第六章附面层与绕流阻力
- 格式:ppt
- 大小:717.00 KB
- 文档页数:26
粘性流体绕球体的流动(一)绕流阻力绕流阻力由摩擦阻力和压差阻力两部分组成。
黏性流体绕流物体流动,由于流体的黏性在物体表面上产生切向应力而形成摩擦阻力,可见,摩擦阻力是作用在物体表面的切向应力在来流方向分力的总和,是黏性直接作用的结果;而压差阻力是黏性流体绕流物体时由于边界层分离,物体前后形成压强差而产生的。
压差阻力大小与物体行状有根大关系,也称形状阻力。
摩擦阻力和压差阻力之和统称为物体阻力。
对于流体纵向流过平板时一般只有摩擦阻力,绕流流线型物体时压差阻力很小,主要由摩擦阻力来决定。
而绕流圆柱体和球体等钝头体时,绕流阻力与摩擦阻力和压差阻力都有关,高雷诺数时,压差阻力却要比摩擦阻力大得多。
由于从理论上求解一个任意行状物体的阻力是十分困难的,目前都是自实验测得,工程上习惯借助无因次阻力系数来确定总阻力的大小,目摩擦阻力的计算公式相似,只是用阻力系数取代C D摩擦阻力系数C f,即式中:C D为无因次阻力系数;0.5ρν2A为单位体积来流的动能,Pa;A为物体垂直于运动方向或来流方向的投影面积,m2。
工程上遇到黏性流体绕球体的流动情况也很多,像燃料炉炉膛空气流中的煤粉颗粒、油滴、烟道烟气中的灰尘以及锅炉汽包内蒸汽空间中蒸汽夹带的水滴等,都可以近似地看作小圆球。
因此我们要经常研究固体微粒和液体细滴在流体中的运动情况。
比如,在气力输中要研究固体微粒在何种条件下才能被气流带走;在除尘器中要解决在何种条件下尘粒才能沉降;在煤粉燃烧技术中要研究煤粉颗粒的运动状况等问题。
当煤粉和灰尘等微小颗粒在空气、烟气或水等流体中运动时,由于这些微粒的尺寸以及流体与微粒间的相对运动速度都很小,所以在这些运动中雷诺数都很小,即它们的惯性力与黏性力相比要小得多,可以忽略不计。
又由于微粒表面的附面层板薄,于是质量力的影响也很小,也可略去(这种情况下的绕流运动常称为蠕流)。
这样,在稳定流动中,可把纳维托克斯方程简化为不可压缩流体的连续性方程1851年斯托克斯首先解决了黏性流体绕圆球作雷诺数很小(Re<1)的稳定流动时,圆球所受的阻力问题。
边界层及绕流由于流体粘滞性的存在,紧靠平板的一层流体质点将附着于平板表面上,与平板表面无U,相对运动,流速为0,而在距平板法线方向一定距离处流速仍为未受扰动的原有流速因此从平板表面到未扰动的流体之间存在着一个流速分布不均匀的区域,这个区域就是水流受平板影响的范围叫边界层。
边界层厚度常用符号δ表示。
边界层的厚度是沿平板而变化的。
因为粘滞流体流经平板时有内摩擦阻力发生,克服阻力必耗损一部分能量,以致平板附近部分水流的流速变缓,流经平板距离越长,耗损能量越多,水流受平板影响范围也越大,所以边界层的厚度总是沿板端的距离x而增加的。
边界层内的流体形态可能是层流,也可能是紊流。
在板端附近边界层极薄,流速自0U,因此流速剃度极大,以致产生很大的内摩擦阻力,所以板端附近边界层内的迅速增至流体往往是层流。
沿板端距离越远,边界层厚度越厚。
流速剃度随边界层厚度增加而变小,内摩擦阻力也相应减小,边界层内的流体可自层流逐渐过渡到紊流。
但在紊流边界层中靠近固体表面仍有一层极薄的粘性存在,如图所示若雷诺数用下列形式表示:0Re x U xγ=则距板端距离越远,雷诺数也越大。
当雷诺数达到某一临界值时,流体即自层流转变为紊流。
据实验结果临界雷诺数约在5*510~610之间,如流体非常平静,最高的临界雷诺数也可超过610。
根据边界层的概念,可把粘滞流体分成两个区域:在边界层外,流速剃度为0,无内摩擦力发生,因而也可视为理想流体的流动,符合势流的运动规律;在边界层以内,流速自0增至0U ,流速剃度很大,内摩擦力十分显著。
因此,分析边界层内的运动规律时,必须以粘滞流体所服从的定律(纳为-斯托克斯方程式)为依据。
边界层的分离现象及绕流阻力流体压强在驻点N 处最大,在较高压强作用下,流体由此分道向圆柱体两侧流动。
由于圆柱面的阻滞作用便形成了边界层。
边界层内的特点是流体流动时有能量损失,从N 点起向下游达到A 或B 以前,由于圆柱表面的弯曲,使流体挤压,流速沿程增加,故沿边界层的外边界上0U x ∂∂=正值,p x∂∂=负值,即在外边界上压强是沿程下降的,由此可知在NA 或NB 一段边界层内的流体是处于加速减压状态的,也就是说,在该段边界层内用压强下降来补偿能量损失外,尚有一部分压能转变为动能。