平分线的性质等知识. 此题综合性较强, 注意数形结合思想的应用. 26.为测量观光塔高度,如图,一人先在附近一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°,然后爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°.已知楼房高AB 约是45m ,请根据以上观测数据求观光塔的高.【答案】135【分析】根据“爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°”可以求出AD 的长,然后根据“在附近一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°”求出CD 的长即可.【详解】∵爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°,∴∠ADB=30°,在Rt △ABD 中,AD= 30AB tan,∴AD=45 3, ∵在一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°,∴在Rt △ACD 中,CD=AD•tan60°=45 33m.故观光塔高度为135m .【点睛】本题主要考查了三角函数的应用,熟练掌握相关概念是解题关键.27.开学初,某文具店销售一款书包,每个成本是50元,销售期间发现:销售单价时100元时,每天的销售量是50个,而销售单价每降低2元,每天就可多售出10个,当销售单价为多少元时,每天的销售利润达到4000元?要求销售单价不低于成本,且商家尽量让利给顾客.【答案】销售单价为70元时,每天的销售利润达到4000元,且商家尽量让利顾客.【分析】根据“单件利润×销售量=总利润”可列一元二次方程求解,结合题意取舍可得【详解】解:设销售单价为x元时,每天的销售利润达到4000元,由题意得,(x﹣50)[50+5(100﹣x)]=4000,解得x1=70,x2=90,因为晨光文具店销售单价不低于成本,且商家尽量让利顾客,所以x2=90不符合题意舍去,故x=70,答:销售单价为70元时,每天的销售利润达到4000元,且商家尽量让利顾客.【点睛】本题主要考查一元二次方程的应用,理解题意确定相等关系,并据此列出方程是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,ABC ∆中,70CAB ∠=,在同一平面内,将ABC ∆绕点A 旋转到AED ∆的位置,使得//DC AB ,则旋转角等于( )A .30B .40C .50D .60【答案】B 【分析】由平行线的性质得出DCA CAB ∠=∠,由旋转的性质可知AC AD =,则有DCA ADC ∠=∠,然后利用三角形内角和定理即可求出旋转角CAD ∠的度数.【详解】//DC AB70DCA CAB ∴∠=∠=︒由旋转的性质可知AC AD =70DCA ADC ∴∠=∠=︒180180707040CAD DCA ADC ∴∠=︒-∠-∠=︒-︒-︒=︒所以旋转角等于40°故选:B .【点睛】本题主要考查平行线的性质,等腰三角形的性质和旋转的性质,掌握旋转角的概念及平行线的性质,等腰三角形的性质和旋转的性质是解题的关键.2.如图,⊙O 是直角△ABC 的内切圆,点D ,E ,F 为切点,点P 是EPD 上任意一点(不与点E ,D 重合),则∠EPD =( )A .30°B .45°C .60°D .75° 【答案】B。
杨浦区第一学期期末质量调研初 三 数 学 试 卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.如果5=6y ,那么下列结论正确的是 (A ):6:5x y =; (B ):5:6x y =;(C )5,6x y ==;(D )6,5x y ==.2.下列条件中,一定能判断两个等腰三角形相似的是(A )都含有一个40°的内角; (B )都含有一个50°的内角; (C )都含有一个60°的内角; (D )都含有一个70°的内角.3.如果△ABC ∽△DEF ,A 、B 分别对应D 、E ,且AB ∶DE =1∶2,那么下列等式一定成立的是 (A )BC ∶DE =1∶2; (B ) △ABC 的面积∶△DEF 的面积=1∶2; (C )∠A 的度数∶∠D 的度数=1∶2;(D )△ABC 的周长∶△DEF 的周长=1∶2.4.如果2a b =(,a b 均为非零向量),那么下列结论错误的是(A )//a b ;(B )20a b -=; (C )12b a =; (D )2a b =. 5.如果二次函数2y ax bx c =++(0a ≠)的图像如图所示,那么下列不等式成立的是 (A )0a >; (B )0b <;(C )0ac <;(D )0bc <.6.如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且∠AED =∠B ,再将下列四个选项中的一个作为条件,不一定能使得△ADE ∽△BDF 的是 (A )EA EDBD BF =; (B )EA EDBF BD =;(C )AD AEBD BF=; (D )BD BABF BC=. (第6题图)二、填空题:(本大题共12题,每题4分,满分48分) 7.抛物线23y x =-的顶点坐标是 ▲ . 8.化简:112()3()22a b a b --+= ▲ . 9.点A (-1,m )和点B (-2,n )都在抛物线2(3)2y x =-+上,则m 与n 的大小关系为m ▲ n (填“<”或“>”).10.请写出一个开口向下,且与y 轴的交点坐标为(0,4)的抛物线的表达式 ▲ . 11.如图,DE //FG //BC ,AD ∶DF ∶FB =2∶3∶4,如果EG =4,那么AC = ▲ .12.如图,在□ABCD 中,AC 、BD 相交于点O ,点E 是OA 的中点,联结BE 并延长交AD 于点F ,如果△AEF 的面积是4,那么△BCE 的面积是 ▲ . 13.Rt △ABC 中,∠C =90°,如果AC =9,cos A =13,那么AB = ▲ . 14.如果某人滑雪时沿着一斜坡下滑了130米的同时,在铅垂方向上下降了50米,那么该斜坡的坡度是1∶ ▲ .15.如图,Rt △ABC 中,∠C =90°,M 是AB 中点,MH ⊥BC ,垂足为点H ,CM 与AH 交于点O ,如果AB =12,那么CO = ▲ .16.已知抛物线22y ax ax c =++,那么点P (-3,4)关于该抛物线的对称轴对称的点的坐标是 ▲ . 17.在平面直角坐标系中,将点(-b ,-a )称为点(a ,b )的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第 ▲ 象限. 18.如图,在△ABC 中,AB =AC ,将△ABC 绕点A 旋转,当点B 与点C 重合时,点C 落 在点D 处,如果sin B =23,BC =6,那么BC 的中点M 和CD 的中点N 的距离是 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒C(第18题图)(第11题图) (第12题图)(第15题图)B20.(本题满分10分,第(1)、(2)小题各5分) 已知:如图,Rt △ABC 中,∠ACB =90°,sin B =35,点D 、E 分别在边AB 、BC 上,且AD ∶DB =2∶3,DE ⊥BC . (1)求∠DCE 的正切值;(2)如果设AB a =,CD b =,试用a 、b 表示AC .21.(本题满分10分)甲、乙两人分别站在相距6米的A 、B 两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C 处发出一球,乙在离地面1.5米的D 处成功击球,球飞行过程中的最高点H 与甲的水平距离AE 为4米,现以A 为原点,直线AB 为轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.22.(本题满分10分)如图是某路灯在铅垂面内的示意图,灯柱BC 的高为10米,灯柱BC 与灯杆AB 的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE 的长为13.3米,从D 、E 两处测得路灯A 的仰角分别为α和45°,且tan α=6. 求灯杆AB 的长度.23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:梯形ABCD 中,AD //BC ,AD =AB ,对角线AC 、BD 交于点E ,点F 在边BC 上,且∠BEF =∠BAC .(1)求证:△AED ∽△CFE ; (2)当EF //DC 时,求证:AE =DE .(第20题图)(第22题图)(第23题图)24.(本题满分12分,第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系Oy中,抛物线2221y x mx m m =-+--+交 y 轴于点为A ,顶点为D ,对称轴与轴交于点H .(1)求顶点D 的坐标(用含m 的代数式表示); (2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线22y x x =-+的位置,求平移的方向和距离; (3)当抛物线顶点D 在第二象限时,如果∠ADH =∠AHO ,求m的值.25.(本题满分14分,第(1)、(2)小题各6分,第(3)小题2分)已知:矩形ABCD 中,AB =4,BC =3,点M 、N 分别在边AB 、CD 上,直线MN 交矩形对角线AC 于点E ,将△AME 沿直线MN 翻折,点A 落在点P 处,且点P 在射线CB 上. (1)如图1,当EP ⊥BC 时,求CN 的长; (2)如图2,当EP ⊥AC 时,求AM 的长;(3)请写出线段CP 的长的取值范围,及当CP 的长最大时MN 的长.(备用图)(图1)ABC DNPM E(图2) A BCD N P ME(第25题图)AB CD杨浦区初三数学期末试卷参考答案及评分建议一、 选择题:(本大题共6题,每题4分,满分24分) 1、A ; 2、C ; 3、D ; 4、B ; 5、C ; 6、C 二、 填空题:(本大题共12题,每题4分,满分48分) 7、(0,-3); 8、142a b -rr; 9、<; 10、24y x =-+等; 11、12; 12、36; 13、27; 14、2.4; 15、4; 16、(1,4); 17、二、四; 18、4 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式=12231122-+⨯--------------------------------------------------(6分)=1222-----------------------------------------------------------------(2分)=14. --------------------------------------------------------------(2分) 20.(本题满分10分,第(1)、(2)小题各5分) 解:(1)∵∠ACB =90°,sin B =35,∴35AC AB =. -------------------------(1分)∴设AC =3a ,AB =5a . 则BC =4a . ∵ADDB =23,∴AD =2a ,DB =3a . ∵∠ACB =90°即AC ⊥BC ,又DE ⊥BC , ∴AC//DE. ∴DE BD AC AB =, CE ADCB AB=. ∴335DE a a a =, 245CE a a a =. ∴95DE a =,85CE a =.----------(2分) ∵DE ⊥BC ,∴9tan 8DE DCE CE ∠==.-----------------------------(2分) (2)∵ADDB =23,∴ADAB =25. ------------------------------------------------(1分)∵AB a =,CD b =,∴25AD a =. DC b =-.--------------------(2分) ∵AC AD DC =+,∴25AC a b =-.-----------------------------------(2分)21.(本题满分10分)解:由题意得:C (0,1),D (6,1.5),抛物线的对称轴为直线=4.----(3分) 设抛物线的表达式为()210y ax bx a =++≠-------------------------------------(1分)则据题意得:421.53661ba ab ⎧-=⎪⎨⎪=++⎩. ----------------------------------------------(2分)解得:12413a b ⎧=-⎪⎪⎨⎪=⎪⎩. -------------------------------------------------------------------(2分)∴羽毛球飞行的路线所在的抛物线的表达式为2111243y x x =-++. ------(1分) ∵()2154243y x =--+,∴飞行的最高高度为53米. ------------------------(1分) 22.(本题满分10分)解:由题意得∠ADE =α,∠E =45°.----------------------------------------------(2分) 过点A 作AF ⊥CE ,交CE 于点F ,过点B 作BG ⊥AF ,交AF 于点G ,则FG =BC =10. 设AF =.∵∠E =45°,∴EF =AF =. 在Rt △ADF 中,∵tan ∠ADF =AFDF,-----------------(1分) ∴DF =tan tan 6AF x xADF α==∠. --------------------------(1分)∵DE =13.3,∴6xx +=13.3. ---------------------------(1分) ∴ =11.4. ---------------------------------------------(1分)∴AG =AF ﹣GF =11.4﹣10=1.4. ------------------------------------------------------------(1分) ∵∠ABC =120°,∴∠ABG =∠ABC ﹣∠CBG =120°﹣90°=30°.-------------------(1分) ∴AB =2AG =2.8 ----------------------------------------------------------------------- (1分) 答:灯杆AB 的长度为2.8米.------------------------------------------------------------(1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵∠BEC =∠BAC+∠ABD , ∠BEC =∠BEF+∠FEC ,A BC D FG又∵∠BEF =∠BAC ,∴∠ABD=∠FEC.------------------------------------ (1分) ∵AD =AB ,∴∠ABD=∠ADB.------------------------------------------------- (1分) ∴∠FEC=∠ADB. -------------------------------------------------------- (1分) ∵AD //BC ,∴∠DAE=∠ECF .--------------------------------------------------- (1分) ∴△AED ∽△CFE. --------------------------------------------------------- (1分)(2)∵EF //D C ,∴∠FEC=∠ECD. --------------------------------------------------- (1分) ∵∠ABD=∠FEC ,∴∠ABD=∠ECD.--------------------------------------------- (1分) ∵∠AEB=∠DEC. ∴△AEB ∽△DEC. ----------------------------------------------- (1分) ∴AE BEDE CE=.------------------------------------------------------------------------------(1分) ∵AD //BC ,∴AE DECE BE=.----------------------------------------------------------------(1分) ∴AE AE BE DE DE CE CE BE⋅=⋅.即22AE DE =.-------------------------------------------(1分) ∴ AE =DE . ----------------------------------------------------------------------------- (1分) 24.