第八章 绕流运动
- 格式:ppt
- 大小:3.21 MB
- 文档页数:30
《流体力学》答案1-6.当空气温度从00C 增加至020C 时,ν值增加15%,容重减少10%,问此时μ值增加多少?⎡⎤⎣⎦解0000000000(115%90%)()()0.035 3.5%gggγγννμμρνρνμρνγν⨯---====1-7.图示为一水平方向运动的木板,其速度为1m s ,平板浮在油面上,油深 1mm δ=,油的0.09807Pa s μ=,求作用于平板单位面积上的阻力?⎡⎤⎣⎦解10.0980798.070.001du Pa dy τμ==⨯= 1-9.一底面积为4045cm ⨯,高为1cm 的木板,质量为5kg ,沿着涂有润滑油的斜面等速向下运动,已知1m v s =,1mm δ=,求润滑油的动力粘滞系数?⎡⎤⎣⎦解0T GSin α-= 55255131313T GSin G g g α==⋅=⨯⨯=所以 10.400.451800.001du T A dy μμμ==⨯=但 259.8070.10513180Pa s μ⨯==⋅⨯所以1-10.一个圆锥体绕其铅直中心轴等速旋转,锥体与固定壁的间距为δ=1mm ,全部为润滑油充满,μ=0.1Pa.s ,当旋转角速度ω=16s -1,锥体底部半径R =0.3m,高H =0.5m 时,求:作用于圆锥的阻力矩。
解: 取微元体, 微元面积:阻力矩为:阻力: 阻力矩51213GVδ22cos 0dhdA r dl r du r dy dT dA dM dT rππθωτμμδτ=⋅=⋅-====⋅0333012cos 12()cos 12cos HHHM dM rdT r dAr r dh r dh r tg h tg h dhττπθωμπθδθωμπθδθ====⋅⋅=⋅⋅⋅=⋅=⋅⋅⋅⋅⎰⎰⎰⎰⎰⎰1-14.图示为一采暖系统图,由于水温升高引起水的体积膨胀,为了防止管道及暖气片胀裂,特在顶部设置一膨胀水箱,使水的体积有自由膨胀的余地,若系统内水的总体积38V m =,加热前后温度差050t C =,水的热胀系数0.0005α=,求膨胀水箱的最小容积?⎡⎤⎣⎦解因为 dV V dt α=所以 30.00058500.2dV Vdt m α==⨯⨯=2-2.在封闭管端完全真空的情况下,水银柱差250Z mm =,求盛水容器液面绝对压强1p 及测压管中水面高度1Z ?⎡⎤⎣⎦解312013.6109.80.056664a p Z p γ=+=⨯⨯⨯=11 6.6640.686809.8p Z m mm γ==== 2-6.封闭容器水面的绝对压强20107.7KNp m =,当地大气压强298.07a KNp m =,试求(1)水深0.8h m =的A 点的绝对压强和相对压强?(2)若容器水面距基准面高度5Z m =,求A 点的测压管高度和测压管水头。
第一章 绪论1-6.图示为一水平方向运动的木板,其速度为1m s,平板浮在油面上,油深 1mm δ=,油的0.09807Pa s μ=,求作用于平板单位面积上的阻力?⎡⎤⎣⎦解10.0980798.070.001du Pa dy τμ==⨯= 1-7. 温度为20℃的空气,在直径为2.5cm 管中流动,距管壁上1mm 处的空气速度为3cm/s 。
求作用于单位长度管壁上的粘滞切应力为多少? 解: f=m N dyduA/103.410/1031105.2100183.053223-----⨯=⨯⨯⨯⨯⨯⨯=πμ 1-8.一底面积为4045cm ⨯,高为1cm 的木板,质量为5kg ,沿着涂有润滑油的斜面等速向下运动,已知1m v s=,1mm δ=,求润滑油的动力黏度?⎡⎤⎣⎦解0T GSin α-= 55255131313T GSin G g g α==⋅=⨯⨯=所以 10.400.451800.001du T A dy μμμ==⨯=但 259.8070.10513180Pa s μ⨯==⋅⨯所以5第二章 流体静力学2-6.封闭容器水面的绝对压强20107.7KNp m=,当地大气压强298.07a KNp m =,试求(1)水深0.8h m =的A 点的绝对压强和相对压强?(2)若容器水面距基准面高度5Z m =,求A 点的测压管高度和测压管水头。