(本题满分12分,第(1)小题3分,第(2)小题5分,第(3)小题4分) 解:(1)∵22221()1y x mx m m x m m =-+--+=---+.------------------------(1分) ∴顶点D (m , 1-m ).------------------------------------------------------------------(2分) (2)∵抛物线2221y x mx m m =-+--+过点(1,-2),∴22121m m m -=-+--+.即220m m --=. ---------------------------(1分) ∴2m =或1m =-(舍去). ------------------------------------------------------(2分) ∴抛物线的顶点是(2,-1). ∵抛物线22y x x =-+的顶点是(1,1),∴向左平移了1个单位,向上平移了2个单位. -------------------------(2分) (3)∵顶点D 在第二象限,∴0m <.情况1,点A 在y 轴的正半轴上,如图(1).作AG ⊥DH 于点G , ∵A (0,21m m --+),D (m ,-m +1),∴H (,0m ),G (2,1m m m --+)∵∠ADH =∠AHO ,∴tan ∠ADH = tan ∠AHO ,∴AG AODG HO=. ∴2211(1)m m m m m m m ---+=----+-.整理得:20m m +=. ∴1m =-或0m =(舍). --------------(2分)情况2,点A 在y 轴的负半轴上,如图(2).作AG ⊥DH 于点G∵A (0,21m m --+),D (m ,-m +1),∴H (,0m ),G (2,1m m m --+)∵∠ADH =∠AHO ,∴tan ∠ADH = tan ∠AHO ,∴AG AODG HO=. ∴2211(1)m m m m m m m -+-=----+-.整理得:220m m +-=. ∴2m =-或1m =(舍). ---------(2分) ∴1m =-或2m =-.25.(本题满分14分,第(1)、(2)小题各6分,第(3)小题2分) 解:(1)∵△AME 沿直线MN 翻折,点A 落在点P 处, ∴△AME ≌△PME . ∴∠AEM =∠PEM ,AE=PE . ∵ABCD 是矩形,∴AB ⊥BC . ∵EP ⊥BC ,∴AB // EP .∴∠AME =∠PEM . ∴∠AEM =∠AME . ∴AM =AE . ---------------------(2分) ∵ABCD 是矩形,∴AB // DC . ∴AM AECN CE=. ∴CN =CE . ------------------(1分) 设CN = CE =.∵ABCD 是矩形,AB =4,BC =3,∴AC =5. ∴PE= AE=5- . ∵EP ⊥BC ,∴4sin 5EP ACB CE =∠=. ∴545x x -=. ---------------------(1分) ∴259x =,即259CN =. ------------------------------------------------------(2分) (2)∵△AME 沿直线MN 翻折,点A 落在点P 处, ∴△AME ≌△PME . ∴AE=PE ,AM=PM . ∵EP ⊥AC ,∴4tan 3EP ACB CE =∠=. ∴43AE CE =. ∵AC =5,∴207AE =,157CE =.∴207PE =. ---------------------(2分)∵EP ⊥AC ,∴257PC ===. ∴254377PB PC BC =-=-=. --------------------------------------(2分) 在Rt △PMB 中,∵222PM PB MB =+,AM=PM . ∴2224()(4)7AM AM =+-. ∴10049AM =. --------------------------------------(2分)(3)05CP ≤≤,当CP 最大时MN .--------------------------------------------------(2分)。
2019-2020年初三数学第一学期期末考试参考答案阅卷说明:本试卷72分及格,102分优秀. 一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分 当x=﹣6时,3162x 2y -=-==;--------------------- 5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分B在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分 21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △P AD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.全等图形是相似比为1的相似图形,因此全等是特殊的相似,我们可以由研究全等三角形的思路,提出相似三角形的问题和研究方法.这种其中主要利用的数学方法是( )A .代入法B .列举法C .从特殊到一般D .反证法 【答案】C【分析】根据全等是特殊的相似,即可得到“提出相似三角形的问题和研究方法”是从特殊到一般.【详解】∵全等图形是相似比为1的相似图形,全等是特殊的相似,∴由研究全等三角形的思路,提出相似三角形的问题和研究方法,是从特殊到一般的数学方法. 故选C .【点睛】本题主要考查研究相似三角形的数学方法,理解相似三角形和全等三角形的联系,是解题的关键. 2.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 【答案】A【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:-1的相反数是1.故选A .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.3.抛物线243y x x =++的对称轴是( )A .直线1x =B .直线1x =-C .直线2x =-D .直线2x = 【答案】C 【解析】用对称轴公式2b x a=-即可得出答案. 【详解】抛物线243y x x =++的对称轴4==2221=---⨯b x a , 故选:C .【点睛】本题考查了抛物线的对称轴,熟记对称轴公式是解题的关键.4.在反比例函数y =13k x-的图象上有两点A (x 1,y 1)、B (x 2,y 2).若x 1<0<x 2,y 1<y 2则k 的取值范围是( )A .k ≥13B .k >13C .k <﹣13D .k <13【答案】D【分析】利用反比例函数的性质得到反比例函数图象分布在第一、三象限,于是得到1﹣3k >0,然后解不等式即可.【详解】∵x 1<0<x 2,y 1<y 2,∴反比例函数图象分布在第一、三象限,∴1﹣3k >0,∴k <13. 故选:D .【点睛】此题考查反比例函数的性质,根据点的横纵坐标的关系即可确定函数图象所在的象限,由此得到k 的取值范围.5.用配方法解方程240x x +=,下列配方正确的是( )A .()220x +=B .()220x -= C .()224x +=D .()224x -= 【答案】C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解: 等式两边同时加上一次项系数的绝对值一半的平方22, 2224+20+2x x +=,∴2(2)4x +=;故选:C .【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.下列各点在反比例函数2y x =-图象上的是( ) A .(2,1)--B .(1,2)-C .(1,2)--D .(2,1) 【答案】B【分析】将每个选项中点的横坐标代入反比例函数解析式中,看函数值是否一致,如果一致,说明点在函数图象上,反之则不在.【详解】A 选项中,当2x =-时,22112y x =-=-=≠--故该选项错误; B 选项中,当1x =时,22221y x =-=-=-=-,故该选项正确; C 选项中,当1x =-时,22221y x =-=-=≠--,故该选项错误; D 选项中,当2x =时,22112y x =-=-=-≠,故该选项错误. 故选B【点睛】本题主要考查点是否在反比例函数图象上,掌握反比例函数变量的求法是解题的关键.7.设1a =,则代数式2212a a +-的值为( )A .-6B .-5C .6D .5 【答案】A【分析】把a 2+2a-12变形为a 2+2a+1-13,根据完全平方公式得出(a+1)2-13,代入求出即可.【详解】∵1a =,∴2212a a +-= a 2+2a+1-13=(a+1)2-13=-1+1)2-13=7-13=-6.故选A.【点睛】本题考查了二次根式的化简,完全平方公式的运用,主要考查学生的计算能力.题目比较好,难度不大. 8.下列说法正确的是( )A .三点确定一个圆B .同圆中,圆周角等于圆心角的一半C .平分弦的直径垂直于弦D .一个三角形只有一个外接圆【答案】D【分析】由垂径定理的推论、圆周角定理、确定圆的条件和三角形外心的性质进行判断【详解】解:A 、平面内不共线的三点确定一个圆,所以A 错误;B 、在同圆或等圆中,同弧所对的圆周角等于它所对的圆心角的一半,所以B 错误;C 、平分弦(非直径)的直径垂直于弦,所以C 错误;D 、一个三角形只有一个外接圆,所以D 正确.故答案为D .【点睛】本题考查了垂径定理、圆周角定理以及确定圆的条件,灵活应用圆的知识是解答本题的关键.9.如图是小玲设计用手电来测家附近“新华大厦”高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到大厦CD 的顶端C 处,已知,AB BD CD BD ⊥⊥,且测得 1.2AB =米,1.8BP =米,24PD =米,那么该大厦的高度约为( )A .8米B .16米C .24米D .36米【答案】B 【分析】根据光线从点A 出发经平面镜反射后刚好射到大厦CD 的顶端C 处,可知APB CPD ∠=∠,再由,AB BD CD BD ⊥⊥,可得∆ABP ∽CDP ,从而可以得到AB BP CD PD=,即可求出CD 的长. 【详解】∵光线从点A 出发经平面镜反射后刚好射到大厦CD 的顶端C 处∴APB CPD ∠=∠∵,AB BD CD BD ⊥⊥∴90ABP CDP ︒∠=∠=∴∆ABP ∽CDP ∴AB BP CD PD= ∵ 1.2AB =米, 1.8BP =米,24PD =米 ∴1.2 1.824CD = ∴CD=16(米)【点睛】本题考查的知识点是相似三角形的性质与判定,通过判定三角形相似得到对应线段成比例,构成比例是关键.10.若二次函数()20y ax bx c a =++≠的图象的顶点在第一象限,且经过点(0,1)和(-1,0),则S a b c=++的值的变化范围是( )A .02S <<B .01S <<C .12S <<D .11S -<<【答案】A【分析】代入两点的坐标可得1c = ,1a b =- ,所以2S b = ,由抛物线的顶点在第一象限可得02b a-> 且0a < ,可得0b > ,再根据1a b =-、0a <,可得S 的变化范围.【详解】将点(0,1)代入()20y ax bx c a =++≠中 可得1c =将点(-1,0)代入()20y ax bx c a =++≠中 可得1a b =-∴2S a b c b =++=∵二次函数图象的顶点在第一象限∴对称轴b x 02a=-> 且0a < ∴0b >∵1a b =-,0a <∴220S a =+<∴02S <<故答案为:A .【点睛】本题考查了二次函数的系数问题,掌握二次函数的性质以及各系数间的关系是解题的关键.11.某校九年级(1)班在举行元旦联欢会时,班长觉得快要毕业了,决定临时增加一个节目:班里面任意两名同学都要握手一次.小张同学统计了一下,全班同学共握手了465次.你知道九年级(1)班有多少名同学吗?设九年级(1)班有x 名同学,根据题意列出的方程是( )A .(1)2x x -=465B .(1)2x x +=465C .x (x ﹣1)=465D .x (x +1)=465【答案】A【解析】因为每位同学都要与除自己之外的(x ﹣1)名同学握手一次,所以共握手x (x ﹣1)次,由于每次握手都是两人,应该算一次,所以共握手x (x ﹣1)÷2次,解此方程即可.【详解】解:设九年级(1)班有x 名同学,根据题意列出的方程是(1)2x x - =465, 故选A .【点睛】本题主要考查一元二次方程在实际生活中的应用,明白两人握手应该只算一次并据此列出方程是解题的关键.12.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)【答案】D【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解. 【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .二、填空题(本题包括8个小题)13.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出_____.【答案】4个小支干.【分析】设每个支干长出x 个小支干,根据主干、支干和小分支的总数是21,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每个支干长出x 个小支干,根据题意得:21x x 21++=,解得:1x 5(=-舍去),2x 4=.故答案为4个小支干.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.抛物线y =(x-2)2+3的顶点坐标是______.【答案】(2,3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【详解】解:y=(x-2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故答案为(2,3)【点睛】考查将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .15.若关于x 的一元二次方程x 2+2x+m ﹣2=0有实数根,则m 的值可以是__.(写出一个即可)【答案】3.【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=4﹣4(m ﹣2)≥0,∴m≤3.故答案为:3.【点睛】考核知识点:一元二次方程根判别式.熟记根判别式是关键.16.若二次函数25y x bx =+-的对称轴为直线1x =,则关于x 的方程251x bx +-=的解为______. 【答案】117x =+,217x =-【分析】根据对称轴方程求得b ,再代入解一元二次方程即可.【详解】解:∵二次函数y=x 2+bx-5的对称轴为直线x=1,∴2b -=1,即b=-2 ∴2260x x --=解得:117x =+,217x =-故答案为117x =+,217x =-.【点睛】本题主要考查的是抛物线与x 轴的交点、一元二次方程等知识,根据抛物线的对称轴确定b 的值是解答本题的关键.17.已知二次函数y =﹣x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程﹣x 2+2x+m =0的解为_____.【答案】x 1=﹣1或x 2=1.【分析】由二次函数y =﹣x 2+2x+m 的部分图象可以得到抛物线的对称轴和抛物线与x 轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x 轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x 的一元二次方程﹣x 2+2x+m =0的解.【详解】解:依题意得二次函数y =﹣x 2+2x+m 的对称轴为x =1,与x 轴的一个交点为(1,0), ∴抛物线与x 轴的另一个交点横坐标为1﹣(1﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x =﹣1或x =1时,函数值y =0,即﹣x 2+2x+m =0,∴关于x 的一元二次方程﹣x 2+2x+m =0的解为x 1=﹣1或x 2=1.故答案为:x 1=﹣1或x 2=1.【点睛】本题考查了关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.18.抛物线y =x 2﹣2x+1与x 轴交点的交点坐标为______.【答案】(1,0)【分析】通过解方程x 2-2x+1=0得抛物线与x 轴交点的交点坐标.【详解】解:当y =0时,x 2﹣2x+1=0,解得x 1=x 2=1,所以抛物线与x 轴交点的交点坐标为(1,0).故答案为:(1,0).【点睛】本题考查抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.三、解答题(本题包括8个小题)19.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--±.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴1640 4206a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:3 4 3 26abc⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y=233642x x--+;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=122x--,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,233642m m--+),则点F(m,122m--),∴DF=233642m m--+﹣(122m--)=2384m m--+,∴S△ADE=S△ADF+S△EDF=12×DF×AG+12DF×EH=12×DF×AG+12×DF×EH=12×4×DF=2×(2384m m--+)=23250233m-++(),∴当m=23-时,△ADE的面积取得最大值为503.(3)y=233642x x--+的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求,=,分三种情况讨论:当PA=PE n=1,此时P (﹣1,1);当PA=AE =,解得:n=P 坐标为(﹣1,;当PE=AE =,解得:n=﹣2,此时点P 坐标为:(﹣1,﹣2).综上所述:P 点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.20.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++= (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为1.当△ABC 是等腰三角形时,求k 的值【答案】(5)详见解析(4)k 4=或k 5=【分析】(5)先计算出△=5,然后根据判别式的意义即可得到结论;(4)先利用公式法求出方程的解为x 5=k ,x 4=k+5,然后分类讨论:AB=k ,AC=k+5,当AB=BC 或AC=BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(5)证明:∵△=(4k+5)4-4(k 4+k )=5>0,∴方程有两个不相等的实数根;(4)解:一元二次方程x 4-(4k+5)x+k 4+k=0的解为x=212k +,即x 5=k ,x 4=k+5, ∵k<k+5,∴AB≠AC.当AB=k ,AC=k+5,且AB=BC 时,△ABC 是等腰三角形,则k=5;当AB=k ,AC=k+5,且AC=BC 时,△ABC 是等腰三角形,则k+5=5,解得k=4,所以k 的值为5或4.【点睛】5.根的判别式;4.解一元二次方程-因式分解法;5.三角形三边关系;4.等腰三角形的性质. 21.解一元二次方程:x 2﹣5x+6=1.【答案】x 1=2,x 2=2【分析】根据因式分解法解一元二次方程,即可求解.【详解】∵x 2﹣5x+6=1,∴(x ﹣2)(x ﹣2)=1,∴x ﹣2=1或x ﹣2=1,∴x 1=2,x 2=2.【点睛】本题主要考查解一元二次方程,掌握因式分解法解方程,是解题的关键.22.如图,ABC 与DEF 是位似图形,点O 是位似中心,OA AD = ,5AB = ,求DE 的长.【答案】1【分析】已知△ABC 与△DEF 是位似图形,且OA=AD ,则位似比是OB :OE=1:2,从而可得DE .【详解】解:∵△ABC 与△DEF 是位似图形,∴△ABC ∽△DEF ,∵OA=AD ,∴位似比是OB :OE=1:2,∵AB=5,∴DE=1.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.23.如图,△ABC 中,∠BAC=120o ,以BC 为边向外作等边△BCD ,把△ABD 绕着D 点按顺时针方向旋转60o 后到△ECD 的位置.若AB=6,AC=4,求∠BAD 的度数和AD 的长.【答案】AD=10, ∠BAD=60°.【解析】先证明△ADE 是等边三角形,再推出A ,C ,E 共线;由于∠ADE=60°,根据旋转得出AB=CE=6,求出AE 即可.【详解】解:由旋转可知:△ABD ≌△ECD∴AB=EC=6, ∠BAD=∠E AD=ED∵∠ADE=60°∴△ADE 是等边三角形∴AE=AD∠E=∠DAE=60°∴∠BAD=60°∵∠BAC=120°∴∠DAC=60°=∠DAE∴C 在AE 上∴AD=AC+CE=4+6=10.【点睛】本题考查的知识点是旋转的性质, 等边三角形的性质,解题的关键是熟练的掌握旋转的性质, 等边三角形的性质.24.如图,图中每个小方格都是边长为1个单位长度的正方形,ABC ∆在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A ,B 两点的坐标分别为(2,1)A -,(1,4)B -,并写出C 点的坐标;(2)在图中作出ABC ∆绕坐标原点旋转180︒后的111A B C ∆,并写出1A ,1B ,1C 的坐标.【答案】(1)图形见解析,C 点坐标(3,3)-;(2)作图见解析,1A ,1B ,1C 的坐标分别是(2,1)- (1,4)- ()3,3-【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C 点坐标;(2)由关于原点中心对称性画111A B C ∆,可确定写出1A ,1B ,1C 的坐标.【详解】解:(1)(2,1)A -,把(2,1)A -向左平移两个单位长度,再向上平移一个单位长度,得到原点O,建立如下图的直角坐标系,∴ C (3,-3);(2)分别找到,,A B C 的对称点1A ,1B ,1C ,顺次连接1A ,1B ,1C ,∴ 111A B C ∆即为所求,如图所示,1A (-2,1),1B (-1,4),1C (-3,3).【点睛】本题考查了作图-旋转变换,熟练掌握网格结构,准确找出对应点的位置是解题的关键.25.如图所示,小吴和小黄在玩转盘游戏,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜;否则小黄胜.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形区域为止)(1)这个游戏规则对双方公平吗?说说你的理由;(2)请你设计一个对双方都公平的游戏规则.【答案】(1)不公平(2)12【解析】解:列表或画树状图正确, 转盘甲转盘乙12 3 4 51(1,1)和为2 (2,1)和为3 (3,1)和为4 (4,1)和为5 (5,1)和为62 (1,2)和为3 (2,2)和为4 (3,2)和为5 (4,2)和为6 (5,2)和为73 (1,3)和为4 (2,3)和为5(3,3)和为6 (4,3)和为7 (5,3)和为8 4 (1,4)和为5 (2,4)和为6 (3,4)和为7 (4,4)和为8 (5,4)和为9(1)数字之和一共有20种情况,和为4,5或6的共有11种情况,∵P(小吴胜)=>P(小黄胜)=,∴这个游戏不公平;(2)新的游戏规则:和为奇数小吴胜,和为偶数小黄胜.理由:数字和一共有20种情况,和为偶数、奇数的各10种情况,∴P(小吴胜)=P(小黄胜)=.26.在△ABC中,AD、CE分别是△ABC的两条高,且AD、CE相交于点O,试找出图中相似的三角形,并选出一组给出证明过程.【答案】△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA,证明见解析【分析】由题意直接根据相似三角形的判定方法进行分析即可得出答案.【详解】解:图中相似的三角形有:△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA.∵AD、CE分别是△ABC的两条高,∴∠ADB=∠CDA=∠CEB=∠AEC=90°,∴∠B+∠BCE=90°,∠B+∠BAD=90°,∴∠BAD=∠BCE,∵∠EBC=∠ABD,【点睛】本题考查相似三角形的判定.注意掌握相似三角形的判定以及数形结合思想的应用.27.如图,点P是AB上一动点,连接AP,作∠APC=45°,交弦AB于点C.AB=6cm.小元根据学习函数的经验,分别对线段AP,PC,AC的长度进行了测量.下面是小元的探究过程,请补充完整:(1)下表是点P是AB上的不同位置,画图、测量,得到线段AP,PC,AC长度的几组值,如下表:AP/cm 0 1.00 2.00 3.00 4.00 5.00 6.00 PC/cm 0 1.21 2.09 2.69 m 2.82 0AC/cm 0 0.87 1.57 2.20 2.83 3.61 6.00①经测量m的值是(保留一位小数).②在AP,PC,AC的长度这三个量中,确定______的长度是自变量,______的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为cm(保留一位小数).【答案】(1)①3.0;②AP的长度是自变量,PC的长度和AC的长度都是这个自变量的函数;(答案不唯一);(2)见解析; (3)2.3或4.2【分析】(1)①根据题意AC的值分析得出PC的值接近于半径;②由题意AP的长度是自变量,分析函数值即可;(2)利用描点法画出函数图像即可;【详解】解:(1)①AC=2.83可知PC接近于半径3.0;②AP的长度是自变量,PC的长度和AC的长度都是这个自变量的函数;(答案不唯一)(2)如图(答案不唯一,和(1)问相对应);(3)结合图像根据AP=PC以及AC=PC进行代入分析可得AP为2.3或4.2【点睛】本题考查函数图像的相关性质,利用描点法画出函数图像以及利用数形结合的思想进行分析求解.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.抛物线243y x x =++的对称轴是( )A .直线1x =B .直线1x =-C .直线2x =-D .直线2x =【答案】C 【解析】用对称轴公式2b x a=-即可得出答案. 【详解】抛物线243y x x =++的对称轴4==2221=---⨯b x a , 故选:C .【点睛】 本题考查了抛物线的对称轴,熟记对称轴公式是解题的关键.2.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是( )A .抛一枚硬币,正面朝上的概率B .掷一枚正六面体的骰子,出现1点的概率C .转动如图所示的转盘,转到数字为奇数的概率D .从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率【答案】D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P ≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A 、掷一枚硬币,出现正面朝上的概率为12,故此选项不符合题意; B 、掷一枚正六面体的骰子,出现1点的概率为16,故此选项不符合题意; C 、转动如图所示的转盘,转到数字为奇数的概率为23,故此选项不符合题意; D 、从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率为13,故此选项符合题意. 故选:D .此题考查了利用频率估计概率,属于常见题型,明确大量反复试验下频率稳定值即概率是解答的关键. 3.二次函数y =ax 2+bx+c (a≠0,a 、b 、c 为常数)的图象如图所示,则方程ax 2+bx+c =m 有实数根的条件是( )A .m≥﹣4B .m≥0C .m≥5D .m≥6【答案】A 【解析】利用函数图象,当m≥﹣1时,直线y =m 与二次函数y =ax 2+bx+c 有公共点,从而可判断方程ax 2+bx+c =m 有实数根的条件.【详解】∵抛物线的顶点坐标为(6,﹣1),即x =6时,二次函数有最小值为﹣1,∴当m≥﹣1时,直线y =m 与二次函数y =ax 2+bx+c 有公共点,∴方程ax 2+bx+c =m 有实数根的条件是m≥﹣1.故选:A .【点睛】本题考查了图象法求一元二次方程的近似根:作出函数的图象,并由图象确定方程的解的个数;由图象与y =h 的交点位置确定交点横坐标的范围;4.下列关系式中,y 是x 的反比例函数的是( )A .y=4xB .3y x =C .1y x =-D .21y x =-【答案】C【解析】根据反比例函数的定义判断即可.【详解】A 、y =4x 是正比例函数; B 、y x=3,可以化为y =3x ,是正比例函数; C 、y =﹣1x 是反比例函数; D 、y =x 2﹣1是二次函数;故选C .【点睛】本题考查的是反比例函数的定义,形如y =k x(k 为常数,k≠0)的函数称为反比例函数. 5.在Rt ABC ∆中,90C ∠=︒,A ∠、B 的对边分别是a 、b ,且满足2220a ab b --=,则tan A 等A.12B.2 C.233D.232【答案】B【分析】求出a=2b,根据锐角三角函数的定义得出tanA=ab,代入求出即可.【详解】解:a2-ab-2b2=0,(a-2b)(a+b)=0,则a=2b,a=-b(舍去),则tanA=ab=2,故选:B.【点睛】本题考查了解二元二次方程和锐角三角函数的定义的应用,注意:tanA=AA∠∠的对边的邻边.6.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm【答案】D【分析】证明△CAB∽△CDE,然后利用相似比得到DE的长.【详解】∵AB∥DE,∴△CAB∽△CDE,∴AB CB DE CE=,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【点睛】本题考查了相似三角形的应用,用相似三角形对应边的比相等的性质求物体的高度.7.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,32ADBD=,DE=6,则BC的长为()A.8 B.9 C.10 D.12 【答案】C【解析】根据相似三角形的性质可得DE ADBC AB=,再根据32ADBD=,DE=6,即可得出635BC=,进而得到BC长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴DE AD BC AB=,又∵32ADBD=,DE=6,∴635 BC=,∴BC=10,故选:C.【点睛】本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.8.如图,数轴上M,N,P,Q四点中,能表示3点的是()A.M B.N C.P D.Q【答案】C33点是哪个即可.3 1.732,在1.5与2之间,∴数轴上M,N,P,Q3的点是点P.故选:C【点睛】本题考查了在数轴上找表示无理数的点的方法,先求近似数再描点.9.如图,在ABC ∆中,,A B 两个顶点在x 轴的上方,点C 的坐标是()1,0- .以点C 为位似中心,在x 轴的下方作ABC ∆的位似,图形A B C ∆'',使得A B C ∆''的边长是ABC ∆的边长的2倍.设点B 的横坐标是-3,则点B '的横坐标是( )A .2B .3C .4D .5【答案】B 【解析】设点B′的横坐标为x ,然后根据△A′B′C 与△ABC 的位似比为2列式计算即可求解.【详解】设点B′的横坐标为x ,∵△ABC 的边长放大到原来的2倍得到△A′B′C ,点C 的坐标是(-1,0),∴x-(-1)=2[(-1)-(-1)],即x+1=2(-1+1),解得x=1,所以点B 的对应点B′的横坐标是1.故选B .【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比列出方程是解题的关键.10.点A 、B 、C 是平面内不在同一条直线上的三点,点D 是平面内任意一点,若A 、B 、C 、D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D 有( )A .1个B .2个C .3个D .4个【答案】C【解析】试题分析:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D 点恰能构成一个平行四边形,符合这样条件的点D 有3个.故选C .考点:平行四边形的判定11.抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac -b 2<0;②2a -b =0;③a +b +c <0;④点(x 1,y 1),(x 2,y 2)在抛物线上,若x 1<x 2,则y 1<y 2 .正确结论的个数是( )A .1B .2C .3D .4【答案】C 【分析】根据二次函数图像与b 2-4ac 的关系、对称轴公式、点的坐标及增减性逐一判断即可.