并图示容器内液体各点的测压管水头线;(3)压力表M 和酒精(27.944KNm γ=)测压计h 的读数值?hh 1AM p 0⎡⎤⎣⎦解(1)201107.79.8070.8115.55A KN p p h m γ'=+=+⨯= 2115.5598.0717.48A A a KN p p p m '=-=-=(2)217.481.789.807Ap h m γ=== 25 1.78 6.78n A H Z h m =+=+=(3)20107.798.079.63M a KNp p p m =-=-=9.631.217.944Mp h m γ=== 2-16. 已知水箱真空表M 的读数为0.98kPa ,水箱与油箱的液面差H =1.5m ,水银柱差m 2.02=h ,3m /kg 800=油ρ,求1h 为多少米?解:取等压面1-1,则()()()()()12122211332800.29809800 1.50.2 5.610008009.8a a Hg Hg P P g H h h P gh gh gh P g H h h gmρρρρρρρ-+++=+++-+=-⨯+-⨯+==-⨯油油2-20.图为倾斜水管上测定压差的装置,已知cm 20=z ,压差计液面之差cm 12=h ,求当(1)31kg/m 920=ρ的油时;(2)1ρ为空气时;A 、B 两点的压差分别为多少?解:(1)取等压面1-1 PaghgZ gh P P ghgZ P gh P A B B A 92.1865)12.02.0(980012.08.992011=-⨯+⨯⨯=-+=---=-ρρρρρρ(2)同题(1)可得Pagh gZ P P gZP gh P A B B A 784)12.02.0(9800=-⨯=-=--=-ρρρρ2-36.有一圆滚门,长度10l m =,直径4D m =,上游水深14H m =,下游水深22H m =,求水作用于圆滚门上的水平和铅直分压力?⎡⎤⎣⎦解2212121()2x x x p p p l H H γ=-=- 2219.80710(42)5902KN =⨯⨯⨯-=23439.8074109204z p V Al R lKN γγγππ==∙==⨯⨯⨯=2-44. 一洒水车以等加速度2/98.0s m a =在平地上行驶,水车静止时,B 点位置m x 5.11=,m h 1=,求运动后该点的静水压强。
绕流运动(2)1.在管径d =100mm 的管道中,试分别计算层流和紊流时的入口段长度(层流按Re=2000计算)。
解:层流时,根据dX E=0.028Re ,有X E =0.028Re d =5.6m 紊流时,根据dX E=50可知:入口段长度X E =50d =50×0.1=5m2有一宽为2.5m ,长为 30m 的平板在静水中以5m/s 的速度等速拖曳,水温为 20℃, 求平板的总阻力。
解:取 Re xk =5×105,则根据υkxkXu 0Re=(查表知 t=20ºC ,sm /10007.16-⨯=υ)X k =0Reu xkυ⋅=0.1m <30m可认为是紊流附面层:Re=υXu 0=1.49×108采用58.2)(lg 445.0e fR C=,则:fC=1.963×10-3根据D =ACf22u ρ(其中3/2.998,305.22m kg A =⨯⨯=ρ)平板总阻力:D =3680 N3.光滑平板宽1.2m ,长3m 潜没在静水中以速度u =1.2m/s 沿水平方向拖曳,水温为10℃求:(1)层流附面层的长度;(2)平板末端的附面层厚度;(3)所需水平拖曳力。
(5105Re⨯=xk)解:(1)由查表知:t =10℃, υ=1.308×sm /1026-根据=xkReυkX u 0,知X k =0.55m(2)根据:δ=0.3751)(0xu υx ,知δ=0.0572m=57.2mm(3) 根据:Re=υvx 知Re =2.75×106. 则:fC =Re1700Re074.051-=3.196×10-3根据:fDfC=A22u ρ3/17.999,32.12mkg A =⨯⨯=ρfD=16.57N4.在渐缩管中会不会产生附面层的分离?为什么? 答:不会,因为在增速减压区。
5.若球形尘粒的密度m ρ=2500kg/ m 3,空气温度为 20℃ 求允许采用斯托克斯公式计算尘粒在空气中悬浮速度的最大粒径(相当于Re =1)解:由查表知:=t 20℃,μ=0.0183×10-3Pa.sυ=15.7×10-6m 2/s ,ρ=1.205kg/m 3由Re=υud及u =μρρ18)(2gd m - 可得dυRe =μρρ18)(2gd m -d =6×10-2mm6.某气力输送管路,要求风速 u 0为砂粒悬浮速度u 的5倍,已知砂粒粒径mm d 3.0=,密度ρm =2650kg/m 3 空气温度为20℃,求风速u 0 值。