【详解】解:①由图可知,将抛物线补全,抛物线y =ax 2+bx +c(a≠0)与x 轴有两个交点∴b 2-4ac >0∴4ac -b 2<0,故①正确;②∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1 ∴12b a-=- 解得:2b a =∴2a -b =0,故②正确;③∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间, ∴此抛物线与x 轴的另一个交点在(0,0)和(1,0)之间∵在对称轴的右侧,函数y 随x 增大而减小∴当x=1时,y <0,∴将x=1代入解析式中,得:y =a +b +c <0故③正确;④若点(x 1,y 1),(x 2,y 2)在对称轴右侧时,函数y 随x 增大而减小即若x 1<x 2,则y 1>y 2故④错误;故选C.【点睛】此题考查的是二次函数图像及性质,掌握二次函数图像及性质和各系数之间的关系是解决此题的关键. 12.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .2【答案】D【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x 的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.二、填空题(本题包括8个小题)13.抛物线29y x =-与y 轴的交点做标为__________.【答案】 (0,9)【分析】令x=0,求出y 的值,然后写出交点坐标即可.【详解】解:x=0时,y=-9,所以,抛物线与y 轴的交点坐标为(0,-9).故正确答案为:(0,-9).【点睛】本题考查二次函数图象上点的坐标特征,解题关键是熟练掌握二次函数图象与坐标轴的交点的求解方法.14.如图,已知二次函数2y x mx n =++顶点D 的纵坐标为3-,平行于x 轴的直线l 交此抛物线A ,B 两点,且6AB =,则点D 到直线l 的距离为__________【答案】1【分析】设出顶点式()23y x h =--,根据6AB =,设出B (h+3,a ),将B 点坐标代入,即可求出a 值,即可求出直线l 与x 轴之间的距离,进一步求出答案.【详解】由题意知函数的顶点纵坐标为-3,可设函数顶点式为()23y x h =--,因为平行于x 轴的直线l 交此抛物线A ,B 两点,且6AB =,所以可设B (h+3,a ).将B (h+3,a )代入()23y x h =--,得()2336a h h =+--=所以点B 到x 轴的距离是6,即直线l 与x 轴的距离是6,又因为D 到x 轴的距离是3所以点D 到直线l 的距离:3+6=1故答案为1.【点睛】本题考查了顶点式的应用,能根据题意设出顶点式是解答此题的关键.15.若⊙O 是等边△ABC 的外接圆,⊙O 的半径为2,则等边△ABC 的边长为__.【答案】23【解析】试题解析:如图:连接OA 交BC 于D ,连接OC ,ABC 是等边三角形,O 是外心,30,2,OCD OC ∴∠==11,2OD OC == 3,CD BD ∴==2 3.BC = 故答案为2 3.16.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.【答案】1.【分析】根据题意得出摸出红球的频率,继而根据频数=总数×频率计算即可.【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,∴口袋中红色球的个数可能是30×40%=1个.故答案为:1.【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如果23x y =,那么下列比例式中正确的是( )A .23x y = B .23x y = C .32x y = D .23x y = 【答案】C 【分析】根据比例的性质,若a cb d =,则ad bc =判断即可. 【详解】解:23x y =32x y ∴= 故选:C.【点睛】本题主要考查了比例的性质,灵活的利用比例的性质进行比例变形是解题的关键.2.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .2【答案】D【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x 的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.3.下列根式中,是最简二次根式的是( )A B C D 【答案】D【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),逐一判断即可得答案.【详解】是最简二次根式,符合题意,故选:D.【点睛】本题考查了对最简二次根式的理解,被开方数不含有能开的尽方的因式或因数,被开方数不含有分数的二次根式叫做最简二次根式;能熟练地运用定义进行判断是解此题的关键.4.关于x 的一元二次方程x 2+ax ﹣1=0的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 【答案】D【解析】∵△=24a +>0,∴方程有两个不相等的实数根.故选D .5.将抛物线23y x =-向左平移2个单位后,得到的抛物线的解析式是( )A .23(2)y x =-+B .232y x =-+C .23(2)y x =--D .232y x =--【答案】A【详解】解:∵抛物线23y x =-向左平移2个单位后的顶点坐标为(﹣2,0), ∴所得抛物线的解析式为23(2)y x =-+.故选A .【点睛】本题考查二次函数图象与几何变换,利用数形结合思想解题是关键.6.若|m|=5,|n|=7,m+n <0,则m ﹣n 的值是( )A .﹣12或﹣2B .﹣2或12C .12或2D .2或﹣12【答案】C【分析】根据题意,利用绝对值的意义求出m 与n 的值,再代入所求式子计算即可.【详解】解:∵|m|=5,|n|=7,且m+n <0,∴m =5,n =﹣7;m =﹣5,n =﹣7,可得m ﹣n =12或2,则m ﹣n 的值是12或2.故选:C.【点睛】本题考查了绝对值的意义,掌握绝对值的意义求值是关键.7.下列计算正确的是( )A .2a+5b =10abB .(﹣ab )2=a 2bC .2a 6÷a 3=2a 3D .a 2•a 4=a 8【答案】C【分析】分别对选项的式子进行运算得到:2a+5b 不能合并同类项,(﹣ab )2=a 2b 2,a 2•a 4=a 6即可求解.【详解】解:2a+5b 不能合并同类项,故A 不正确;(﹣ab )2=a 2b 2,故B 不正确;2a 6÷a 3=2a 3,正确a 2•a 4=a 6,故D 不正确;故选:C .【点睛】本题考查了幂的运算,解题的关键是掌握幂的运算法则.8.如图所示,在矩形ABCD 中,4,5==AB BC ,点E 在BC 边上,AF 平分DAE ∠,EF AE ⊥,垂足为E ,则CF 等于( )A .23B .1C .32D .2【答案】C【分析】利用矩形的性质、全等的性质结合方程与勾股定理计算即可得出答案.【详解】根据矩形的性质可得,∠D=90°又EF ⊥AE∴∠AEF=90°∴AEF D ∠∠=∵AF 平分∠DAE∴∠EAF=∠DAF在△AEF 和△ADF 中AEF D EAF DAF AF AF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△ADF∴AE=AD=BC=5 ,DF=EF在RT △ABE 中,223BE AE AB =-=∴EC=BC-BE=2设DF=EF=x ,则CF=4-x 在RT △CEF 中,222EF FC EC =+即()22242x x =-+解得:x=52∴32CF DC DF =-=故答案选择C.【点睛】本题考查的是矩形的综合,难度适中,解题关键是利用全等证出△AEF ≌△ADF.9.如图,平行四边形ABCD 中,M 为BC 边的中点,DM 交AC 于点E ,则图中阴影部分面积与平行四边形ABCD 的面积之比为( )A .1:2B .2:5C .5:12D .6:13【答案】C 【分析】根据等底等高的三角形面积比和相似三角形的相似比推出阴影部分面积.【详解】设平行四边形的边AD=2a ,AD 边上的高为3b ;过点E 作EF ⊥AD 交AD 于F ,延长FE 交BC 于G∴平行四边形的面积是6ab∴FG=3b∵AD ∥BC∴△AED ∽△CEM∵M 是BC 边的中点,∴2EF AD EG MC ==, ∴EF=2b ,EG=b ∴1122CEM S EG CM ab =⨯= ∵1322CDM ACM S S FG CM ab ==⨯= ∴CDE CDM CEM S S S ab =-=∴阴影部分面积=52ACM CDE S S ab =+= ∴阴影部分面积:平行四边形ABCD 的面积=5:65:122ab ab = 故选:C .【点睛】本题主要考查了相似三角形的性质,相似三角形的对应边上的高线的比等于相似比.10.如图,在直角坐标系中,⊙A 的半径为2,圆心坐标为(4,0),y 轴上有点B (0,3),点C 是⊙A 上的动点,点P 是BC 的中点,则OP 的范围是( )A .3722OP ≤≤B .2≤OP≤4C .52≤OP≤92D .3≤OP≤4【答案】A【分析】如图,在y 轴上取点B'(0,﹣3),连接B'C ,B'A ,由勾股定理可求B'A =5,由三角形中位线定理可求B'C =2OP ,当点C 在线段B'A 上时,B'C 的长度最小值=5﹣2=3,当点C 在线段B'A 的延长线上时,B'C 的长度最大值=5+2=7,即可求解.【详解】解:如图,在y 轴上取点B'(0,﹣3),连接B'C ,B'A ,∵点B (0,3),B'(0,﹣3),点A (4,0),∴OB =OB'=3,OA =4, ∴22009165B A A B ''=+=+=,∵点P 是BC 的中点,∴BP =PC ,∵OB =OB',BP =PC ,∴B'C =2OP ,当点C 在线段B'A 上时,B'C 的长度最小值=5﹣2=3,当点C 在线段B'A 的延长线上时,B'C 的长度最大值=5+2=7, ∴3722OP ≤≤, 故选:A .【点睛】本题考查了三角形中位线定理,勾股定理,平面直角坐标系,解决本题的关键是正确理解题意,熟练掌握三角形中位线定理的相关内容,能够得到线段之间的数量关系.11.对于反比例函数8y x=,下列说法不正确的是( ) A .图像分布在第一、三象限 B .当0x >时,y 随x 的增大而减小C .图像经过点(4,2)--D .若点()()1122,,,A x y B x y 都在图像上,且12x x <,则12y y <【答案】D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A 、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B 、k=8>0,当x >0时,y 随x 的增大而减小,故本选项正确,不符合题意;C 、∵824=--,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意;D 、点A (x 1,y 1)、B (x 2、y 2)都在反比例函数8y x=的图象上,若x 1<x 2<0,则y 1>y 2,故本选项错误,符合题意.故选D.【点睛】 本题考查了反比例函数的性质,对于反比例函数()0k y k x=≠,(1)k >0,反比例函数图象在一、三象限,在每一个象限内,y 随x 的增大而减小;(2)k <0,反比例函数图象在第二、四象限内,在每一个象限内,y 随x 的增大而增大.12.一件商品的原价是100元,经过两次降价后价格为81元,设每次降价的百分比都是x ,根据题意,下面列出的方程正确的是( )A .()21001x 81?+= B .()21001x 81? -= C .()1001x 81?+=D .()1001x 81-= 【答案】B【分析】原价为100,第一次降价后的价格是100×(1-x ),第二次降价是在第一次降价后的价格的基础上降价的,第二次降价后的价格为:100×(1-x )×(1-x )=100(1-x )2,则可列出方程.【详解】设平均每次降价的百分比为x ,根据题意可得:100(1-x )2=81故选:B .【点睛】本题主要考查了一元二次方程的增长率问题,需注意第二次降价是在第一次降价后的价格的基础上降价的.二、填空题(本题包括8个小题)13.三角形的三条边分别为5,5,6,则该三角形的内切圆半径为__________【答案】1.5【分析】由等腰三角形的性质和勾股定理,求出CE 的长度,然后利用面积相等列出等式,即可求出内切圆的半径.【详解】解:如图,点O 为△ABC 的内心,设OD=OE=OF=r ,∵AC=BC=5,CE 平分∠ACB ,∴CE ⊥AB ,AE=BE=116322AB =⨯=, 在Rt △ACE 中,由勾股定理,得22534CE =-=,由三角形的面积相等,则ABC AOC AOB BOC S S S S ∆∆∆∆=++,∴11111()22222AB CE AC OD AB OE BC OF AC AB BC r •=•+•+•=•++•, ∴1164=(565)22r ⨯⨯⨯++, ∴ 1.5r =;故答案为:1.5;【点睛】本题考查的是三角形的内切圆与内心,三线合一定理,勾股定理,掌握三角形的面积公式进行计算是解题的关键.14.如图,一辆汽车沿着坡度为1:3i =的斜坡向下行驶50米,则它距离地面的垂直高度下降了 米.【答案】25【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【详解】解:设垂直高度下降了x 3x 米.根据勾股定理可得:x 2+3)2=1.解得x=25,即它距离地面的垂直高度下降了25米.【点睛】此题考查三角函数的应用.关键是熟悉且会灵活应用公式:tanα(坡度)=垂直高度÷水平宽度,综合利用了勾股定理.15.已知:25(2)my m x -=-是反比例函数,则m=__________.【答案】-2【解析】根据反比例函数的定义.即y=k x (k≠0),只需令m 2-5=-1、m-2≠0即可. 【详解】因为y=(m −2)25 m x -是反比例函数,所以x 的指数m 2−5=−1,即m 2=4,解得:m=2或−2;又m −2≠0,所以m≠2,即m=−2.故答案为:−2.【点睛】本题考查的知识点是反比例函数的定义,解题的关键是熟练的掌握反比例函数的定义.16.计算:2sin 458︒-=______.【答案】2-【分析】根据特殊角三角函数值和二次根式化简整理,合并同类二次根式即可求解.【详解】解:22sin 458222=222=22︒-=⨯---. 故答案为:2-【点睛】本题考查了特殊角的三角函数值和二次根式的计算,熟知特殊角的三角函数值是解题关键.17.如图,一段抛物线(2)(02)y x x x =--≤≤记为1C ,它与x 轴交于两点O 、1A ,将1C 绕1A 旋转180︒得到2C ,交x 轴于2A ,将2C 绕2A 旋转180︒得到3C ,交x 轴于3A ;如此进行下去,直至得到8C ,若点29,2P m ⎛⎫ ⎪⎝⎭在第8段抛物线8C 上,则m 等于__________【答案】34- 【分析】求出抛物线1C 与x 轴的交点坐标,观察图形可知第奇数号抛物线都在x 轴上方、第偶数号抛物线都在x 轴下方,再根据向右平移横坐标相加表示出抛物线8C 的解析式,然后把点P 的横坐标代入计算即可.【详解】抛物线()()21:112C y x x x =--+=--与x 轴的交点为(0,0)、(2,0),将1C 绕1A 旋转180°得到2C ,则2C 的解析式为()()24y x x =--,同理可得3C 的解析式为()()46y x x =---,4C 的解析式为()()68y x x =--5C 的解析式为()()810y x x =---6C 的解析式为()()1012y x x =--7C 的解析式为()()1214y x x =---8C 的解析式为()()1416y x x =-- ∵点29,2P m ⎛⎫ ⎪⎝⎭在抛物线8C 上, ∴292931416224m ⎛⎫⎛⎫=-⨯-=- ⎪ ⎪⎝⎭⎝⎭故答案为34-【点睛】 本题考查的是二次函数的图像性质与平移,能够根据题意确定出8C 的解析式是解题的关键. 18.如图,在平行四边形ABCD 中,E 是线段AB 上的点,如果5AB =,3AE =,连接CE 与对角线BD 交于点F ,则:BEF BCF S S ∆∆=_______.【答案】2:5【分析】由平行四边形的性质得AB ∥DC ,AB =DC ;平行直线证明△BEF ∽△DCF ,其性质线段的和差求得25BE EF DC FC ==,三角形的面积公式求出两个三角形的面积比为2:1. 【详解】∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB =DC ,∴△BEF ∽△DCF ,∴BE EF DC FC=, 又∵BE =AB−AE ,AB =1,AE =3,∴BE =2,DC =1,∴25BE EF DC FC ==, 又∵S △BEF =12•EF •BH ,S △DCF =12•FC •BH , ∴122152BEF DCF EF BH EF FC FC B S S H ⋅⋅===⋅⋅, 故答案为2:1.【点睛】本题综合考查了平行四边形的性质,相似三角形的判定与性质,三角形的面积公式等相关知识点,重点掌握相似三角形的判定与性质.三、解答题(本题包括8个小题)19.用适当的方法解方程:(1)22350x x +-=(2)()()22312x x +=-.【答案】(1)11x =;252x =-;(2)1x =23-,2x =1. 【分析】(1)用公式法求解;(2)用因式分解法求解.【详解】解:(1)a=2,b=3,c=-5,△=32-1×2×(-5)=19>0,所以x 1322-+⨯=1, x 1=2b a -=322--⨯=52-; (2)()()22312x x +=- ()()223120x x +--= [(x+3)+(1-2x)] [(x+3)-(1-2x)]=0(-x+1)(3x+2)=0所以3x+2=0或-x+1=0,解得x 1=23-,x 2=1. 【点睛】本题考查了一元二次方程的解法,根据方程的特点选择适当的方法是解决此题的关键.20.如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =+-≠与x 轴交于(1,0)A 、(3,0)B 两点,与y 轴交于点C ,其顶点为点D ,点E 的坐标为(0,-1),该抛物线与BE 交于另一点F ,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为2()y a x h k =-+的形式;(2)若点(1,)H y 在BC 上,连接FH ,求FHB ∆的面积;(3)一动点M 从点D 出发,以每秒1个单位的速度沿平行于y 轴方向向上运动,连接OM ,BM ,设运动时间为t 秒(t >0),在点M 的运动过程中,当t 为何值时,90OMB ︒∠=?【答案】(1)222(2)33y x =--+;(2)56;(3)223t =- 【解析】(1)将A ,B 两点的坐标代入抛物线解析式中,得到关于a ,b 的方程组,解之求得a ,b 的值,即得解析式,并化为顶点式即可;(2)过点A 作AH ∥y 轴交BC 于H ,BE 于G ,求出直线BC ,BE 的解析式,继而可以求得G 、H 点的坐标,进一步求出GH ,联立BE 与抛物线方程求出点F 的坐标,然后根据三角形面积公式求出△FHB 的面积; (3)设点M 坐标为(2,m ),由题意知△OMB 是直角三角形,进而利用勾股定理建立关于m 的方程,求出点M 的坐标,从而求出MD ,最后求出时间t.【详解】(1)∵抛物线22(0)y ax bx a =+-≠与x 轴交于A (1,0),B(3,0)两点, ∴209320a b a b +-=⎧⎨+-=⎩∴2383a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线解析式为2228222(2)3333y x x x =-+-=--+. (2)如图1,过点A作AH∥y轴交BC于H,BE于G,由(1)有,C(0,-2),∵B(3,0),∴直线BC解析式为y=23x-2,∵H(1,y)在直线BC上,∴y=-43,∴H(1,-43),∵B(3,0),E(0,-1),∴直线BE解析式为y=-13x-1,∴G(1,-23),∴GH=23,∵直线BE:y=-13x-1与抛物线y=-23x2+83x-2相较于F,B,∴F(12,-56),∴S△FHB=12GH×|x G-x F|+12GH×|x B-x G|=12GH×|x B-x F|=12×23×(3-12)=56.(3)如图2,由(1)有y=-23x2+83x-2,∵D为抛物线的顶点,∴D(2,43),∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,∴设M (2,m ),(m >23), ∴OM 2=m 2+4,BM 2=m 2+1,OB 2=9,∵∠OMB=90°,∴OM 2+BM 2=OB 2,∴m 2+4+m 2+1=9,∴m=2或m=-2(舍),∴M (2,2),∴MD=2-23, ∴t=2-23. 【点睛】 本题考查了待定系数法求二次函数的表达式,待定系数法求一次函数表达式,角平分线上的点到两边的距离相等,勾股定理等知识点,综合性比较强,不仅要掌握性质定理,作合适的辅助线也对解题起重要作用. 21.如图是某区域的平面示意图,码头A 在观测站B 的正东方向,码头A 的北偏西60︒方向上有一小岛C ,小岛C 在观测站B 的北偏西15︒方向上,码头A 到小岛C 的距离AC 为10海里.(1)填空:BAC ∠= 度,C ∠= 度;(2)求观测站B 到AC 的距离BP (结果保留根号).【答案】(1)30,45;(2)(3-5)海里【分析】(1)由题意得:906030BAC ︒︒︒∠=-=,9015105ABC ︒︒︒∠=+=,由三角形内角和定理即可得出C ∠的度数;(2)证出BCP ∆是等腰直角三角形,得出=BP PC ,求出3PA BP =,由题意得出310BP BP +=,解得535BP =-即可.【详解】解:(1)由题意得:906030BAC ︒︒︒∠=-=,9015105ABC ︒︒︒∠=+=,18045C BAC ABC ︒︒∴∠=-∠-∠=;故答案为30,45;(2)BP AC ⊥,90BPA BPC ︒∴∠=∠=,45C ︒∠=,BCP ∴∆是等腰直角三角形,BP PC ∴=,30BAC ︒∠=, 3PA BP ∴=,PA PC AC +=,310BP BP ∴+=,解得:535BP =-,答:观测站B 到AC 的距离BP 为(535)-海里.【点睛】本题考查了解直角三角形的应用﹣方向角问题,通过解直角三角形得出方程是解题的关键.22.某班级元旦晚会上,有一个闯关游戏,在一个不透明的布袋中放入3个乒乓球,除颜色外其它都相同,它们的颜色分别是绿色、黄色和红色.搅均后从中随意地摸出一个乒乓球,记下颜色后放回,搅均后再从袋中随意地摸出一个乒乓球,如果两次摸出的球的颜色相同,即为过关.请用画树状图或列表法求过关的概率.【答案】13. 【分析】先根据题意画出树状图,然后由树状图求得所有等可能的结果.【详解】解:画树状图如下:共有9种等可能的结果数,其中两次摸出的球的颜色相同的结果数为3,所以过关的概率是39=13. 【点睛】本题的考点是树状图法.方法是根据题意画出树状图,由树状图得出答案.23.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A 、B 、C 三种型号,乙品牌有D 、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少.【答案】(1)答案见解析;(2)1 3【分析】(1)画出树状图即可;(2)根据树状图可以直观的得到共有6种情况,选中A的情况有2种,进而得到概率.【详解】解:(1)如图所示:(2)所有的情况有6种,A型器材被选中情况有2种中,概率是21 63 .【点睛】本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.24.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,BD=5O的半径.【答案】(1)见解析;(2)52.【分析】(1)证明△DAF≌△DCE,可得∠DFA=∠DEC,证出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切线.(2)在Rt△ADF和Rt△BDF中,可得AD2-(AD-BF)2=DB2-BF2,解方程可求出AD的长即可.【详解】(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DFA=∠DEC,∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,∵AD是⊙O的直径,∴∠DFA=90°,∴∠DFB=90°,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴()2222()2252AD AD ---=,∴AD =1.∴⊙O 的半径为52. 【点睛】此题考查圆的综合,圆周角定理,菱形的性质,切线的判定,三角形全等的性质和判定,勾股定理等知识,解题关键是根据勾股定理列方程解决问题.25.汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?【答案】2008年盈利3600万元.【分析】设该公司从2007年到2009年,每年盈利的年增长率是x ,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利.【详解】解:设每年盈利的年增长率为x ,由题意得:3000(1+x)2=4320,解得:10.2x =,2 2.2x =-(不合题意,舍去),∴年增长率20%,∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元.【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率. 26.西安市某中学数学兴趣小组在开展“保护环境,爱护树木”的活动中,利用课外时间测量一棵古树的高,由于树的周围有水池,同学们在低于树基3.3米的一平坝内(如图).测得树顶A 的仰角∠ACB=60°,沿直线BC 后退6米到点D ,又测得树顶A 的仰角∠ADB=45°.若测角仪DE 高1.3米,求这棵树的高AM .(结果保留两位小数,3≈1.732)【答案】12.20米【分析】可在Rt △ABD 和Rt △ABC 中,利用已知角的三角函数,用AB 表示出BD 、BC ,根据CD=BD ﹣BC=6即可求出AB 的长;已知HM 、DE 的长,易求得BM 的值,由AM=AB ﹣BM 即可求出树的高度.【详解】设AB=x 米.Rt △ABD 中,∠ADB=45°,BD=AB=x 米.Rt △ACB 中,∠ACB=60°,BC=AB ÷tan60°3=x 米. CD=BD ﹣BC=(13-)x=6, 解得:x=9+33,即AB=(9+33)米.∵BM=HM ﹣DE=3.3﹣1.3=2,∴AM=AB ﹣BM=7+33≈12.20(米).答:这棵树高12.20米.【点睛】本题考查了解直角三角形的应用,首先构造直角三角形,再借助角边关系、三角函数的定义解题. 27.如图,一次函数y 1=k 1x+b (k 1、b 为常数,k 1≠0)的图象与反比例函数y 2=2k x(k 2≠0)的图象交于点A (m ,1)与点B (﹣1,﹣4).(1)求反比例函数与一次函数的解析式;(2)根据图象说明,当x 为何值时,k 1x+b ﹣2k x<0; (3)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,过点P 作y 轴的平行线交直线AB 于点C ,连接OC ,若△POC 的面积为3,求点P 的坐标.【答案】(1)y 1=x ﹣3;24y x =;(2)x <﹣1或0<x <4;(3)点P 的坐标为45,5⎛⎫ ⎪⎝⎭或(1,4)或(2,2)【分析】(1)把B 点坐标代入反比例函数解析式可求得k 2的值,把点A (m ,1)代入求得的反比例函数的解析式求得m ,然后利用待定系数法即可求得一次函数的解析式;(2)直接由A 、B 的坐标根据图象可求得答案;(3)设点P的坐标为4(,)(0)m mm>,则C(m,m﹣3),由△POC的面积为3,得到△POC的面积14|(3)|32m mm=⨯--=,求得m的值,即可求得P点的坐标.【详解】解:(1)将B(﹣1,﹣4)代入22kyx=得:k2=4∴反比例函数的解析式为24yx=,将点A(m,1)代入y2得41m=,解得m=4,∴A(4,1)将A(4,1)、B(﹣1,﹣4)代入一次函数y1=k1x+b得11414k bk b+=⎧⎨-+=-⎩解得k1=1,b=﹣3∴一次函数的解析式为y1=x﹣3;(2)由图象可知:x<﹣1或0<x<4时,k1x+b﹣2kx<0;(3)如图:设点P的坐标为4(,)(0)m mm>,则C(m,m﹣3)∴4|(3)|PC mm=--,点O到直线PC的距离为m∴△POC的面积=14|(3)|32m mm=⨯--=,解得:m=5或﹣2或1或2,又∵m>0∴m=5或1或2,∴点P的坐标为45,5⎛⎫⎪⎝⎭或(1,4)或(2,2).【点睛】本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例函数的解析式,三角形面积,熟练掌握待定系数法是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.设()12,A y -,()21,B y ,()32,C y 是抛物线22(1)y a x k =++(a ,k 为常数,且0a ≠)上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>【答案】C【分析】根据二次函数的性质得到抛物线抛物线y=a 2(x+1)2+k (a ,k 为常数,且a ≠0)的开口向上,对称轴为直线x=-1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线抛物线y=a 2(x+1)2+k (a ,k 为常数,且a ≠0)的开口向上,对称轴为直线x=-1,而A (-2,y 1)离直线x=-1的距离最近,C (2,y 1)点离直线x=-1最远,∴y 1<y 2<y 1.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.2中,x 的取值范围是( )A .x 3≥B .x 3>C .x 3≤D .x 3< 【答案】A【解析】根据二次根式有意义的条件:被开方数为非负数解答即可.∴x-3≥0,解得x≥3.故选A.【点睛】本题考查了二次根式有意义的条件.熟记二次根式的被开方数是非负数是解题关键.3.如图,点O 为正五边形ABCDE 外接圆的圆心,五边形ABCDE 的对角线分别相交于点P ,Q ,R ,M ,N .若顶角等于36°的等腰三角形叫做黄金三角形,那么图中共有( )个黄金三角形.A.5 B.10 C.15 D.20【答案】D【分析】根据正五边形的性质和黄金三角形的定义进行分析.【详解】根据题意,得图中的黄金三角形有△EMR、△ARQ、△BQP、△CNP、△DMN、△DER、△EAQ、△ABP、△BCN、△CDM、△DAB、△EBC、△ECA、△ACD、△BDE,△ABR,△BQC,△CDP,△DEN,△EAQ,共20个.故选D.【点睛】此题考查了正五边形的性质和黄金三角形的定义.注意:此图中所有顶角是锐角的等腰三角形都是黄金三角形.4.下列四个图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形与中心对称图形的概念,并结合图形的特点求解.【详解】解:A、不是轴对称图形,是中心对称图形,故选项错误;B、不是轴对称图形,是中心对称图形,故选项错误;C、是轴对称图形,不是中心对称图形,故选项错误;D、是轴对称图形,是中心对称图形,故选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.5.如图,正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点.现随机向正方形ABCD内投掷一枚小针,则针尖落在阴影区域的概率为()A.18B.14C.13D.12【答案】B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,∵AB为直径,∴∠AEB=90°,而AC为正方形的对角线,∴AE=BE=CE,∴弓形AE的面积=弓形BE的面积,∴阴影部分的面积=△BCE的面积,∴镖落在阴影部分的概率=14.故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.6.在反比例函数1kyx-=的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1D.k<1【答案】A【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【详解】解:根据题意,在反比例函数1kyx-=图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.【点评】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.7.如图,AB,AC分别为⊙O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n 边形的一边,则n的值为()A.8 B.10 C.12 D.15【答案】C【分析】根据图形求出正多边形的中心角α,再由正多边形的中心角和边的关系:360nα︒=,即可求得.【详解】连接OA、OB、OC,如图,∵AC,AB分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOC=3604︒=90°,∠AOB=3603︒=120°,∴∠BOC=∠AOB﹣∠AOC=30°,∴n=36030︒︒=12,即BC恰好是同圆内接一个正十二边形的一边.故选:C.【点睛】本题考查正多边形的中心角和边的关系,属基础题.8.下列说法正确的是()A.“清明时节雨纷纷”是必然事件B.要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查C .做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55D .射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好【答案】C【分析】根据随机事件的概念、抽样调查的特点、方差的意义及概率公式分别判断可得.【详解】解:A 、“清明时节雨纷纷”是随机事件,此选项错误;B 、要了解路边行人边步行边低头看手机的情况,采取对在路边行走的学生随机发放问卷的方式进行调查不具代表性,此选项错误;C 、做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55,正确;D 、射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较稳定,此选项错误;9.羽毛球运动是一项非常受人喜欢的体育运动.某运动员在进行羽毛球训练时,羽毛球飞行的高度()h m 与发球后球飞行的时间()t s 满足关系式22 1.5h t t =-++,则该运动员发球后1s 时,羽毛球飞行的高度为( )A .1.5mB .2mC .2.5mD .3m 【答案】C【分析】根据函数关系式,求出t=1时的h 的值即可. 【详解】22 1.5h t t =-++∴t=1s 时,h=-1+2+1.5=2.5故选C.【点睛】本题考查了二次函数的应用,知道t=1时满足函数关系式是解题的关键.10.下列事件是必然事件的是( )A .打开电视机,正在播放篮球比赛B .守株待兔C .明天是晴天D .在只装有5个红球的袋中摸出1球,是红球.【答案】D【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【详解】解:打开电视机,正在播放篮球比赛是随机事件,A 不符合题意;守株待兔是随机事件,B 不符合题意;明天是晴天是随机事件,C 不符合题意在只装有5个红球的袋中摸出1球,是红球是必然事件,D 符合题意.故选:D .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,若∠AOD=30°,则∠BCD 的度数是( )A .150°B .120°C .105°D .75°【答案】C 【解析】试题解析:连接AC ,∵AB 为⊙O 的直径,∴∠ACB=90°,∵∠AOD=30°,∴∠ACD=15°,∴∠BCD=∠ACB+∠ACD=105°,故选C .12.如图,矩形ABCD 中,AC ,BD 交于点O ,M ,N 分别为BC ,OC 的中点.若3MN =,6AB =,则ACB ∠的度数为( )A .30B .35︒C .45︒D .60︒【答案】A 【分析】根据矩形的性质和直角三角形的性质以及中位线的性质,即可得到答案.【详解】∵M ,N 分别为BC ,OC 的中点,。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若一次函数y ax b =+的图像经过第一、二、四象限,则下列不等式中总是成立的是( ) A .0b < B .0a b ->C .20a b +>D .0a b +>【答案】C【分析】首先判断a 、b 的符号,再一一判断即可解决问题. 【详解】∵一次函数y =ax +b 的图象经过第一、二、四象限, ∴a <0,b >0,故A 错误;0a b -<,故B 错误;a 2+b >0,故C 正确,a +b 不一定大于0,故D 错误. 故选:C . 【点睛】本题考查一次函数与不等式,解题的关键是学会根据函数图象的位置,确定a 、b 的符号,属于中考常考题型.2.在△ABC 中,∠C=90°,则下列等式成立的是( ) A .sinA=ACABB .sinA=BCABC .sinA=ACBCD .sinA=BCAC【答案】B【解析】分析:根据题意画出图形,进而分析得出答案.详解:如图所示:sinA=BCAB. 故选B .点睛:本题主要考查了锐角三角函数的定义,正确记忆边角关系是解题的关键.3.如图,在⊙O 中,分别将AB 、CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是( )A.8 B.163C.32 D.323【答案】B【分析】过O作OH⊥AB交⊙O于E,延长EO交CD于G,交⊙O于F,连接OA,OB,OD,根据平行线的性质得到EF⊥CD,根据折叠的性质得到OH=12OA,进而推出△AOD是等边三角形,得到D,O,B三点共线,且BD为⊙O的直径,求得∠DAB=90°,同理,∠ABC=∠ADC=90°,得到四边形ABCD是矩形,于是得到结论.【详解】过O作OH⊥AB交⊙O于E,延长EO交CD于G,交⊙O于F,连接OA,OB,OD.∵AB∥CD,∴EF⊥CD.∵分别将AB、CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=12OA,∴∠HAO=30°,∴∠AOH=60°,同理∠DOG=60°,∴∠AOD=60°,∴△AOD是等边三角形.∵OA=OB,∴∠ABO=∠BAO=30°,∴∠AOB=120°,∴∠AOD+∠AOB=180°,∴D,O,B三点共线,且BD为⊙O的直径,∴∠DAB=90°,同理,∠ABC=∠ADC=90°,∴四边形ABCD是矩形,∴AD=AO=4,AB=3AD=43,∴四边形ABCD的面积是163.故选B.【点睛】本题考查了垂径定理,圆周角定理,矩形的判定和性质,正确的作出辅助线是解答本题的关键.4.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .4【答案】B【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案. 详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下, ∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确; ②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x 轴有2个交点,故b 2﹣4ac >0,故③错误; ④∵图象的对称轴为x=1,与x 轴交于点A 、点B (﹣1,0), ∴A (3,0),故当y >0时,﹣1<x <3,故④正确. 故选B .点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键. 5.已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:则下列判断中正确的是( ) x … ﹣1 0 1 2 … y…﹣5131…A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x=3时,y <0D .方程ax 2+bx+c=0有两个相等实数根【答案】C【解析】根据表格的数据,描点连线得,根据函数图像,得:抛物线开口向下;抛物线与y 轴交于正半轴;当x=3时,y <0 ;方程20ax bx c ++=有两个相等实数根.故选C.6.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4 B.2C.2 D2【答案】A【解析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到22,2,再利用AC⊥x轴得到C22),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴22∴2∵AC⊥x轴,∴C2,2,把C2,2y=kx得22,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k 是解题的关键.7.下图中,最能清楚地显示每组数据在总数中所占百分比的统计图是( )A .B .C .D .【答案】A【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图. 故选:A . 【点睛】本题考查统计图的选择,解决本题的关键是明确:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频率分布直方图,清楚显示在各个不同区间内取值,各组频率分布情况,易于显示各组之间频率的差别.8.若整数a 使关于x 的不等式组1252652x x x a ++⎧≤⎪⎨⎪->-⎩至少有4个整数解,且使关于x 的分式方程1223ax x -=+有整数解,那么所有满足条件的a 的和是( ) A .13- B .15-C .17-D .20-【答案】A【分析】根据不等式组求出a的范围,然后再根据分式方程求出a的取值范围,综合考虑确定a的值,再求和即可.【详解】解不等式组125 2652x xx a++⎧≤⎪⎨⎪->-⎩得:225-<≤ax∵至少有4个整数解∴215-<-a,解得3a<-分式方程去分母得()1223-=+ax x解得:62xa=+∵分式方程有整数解,a为整数∴21a+=±、2±、3±、6±∴=1a、3-、0、4-、1、5-、4、8-∵632=≠-+xa,∴4a≠-又∵3a<-∴=5-a或=8-a满足条件的a的和是-13,故选A.【点睛】本题考查了不等式组与分式方程,解题的关键是解分式方程时需要舍去增根的情况.9.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=【答案】D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβ=,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.10.如图,CD是⊙O的直径,已知∠1=30°,则∠2等于( )A.30°B.45°C.60°D.70°【答案】C【解析】试题分析:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°考点:圆周角定理11.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是一般锐角三角形【答案】B【分析】试题分析:由tanA=1,2结合特殊角的锐角三角函数值可得∠A、∠B的度数,即可判断△ABC的形状.【详解】∵tanA=1,sinB=2 2∴∠A=45°,∠B=45°∴△ABC是等腰直角三角形故选B.考点:特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.12.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似()A.①处B.②处C.③处D.④处【答案】B【分析】确定“帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长,然后利用相似三角形的对应边的比相等确定第三个顶点的位置即可.【详解】帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2,25,42;“车”、“炮”之间的距离为1,“炮”②之间的距离为5,“车”②之间的距离为2 2,∵52212 2542==∴马应该落在②的位置,故选B【点睛】本题考查了相似三角形的知识,解题的关键是利用勾股定理求得三角形的各边的长,难度不大.二、填空题(本题包括8个小题)13.如图,点A在双曲线kyx=上,且AB x⊥轴于B,若ABO∆的面积为3,则k的值为__________.【答案】6-【分析】设点A坐标为(x,y),由反比例函数的几何意义得1122OABS xy k∆==,根据ABO∆的面积为3,即可求出k的值.【详解】解:设点A的坐标为:(x,y),∴11322OABS xy k∆===,∴6k=,∴6k=±,∵反比例函数经过第二、四象限,则k0<,∴6k=-故答案为:6-.【点睛】本题考查了反比例函数的性质,以及反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义进行解题.14.如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB=23.将⊙P沿着与y轴平行的方向平移,使⊙P与x轴相切,则平移距离为_____.【答案】1或1【分析】过点P作PC⊥x轴于点C,连接PA,由垂径定理得⊙P的半径为2,因为将⊙P沿着与y轴平行的方向平移,使⊙P与x轴相切,分两种情况进行讨论求值即可.由【详解】解:过点P作PC⊥x轴于点C,连接PA,AB=3∴132AC BC AB===点P的坐标为(1,-1),∴PC=1,∴222PA PC AC=+=,将⊙P沿着与y轴平行的方向平移,使⊙P与x轴相切,∴①当沿着y轴的负方向平移,则根据切线定理得:PC=PA=2即可,因此平移的距离只需为1即可;②当沿着y轴正方向移动,由①可知平移的距离为3即可.故答案为1或1.【点睛】本题主要考查圆的基本性质及切线定理,关键是根据垂径定理得到圆的半径,然后进行分类讨论即可.15.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=________ 【答案】-1【解析】根据两已知点的坐标特征得到它们是抛物线的对称点,而这两个点关于直线x=-1对称,由此可得到抛物线的对称轴.【详解】∵点(3,4)和(-5,4)的纵坐标相同, ∴点(3,4)和(-5,4)是抛物线的对称点, 而这两个点关于直线x=-1对称, ∴抛物线的对称轴为直线x=-1. 故答案为-1. 【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0)的顶点坐标是(-2b a ,244ac b a-),对称轴直线x=-2ba. 16.如图,在△ABC 中,点A 1,B 1,C 1分别是BC ,AC ,AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点……依此类推,若△ABC 的面积为1,则△A n B n C n 的面积为__________.【答案】14n 【分析】由于1A 、1B 、1C 分别是ABC ∆的边BC 、CA 、AB 的中点,就可以得出△111A B C ABC ∽,且相似比为12,就可求出S △11114A B C ,同样地方法得出S △222116A B C 依此类推所以就可以求出AnBnCnS的值.【详解】解:1A 、1B 、1C 分别是ABC ∆的边BC 、CA 、AB 的中点,11A B ∴、11A C 、11B C 是ABC ∆的中位线, ∴△111A B C ABC ∽,且相似比为12, 111:1:4A B C ABC SS ∆∴=,且1ABC S ∆=11114A B C S∴=, 2A 、2B 、2C 分别是△111A B C 的边11B C 、11C A 、11A B 的中点, ∴△111A B C 的∽△222A B C 且相似比为12, 222116A B C S∴=,依此类推333164A B C S ∴=, 21124n n n A B C n n S ∆∴==. 故答案为:14n . 【点睛】本题考查了三角形中位线定理的运用,相似三角形的判定与性质的运用,解题的关键是有相似三角形的性质:面积比等于相似比的平方.17.反比例函数5y x =-的图象在第____________象限. 【答案】二、四【解析】根据反比例函数中k=-5得出此函数图象所在的象限即可. 【详解】∵反比例函数5y x=-中,k=-5<0, ∴此函数的图象在二、四象限,故答案为:二、四.【点睛】本题考查的是反比例函数图象的性质,熟知反比例函数当k <0时函数的图象在二、四象限是解答此题的关键.18.分式方程22124x x x -=--的解为______________. 【答案】1x =-;【解析】方程两边都乘以(x+2)(x-2)得到x (x+2)-2=(x+2)(x-2),解得x=-1,然后进行检验确定分式方程的解. 【详解】解:22124x x x -=-- 去分母得x (x+2)-2=(x+2)(x-2),解得x=-1,检验:当x=-1时,(x+2)(x-2)≠0,所以原方程的解为x=-1.故答案为x=-1.【点睛】本题考查解分式方程:先去分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入分式方程进行检验,最后确定分式方程的解.三、解答题(本题包括8个小题)19.计算:|tan30°-l| + 2sin60o -tan45°.【答案】3【分析】将特殊角的三角函数值代入求解即可.【详解】原式 1=1 1.=3【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.已知二次函数y=(x-m)(x+m+4),其中m为常数.(1)求证:不论m为何值,该二次函数的图像与x轴有公共点.(2)若A(-1,a)和B(n,b)是该二次函数图像上的两个点,请判断a、b的大小关系.【答案】(1)见解析;(2)①当n=-3时,a=b;②当-3<n<-1时,a>b ;③当n<-3或n>-1时,a<b【分析】(1)方法一:当y=0时,(x-m)(x-m-1)=0,解得x1=m,x2=-m-1,即可得到结论;方法二:化简得y=x2+1x-m2-1m,令y=0,可得b2-1ac≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a与b 的大小.【详解】(1)方法一:令y=0,(x-m)(x+m+1)=0,解得x1=m;x2=-m-1.当m=-m-1,即m=-2,方程有两个相等的实数根,故二次函数与x轴有一个公共点;当m≠-m-1,即m≠-2,方程有两个不相等的实数根,故二次函数与x轴有两个公共点.综上不论m为何值,该二次函数的图像与x轴有公共点.方法二:化简得y=x2+1x-m2-1m.令y=0,b2-1ac=1m2+16m+16=1(m+2)2≥0,方程有两个实数根.∴不论m为何值,该二次函数的图像与x轴有公共点.(2)由题意知,函数的图像的对称轴为直线x=-2①当n=-3时,a=b;②当-3<n<-1时,a>b③当n<-3或n>-1时,a<b【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,并且注意分情况讨论.21.如图,正比例函数y1=﹣3x的图象与反比例函数y2=kx的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为1.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.【答案】(1)k=-1;(2)x<﹣2或0<x<2.【解析】试题分析:(1)过点A作AD垂直于OC,由,得到,确定出△ADO与△ACO 面积,即可求出k的值; (2)根据函数图象,找出满足题意x的范围即可.解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,∴S△ADO=S△ACD=6,∴k=-1;(2)根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.22.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.【答案】 (1) 14;(2)112. 【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14; (2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.23.如图,射线MN 表示一艘轮船的航行路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,A 处到M 处的距离为200海里.(1)求点A 到航线MN 的距离.(2)在航线MN 上有一点B .且23MAB ∠=︒,若轮船沿的速度为50海里/时,求轮船从M 处到B 处所用时间为多少小时.(参考数据:tan 230.424,tan373 1.732︒≈︒≈)【答案】(1)100海里(2)约为1.956小时【分析】(1)过A 作AH ⊥MN 于H .由方向角的定义可知∠QMB=30°,∠QMA=60°,那么∠NMA=∠QMA-∠QMB=30°.解直角△AMH 中,得出AH=12AM ,问题得解; (2)先根据直角三角形两锐角互余求出∠HAM=60°,由∠MAB=15°,得出∠HAB=∠HAM-∠MAB=45°,那么△AHB 是等腰直角三角形,求出BH=AH 距离,然后根据时间=路程÷速度即可求解.【详解】解:(1)如图,过A 作AH MN ⊥于H .∵30,60QMB QMA ∠=︒∠=︒,∴30NMA QMA QMB ∠=∠-∠=︒在直角AMH 中,∵90AHM ∠=︒,30AMH ∠=︒,200AM =海里, ∴11002AH AM ==海里. 答:点A 到航线MN 的距离为100海里.(2)在直角AMH 中,90,30AHM AMH ∠=︒∠=︒,由(1)可知1003MH =,∵23MAB ∠=︒∴602337,BH BAN tan BAH AH∠=︒-︒=︒∠=, ∴100310037173.275.497.8BM MH BH tan =-=-⋅︒≈-=,∴轮船从M 处到B 处所用时间约为97.850 1.956÷=小时.答:轮船从M 处到B 处所用时间约为1.956小时.【点睛】本题考查了解直角三角形的应用-方向角问题,含30°角的直角三角形的性质,等腰直角三角形的判定与性质,直角三角形两锐角互余的性质,准确作出辅助线构造直角三角形是解题的关键.24.如图,在△ABC 中,AB=BC ,以AB 为直径的⊙O 交AC 于点D ,DE ⊥BC ,垂足为E .(1)求证:DE 是⊙O 的切线;(2)若DG ⊥AB ,垂足为点F ,交⊙O 于点G ,∠A=35°,⊙O 半径为5,求劣弧DG 的长.(结果保留π)【答案】(1)见解析;(2)359π. 【分析】(1)连接BD ,OD ,求出OD ∥BC ,推出OD ⊥DE ,根据切线判定推出即可.(2)求出∠BOD=∠GOB ,从而求出∠BOD 的度数,根据弧长公式求出即可.【详解】解:(1)证明:连接BD 、OD ,∵AB 是⊙O 直径,∴∠ADB=90°.∴BD ⊥AC .∵AB=BC ,∴AD=DC .∵AO=OB ,∴DO ∥BC .∵DE ⊥BC ,∴DE ⊥OD .∵OD 为半径,∴DE 是⊙O 切线.(2)连接OG ,∵DG ⊥AB ,OB 过圆心O ,∴弧BG=弧BD .∵∠A=35°,∴∠BOD=2∠A=70°.∴∠BOG=∠BOD=70°.∴∠GOD=140°.∴劣弧DG 的长是1405351809ππ⋅⋅=. 25.已知关于x 的一元二次方程2210x px p -++=.(1)请判断1x =-是否可为此方程的根,说明理由.(2)是否存在实数p ,使得12124x x x x p ⋅--=+成立?若存在,请求出p 的值;若不存在,请说明理由.【答案】(1)1x =-不是此方程的根,理由见解析;(2)存在,13p =或21p =-【分析】(1)将1x =-代入一元二次方程2210x px p -++=中,得到一个关于p 的一元二次方程,然后用根的判别式验证关于p 的一元二次方程是否存在实数根即可得出答案;(2)根据一元二次方程根与系数的关系可知,21212,1x x p x x p +=⋅=+,然后代入到12124x x x x p ⋅--=+中,解一元二次方程,若有解,则存在这样的p,反之则不存在.【详解】(1)若1x =-是方程2210x px p -++=的根,则220p p ++=. 14120∆=-⨯⨯<,∴1x =-不是此方程的根.(2)存在实数p ,使得12124x x x x p ⋅--=+成立.∵21212,1x x p x x p +=⋅=+,且12124x x x x p ⋅--=+.∴214p p p +-=+即2230p p --=. ∴123,1p p ==-∴存在实数p ,当13p =或21p =-时,12124x x x x p ⋅--=+成立【点睛】本题主要考查一元二次方程根与系数的关系,根的判别式,掌握一元二次方程根与系数的关系是解题的关键.26.如图,AB 是O 的直径,AE 是弦,C 是弧AE 的中点,过点C 作O 的切线交BA 的延长线于点G ,过点C 作CD AB ⊥于点D ,交AE 于点F .(1)求证://GC AE ;(2)若3sin 5EAB =∠,3OD =,求AE 的长. 【答案】(1)见解析;(2)8AE =【分析】(1)连接OC ,交AE 于点H .根据垂径定理得到OC ⊥AE .根据切线的性质得到OC ⊥GC ,于是得到结论;(2)根据三角函数的定义得到sin ∠OCD=3sin 5EAB =∠.连接BE .AB 是⊙O 的直径,解直角三角形即可得到结论.【详解】(1)证明:连接OC ,交AE 于点H .C 是弧AE 的中点,OC AE ∴⊥ GC 是O 的切线,OC GC ∴⊥,90OHA OCG ∴∠=∠=︒,//GC AE ∴;(2)OC AE ⊥,CD AB ⊥,OCD EAB ∴∠=∠.3sin sin 5OCD EAB ∴∠=∠=. 在Rt CDO ∆中,3OD =, 5OC ∴=,10AB ∴=连接BE AB 是O 的直径,90AEB ∴∠=︒.在Rt AEB ∆中,3sin 5BE EAB AB ∠==, 6BE ∴=,在Rt△AEB 中,6BE =,AB=10,22221068AE AB BE ∴-=-=.【点睛】本题考查了切线的性质,三角函数的定义,平行线的判定,正确的作出辅助线是解题的关键. 27.交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P ,在公路1上确定点O 、B ,使得PO ⊥l ,PO =100米,∠PBO =45°.这时,一辆轿车在公路1上由B 向A 匀速驶来,测得此车从B 处行驶到A 处所用的时间为3秒,并测得∠APO =60°.此路段限速每小时80千米,试判断此车是否超速?请说明理2 1.413 1.73).【答案】此车超速,理由见解析.【分析】解直角三角形得到AB=OA-OB=73米,求得此车的速度≈86千米/小时>80千米/小时,于是得到结论.【详解】解:此车超速,理由:∵∠POB=90°,∠PBO=45°,∴△POB是等腰直角三角形,∴OB=OP=100米,∵∠APO=60°,∴OA3=3米,∴AB=OA﹣OB=73米,∴73≈24米/秒≈86千米/小时>80千米/小时,3∴此车超速.【点睛】本题考查解直角三角形的应用问题.此题难度适中,解题关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.sin30的倒数是( )A .1B .2C .12D 【答案】B【分析】根据特殊角的三角函数值即可求解.【详解】sin30=12故sin30的倒数是2,故选B .【点睛】此题主要考查倒数,解题的关键是熟知特殊角的三角函数值.2.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )A .8B .9C .10D .11 【答案】A【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故选A .点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决. 3.抛物线()21515y x =-++,下列说法正确的是( ) A .开口向下,顶点坐标()5,1 B .开口向上,顶点坐标()5,1C .开口向下,顶点坐标()5,1-D .开口向上,顶点坐标()5,1- 【答案】C【分析】直接根据顶点式即可得出顶点坐标,根据a 的正负即可判断开口方向. 【详解】∵15a =-, ∴抛物线开口向下,由顶点式的表达式可知抛物线的顶点坐标为(5,1)-,∴抛物线开口向下,顶点坐标(5,1)-故选:C .【点睛】本题主要考查顶点式的抛物线的表达式,掌握a 对开口方向的影响和顶点坐标的确定方法是解题的关键. 4.如图,在锐角△ABC 中,∠A=60°,∠ACB=45°,以BC 为弦作⊙O ,交AC 于点D ,OD 与BC 交于点E ,若AB 与⊙O 相切,则下列结论:①∠BOD=90°;②DO ∥AB ;③CD=AD ;④△BDE ∽△BCD ;⑤2BE DE = 正确的有( )A .①②B .①④⑤C .①②④⑤D .①②③④⑤【答案】C 【解析】根据同弧所对的圆周角等于它所对圆心角的一半,由圆周角∠ACB=45°得到圆心角∠BOD=90°,进而得到BD 的度数为90°,故选项①正确;又因OD=OB ,所以△BOD 为等腰直角三角形,由∠A 和∠ACB 的度数,利用三角形的内角和定理求出∠ABC=180°-60°-45°=75°,由AB 与圆切线,根据切线的性质得到∠OBA 为直角,求出∠CBO=∠OBA -∠ABC=90°-75°=15°,由根据∠BOE 为直角,求出∠OEB=180°-∠BOD -∠OBE=180°-90°-15°=75°,根据内错角相等,得到OD∥AB,故选项②正确; 由D 不一定为AC 中点,即CD 不一定等于AD ,而选项③不一定成立;又由△OBD 为等腰三角形,故∠ODB=45°,又∠ACB=45°,等量代换得到两个角相等,又∠CBD 为公共角,根据两对对应角相等的两三角形相似得到△BDE∽△BCD,故④正确;连接OC ,由相似三角形性质和平行线的性质,得比例BE DB DE DC=,由BD=2OD ,等量代换即可得到BE 等=2DE ,故选项⑤正确.综上,正确的结论有4个.故选C.点睛:此题考查了相似三角形的判定与性质,圆周角定理,切线的性质,等腰直角三角形的性质以及等边三角形的性质,熟练掌握性质与定理是解本题的关键.5.在平面直角坐标系中,函数()()35y x x =+-的图象经过变换后得到()()53y x x =+-的图象,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位 【答案】A【分析】将两个二次函数均化为顶点式,根据两顶点坐标特征判断平移方向和平移距离.【详解】()()()2235215116y x x x x x =+-=--=--,顶点坐标为1,16,()()()2253215116y x x x x x =+-=+-=+-,顶点坐标为1,16,所以函数()()35y x x =+-的图象向左平移2个单位后得到()()53y x x =+-的图象.故选:A【点睛】本题考查二次函数图象的特征,根据顶点坐标确定变换方式是解答此题的关键.6.在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是( ) A .4.5米B .8米C .5米D .5.5米【答案】A【解析】根据同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似即可得.【详解】如图,由题意可得:11111111.5,2,6,AC B C AC A B C ABC ===∆~∆ 由相似三角形的性质得:1111AC AC B C BC =,即1.526AC = 解得: 4.5AC =(米)故选:A.【点睛】本题考查了相似三角形的性质,理解题意,将问题转化为利用相似三角形的性质求解是解题关键. 7.如图所示的几何体的左视图是()A.B.C.D.【答案】A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】从左边看共一列,第一层是一个小正方形,第二层是一个小正方形,故选:A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.8.﹣2的绝对值是()A.2 B.12C.12-D.2-【答案】A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.9.下列事件中,为必然事件的是()A.太阳从东方升起B.发射一枚导弹,未击中目标C.购买一张彩票,中奖D.随机翻到书本某页,页码恰好是奇数【答案】A【分析】根据必然事件以及随机事件的定义对各选项进行逐一分析即可.【详解】A、太阳从东方升起是必然事件,故本选项正确;B、发射一枚导弹,未击中目标是随机事件,故本选项错误;C、购买一张彩票,中奖是随机事件,故本选项错误;D、随机翻到书本某页,页码恰好是奇数是随机事件,故本选项错误.故选:A.【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.10.某中学组织初三学生足球比赛,以班为单位,每两班之间都比赛一场,计划安排10场比赛,则参加比赛的班级有( )A .3个B .4个C .5个D .6个 【答案】C【分析】设共有x 个班级参赛,根据每两班之间都比赛一场可知每个班要进行(x-1)场比赛,根据计划安排10场比赛列方程求出x 的值即可得答案.【详解】设共有x 个班级参赛,∵每两班之间都比赛一场,∴每个班要进行(x-1)场比赛,∵计划安排10场比赛, ∴x(1)102x -=, 解得:x 1=5,x 2=-4(不合题意,舍去),∴参加比赛的班级有5个,故选:C .【点睛】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.11.下列二次函数中,如果函数图像的对称轴是y 轴,那么这个函数是( )A .2 2y x x =+B .2 21y x x =++C .22y x =+D .()21y x =- 【答案】C【分析】由已知可知对称轴为x=0,从而确定函数解析式y=ax 2+bx+c 中,b=0,由选项入手即可.【详解】二次函数的对称轴为y 轴,则函数对称轴为x=0,即函数解析式y=ax 2+bx+c 中,b=0,故选:C .【点睛】此题考查二次函数的性质,熟练掌握二次函数的图象及性质是解题的关键.12.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x ,可列方程为( )A .300(1+x )2=1500B .300(1+2x )=1500C .300(1+x 2)=1500D .300+2x =1500 【答案】A。
杨浦区第一学期期末质量调研初 三 数 学 试 卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.如果5=6y ,那么下列结论正确的是 (A ):6:5x y =; (B ):5:6x y =;(C )5,6x y ==;(D )6,5x y ==.2.下列条件中,一定能判断两个等腰三角形相似的是(A )都含有一个40°的内角; (B )都含有一个50°的内角; (C )都含有一个60°的内角; (D )都含有一个70°的内角.3.如果△ABC ∽△DEF ,A 、B 分别对应D 、E ,且AB ∶DE =1∶2,那么下列等式一定成立的是 (A )BC ∶DE =1∶2; (B ) △ABC 的面积∶△DEF 的面积=1∶2; (C )∠A 的度数∶∠D 的度数=1∶2;(D )△ABC 的周长∶△DEF 的周长=1∶2.4.如果2a b =(,a b 均为非零向量),那么下列结论错误的是(A )//a b ;(B )20a b -=; (C )12b a =; (D )2a b =. 5.如果二次函数2y ax bx c =++(0a ≠)的图像如图所示,那么下列不等式成立的是 (A )0a >; (B )0b <;(C )0ac <;(D )0bc <.6.如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且∠AED =∠B ,再将下列四个选项中的一个作为条件,不一定能使得△ADE ∽△BDF 的是 (A )EA EDBD BF =; (B )EA EDBF BD =;(C )AD AEBD BF=; (D )BD BABF BC=. (第6题图)二、填空题:(本大题共12题,每题4分,满分48分) 7.抛物线23y x =-的顶点坐标是 ▲ . 8.化简:112()3()22a b a b --+= ▲ . 9.点A (-1,m )和点B (-2,n )都在抛物线2(3)2y x =-+上,则m 与n 的大小关系为m ▲ n (填“<”或“>”).10.请写出一个开口向下,且与y 轴的交点坐标为(0,4)的抛物线的表达式 ▲ . 11.如图,DE //FG //BC ,AD ∶DF ∶FB =2∶3∶4,如果EG =4,那么AC = ▲ .12.如图,在□ABCD 中,AC 、BD 相交于点O ,点E 是OA 的中点,联结BE 并延长交AD 于点F ,如果△AEF 的面积是4,那么△BCE 的面积是 ▲ . 13.Rt △ABC 中,∠C =90°,如果AC =9,cos A =13,那么AB = ▲ . 14.如果某人滑雪时沿着一斜坡下滑了130米的同时,在铅垂方向上下降了50米,那么该斜坡的坡度是1∶ ▲ .15.如图,Rt △ABC 中,∠C =90°,M 是AB 中点,MH ⊥BC ,垂足为点H ,CM 与AH 交于点O ,如果AB =12,那么CO = ▲ .16.已知抛物线22y ax ax c =++,那么点P (-3,4)关于该抛物线的对称轴对称的点的坐标是 ▲ . 17.在平面直角坐标系中,将点(-b ,-a )称为点(a ,b )的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第 ▲ 象限. 18.如图,在△ABC 中,AB =AC ,将△ABC 绕点A 旋转,当点B 与点C 重合时,点C 落 在点D 处,如果sin B =23,BC =6,那么BC 的中点M 和CD 的中点N 的距离是 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒C(第18题图)(第11题图) (第12题图)(第15题图)B20.(本题满分10分,第(1)、(2)小题各5分) 已知:如图,Rt △ABC 中,∠ACB =90°,sin B =35,点D 、E 分别在边AB 、BC 上,且AD ∶DB =2∶3,DE ⊥BC . (1)求∠DCE 的正切值;(2)如果设AB a =,CD b =,试用a 、b 表示AC .21.(本题满分10分)甲、乙两人分别站在相距6米的A 、B 两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C 处发出一球,乙在离地面1.5米的D 处成功击球,球飞行过程中的最高点H 与甲的水平距离AE 为4米,现以A 为原点,直线AB 为轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.22.(本题满分10分)如图是某路灯在铅垂面内的示意图,灯柱BC 的高为10米,灯柱BC 与灯杆AB 的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE 的长为13.3米,从D 、E 两处测得路灯A 的仰角分别为α和45°,且tan α=6. 求灯杆AB 的长度.23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:梯形ABCD 中,AD //BC ,AD =AB ,对角线AC 、BD 交于点E ,点F 在边BC 上,且∠BEF =∠BAC .(1)求证:△AED ∽△CFE ; (2)当EF //DC 时,求证:AE =DE .(第20题图)(第22题图)(第23题图)24.(本题满分12分,第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系Oy中,抛物线2221y x mx m m =-+--+交 y 轴于点为A ,顶点为D ,对称轴与轴交于点H .(1)求顶点D 的坐标(用含m 的代数式表示); (2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线22y x x =-+的位置,求平移的方向和距离; (3)当抛物线顶点D 在第二象限时,如果∠ADH =∠AHO ,求m的值.25.(本题满分14分,第(1)、(2)小题各6分,第(3)小题2分)已知:矩形ABCD 中,AB =4,BC =3,点M 、N 分别在边AB 、CD 上,直线MN 交矩形对角线AC 于点E ,将△AME 沿直线MN 翻折,点A 落在点P 处,且点P 在射线CB 上. (1)如图1,当EP ⊥BC 时,求CN 的长; (2)如图2,当EP ⊥AC 时,求AM 的长;(3)请写出线段CP 的长的取值范围,及当CP 的长最大时MN 的长.(备用图)(图1)ABC DNPM E(图2) A BCD N P ME(第25题图)AB CD杨浦区初三数学期末试卷参考答案及评分建议一、 选择题:(本大题共6题,每题4分,满分24分) 1、A ; 2、C ; 3、D ; 4、B ; 5、C ; 6、C 二、 填空题:(本大题共12题,每题4分,满分48分) 7、(0,-3); 8、142a b -rr; 9、<; 10、24y x =-+等; 11、12; 12、36; 13、27; 14、2.4; 15、4; 16、(1,4); 17、二、四; 18、4 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式=12231122+⨯--------------------------------------------------(6分)=1222-----------------------------------------------------------------(2分)=14. --------------------------------------------------------------(2分) 20.(本题满分10分,第(1)、(2)小题各5分) 解:(1)∵∠ACB =90°,sin B =35,∴35AC AB =. -------------------------(1分)∴设AC =3a ,AB =5a . 则BC =4a . ∵ADDB =23,∴AD =2a ,DB =3a . ∵∠ACB =90°即AC ⊥BC ,又DE ⊥BC , ∴AC//DE. ∴DE BD AC AB =, CE ADCB AB=. ∴335DE a a a =, 245CE a a a =. ∴95DE a =,85CE a =.----------(2分) ∵DE ⊥BC ,∴9tan 8DE DCE CE ∠==.-----------------------------(2分) (2)∵ADDB =23,∴ADAB =25. ------------------------------------------------(1分)∵AB a =,CD b =,∴25AD a =. DC b =-.--------------------(2分) ∵AC AD DC =+,∴25AC a b =-.-----------------------------------(2分)21.(本题满分10分)解:由题意得:C (0,1),D (6,1.5),抛物线的对称轴为直线=4.----(3分) 设抛物线的表达式为()210y ax bx a =++≠-------------------------------------(1分)则据题意得:421.53661ba ab ⎧-=⎪⎨⎪=++⎩. ----------------------------------------------(2分)解得:12413a b ⎧=-⎪⎪⎨⎪=⎪⎩. -------------------------------------------------------------------(2分)∴羽毛球飞行的路线所在的抛物线的表达式为2111243y x x =-++. ------(1分) ∵()2154243y x =--+,∴飞行的最高高度为53米. ------------------------(1分) 22.(本题满分10分)解:由题意得∠ADE =α,∠E =45°.----------------------------------------------(2分) 过点A 作AF ⊥CE ,交CE 于点F ,过点B 作BG ⊥AF ,交AF 于点G ,则FG =BC =10. 设AF =.∵∠E =45°,∴EF =AF =. 在Rt △ADF 中,∵tan ∠ADF =AFDF,-----------------(1分) ∴DF =tan tan 6AF x xADF α==∠. --------------------------(1分)∵DE =13.3,∴6xx +=13.3. ---------------------------(1分) ∴ =11.4. ---------------------------------------------(1分)∴AG =AF ﹣GF =11.4﹣10=1.4. ------------------------------------------------------------(1分) ∵∠ABC =120°,∴∠ABG =∠ABC ﹣∠CBG =120°﹣90°=30°.-------------------(1分) ∴AB =2AG =2.8 ----------------------------------------------------------------------- (1分) 答:灯杆AB 的长度为2.8米.------------------------------------------------------------(1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵∠BEC =∠BAC+∠ABD , ∠BEC =∠BEF+∠FEC ,A BC D FG又∵∠BEF =∠BAC ,∴∠ABD=∠FEC.------------------------------------ (1分) ∵AD =AB ,∴∠ABD=∠ADB.------------------------------------------------- (1分) ∴∠FEC=∠ADB. -------------------------------------------------------- (1分) ∵AD //BC ,∴∠DAE=∠ECF .--------------------------------------------------- (1分) ∴△AED ∽△CFE. --------------------------------------------------------- (1分)(2)∵EF //D C ,∴∠FEC=∠ECD. --------------------------------------------------- (1分) ∵∠ABD=∠FEC ,∴∠ABD=∠ECD.--------------------------------------------- (1分) ∵∠AEB=∠DEC. ∴△AEB ∽△DEC. ----------------------------------------------- (1分) ∴AE BEDE CE=.------------------------------------------------------------------------------(1分) ∵AD //BC ,∴AE DECE BE=.----------------------------------------------------------------(1分) ∴AE AE BE DE DE CE CE BE⋅=⋅.即22AE DE =.-------------------------------------------(1分) ∴ AE =DE . ----------------------------------------------------------------------------- (1分) 24.(本题满分12分,第(1)小题3分,第(2)小题5分,第(3)小题4分) 解:(1)∵22221()1y x mx m m x m m =-+--+=---+.------------------------(1分) ∴顶点D (m , 1-m ).------------------------------------------------------------------(2分) (2)∵抛物线2221y x mx m m =-+--+过点(1,-2),∴22121m m m -=-+--+.即220m m --=. ---------------------------(1分) ∴2m =或1m =-(舍去). ------------------------------------------------------(2分) ∴抛物线的顶点是(2,-1). ∵抛物线22y x x =-+的顶点是(1,1),∴向左平移了1个单位,向上平移了2个单位. -------------------------(2分) (3)∵顶点D 在第二象限,∴0m <.情况1,点A 在y 轴的正半轴上,如图(1).作AG ⊥DH 于点G , ∵A (0,21m m --+),D (m ,-m +1),∴H (,0m ),G (2,1m m m --+)∵∠ADH =∠AHO ,∴tan ∠ADH = tan ∠AHO ,∴AG AODG HO=. ∴2211(1)m m m m m m m ---+=----+-.整理得:20m m +=. ∴1m =-或0m =(舍). --------------(2分)情况2,点A 在y 轴的负半轴上,如图(2).作AG ⊥DH 于点G∵A (0,21m m --+),D (m ,-m +1),∴H (,0m ),G (2,1m m m --+)∵∠ADH =∠AHO ,∴tan ∠ADH = tan ∠AHO ,∴AG AODG HO=. ∴2211(1)m m m m m m m -+-=----+-.整理得:220m m +-=. ∴2m =-或1m =(舍). ---------(2分) ∴1m =-或2m =-.25.(本题满分14分,第(1)、(2)小题各6分,第(3)小题2分) 解:(1)∵△AME 沿直线MN 翻折,点A 落在点P 处, ∴△AME ≌△PME . ∴∠AEM =∠PEM ,AE=PE . ∵ABCD 是矩形,∴AB ⊥BC . ∵EP ⊥BC ,∴AB // EP .∴∠AME =∠PEM . ∴∠AEM =∠AME . ∴AM =AE . ---------------------(2分) ∵ABCD 是矩形,∴AB // DC . ∴AM AECN CE=. ∴CN =CE . ------------------(1分) 设CN = CE =.∵ABCD 是矩形,AB =4,BC =3,∴AC =5. ∴PE= AE=5- . ∵EP ⊥BC ,∴4sin 5EP ACB CE =∠=. ∴545x x -=. ---------------------(1分) ∴259x =,即259CN =. ------------------------------------------------------(2分) (2)∵△AME 沿直线MN 翻折,点A 落在点P 处, ∴△AME ≌△PME . ∴AE=PE ,AM=PM . ∵EP ⊥AC ,∴4tan 3EP ACB CE =∠=. ∴43AE CE =. ∵AC =5,∴207AE =,157CE =.∴207PE =. ---------------------(2分)∵EP ⊥AC ,∴257PC ===. ∴254377PB PC BC =-=-=. --------------------------------------(2分) 在Rt △PMB 中,∵222PM PB MB =+,AM=PM . ∴2224()(4)7AM AM =+-. ∴10049AM =. --------------------------------------(2分)(3)05CP ≤≤,当CP 最大时MN .--------------------------------------------------(2分)。