8 第八章 边界层与绕流阻力解析
- 格式:ppt
- 大小:2.18 MB
- 文档页数:39
第八章 边界层理论§8—1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。
对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。
速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。
若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。
对于非粘性流场,则可按理想流体来处理。
则N-S 方程可由欧拉方程代替,从而使问题大为简化。
Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。
由vVl==粘性力惯性力Re ,则在这些流动中,惯性力〉〉粘性力,所以可略去粘性力。
但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。
所以,在这一薄层中,两者均不能略去。
这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现.a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。
b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。
层内,粘性流,主要速度降在此,有旋流动.c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。
d .按流动状态,边界层又分为层流边界层和紊流边界层。
由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。
所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,边图8-2空气沿平板边界层速度分布外部区域边界层界层外的流动是无旋的势流.边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。
(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。
第八章 边界层理论§8-1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。
对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。
速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。
若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。
对于非粘性流场,则可按理想流体来处理。
则N-S 方程可由欧拉方程代替,从而使问题大为简化。
Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。
由vVl==粘性力惯性力Re ,则在这些流动中,惯性力>>粘性力,所以可略去粘性力。
但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。
所以,在这一薄层中,两者均不能略去。
这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现。
a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。
b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。
层内,粘性流,主要速度降在此,有旋流动。
c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。
d .按流动状态,边界层又分为层流边界层和紊流边界层。
由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。
所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,图8-2空气沿平板边界层速度分布外部区域边界层边界层外的流动是无旋的势流。
边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。
(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。
第八章 边界层理论基础和绕流运动8—1 设有一静止光滑平板宽b =1m ,长L =1m ,顺流放置在均匀流u =1m/s 的水流中,如图所示,平板长边与水流方向一致,水温t =20℃。
试按层流边界层求边界层厚度的最大值δmax 和平板两侧所受的总摩擦阻力F f 。
解:20℃水的运动粘度ν=1.003⨯10-6 m 2/s 密度3998.2/kg m ρ=6119970091.00310ν-⨯===⨯L uLRe因为 56310997009310⨯<=<⨯L Re按层流边界层计算。
max 1/25.4470.0055m Re L L δ===3f 1/21.46 1.4610-===⨯L C Re 223998.2122 1.461011N 1.46N 22f ff u F C A ρ-⨯==⨯⨯⨯⨯⨯= 8—2 设有极薄的静止正方形光滑平板,边长为a ,顺流按水平和铅垂方向分别置放于二维恒定均速u 的水流中,试问:按层流边界层计算,平板两种置放分别所受的总摩擦阻力是否相等,为什么?解:因为两种置放情况的物理模型和数学模型及其分析、推导所得计算公式是相同的,所以两种情况平板所受的总摩擦阻力相等。
8—3 设有一静止光滑平板,如图所示,边长1m,上宽0.88m,下宽0.38m,顺流铅垂放置在均匀流速u =0.6m/s 的水流中,水温t =15℃。
试求作用在平板两侧的总摩擦阻力F f 。
注:若为层流边界层,C f 按式(8—24)计算。
解:由表1—1查得,15℃时水的密度ρ=999.13/kg m ,运动粘度ν=1.139×10-6m 2/s 。
首先判别流态,计算平板上宽雷诺数560.60.884635655101.13910ν-⨯===<⨯⨯L uLRe ,按层流边界层计算。
设z 轴铅垂向上,平板宽度x 为0.38+0.5z ,阻力系数C f 按式(8-24)计算,即12f 60.6(0.380.5)1.328 1.13910--⨯+⎡⎤==⨯⎢⎥⨯⎣⎦z C1521.328 5.2677810(0.380.5)z -轾=创?犏臌总摩擦阻力F f 按式(8—20)计算,f f1212(0.380.5)d 2F C u z z r =?ò115202 1.328 5.2677810(0.380.5)z -轾=创创+犏臌ò21999.10.6(0.380.5)d 2z z 创创+ 1120.658(0.380.5)d z z =?ò。
流体力学第八章答案【篇一:流体力学第8、10、11章课后习题】>一、主要内容(一)边界层的基本概念与特征1、基本概念:绕物体流动时物体壁面附近存在一个薄层,其内部存在着很大的速度梯度和漩涡,粘性影响不能忽略,我们把这一薄层称为边界层。
2、基本特征:(1)与物体的长度相比,边界层的厚度很小;(2)边界层内沿边界层厚度方向的速度变化非常急剧,即速度梯度很大;(3)边界层沿着流体流动的方向逐渐增厚;(4)由于边界层很薄,因而可以近似地认为边界层中各截面上压强等于同一截面上边界层外边界上的压强;(5)在边界层内粘性力和惯性力是同一数量级;(6)边界层内流体的流动与管内流动一样,也可以有层流和紊流2种状态。
(二)层流边界层的微分方程(普朗特边界层方程)??v?vy?2v1?p?vy?????vx?x?y??x?y2????p??0?y???v?vy???0?x?y??其边界条件为:在y?0处,vx?vy?0 在y??处,vx?v(x)(三)边界层的厚度从平板表面沿外法线到流速为主流99%的距离,称为边界层的厚度,以?表示。
边界层的厚度?顺流逐渐加厚,因为边界的影响是随着边界的长度逐渐向流区内延伸的。
图8-1 平板边界层的厚度1、位移厚度或排挤厚度?1?1?2、动量损失厚度?2?vx1?(v?v)dy?(1?)dy x??00vv?2?1?v2???vx(v?vx)dy???vxv(1?x)dy vv(四)边界层的动量积分关系式??2???p?vdy?v?vdy?????wdx xx??00?x?x?x对于平板上的层流边界层,在整个边界层内每一点的压强都是相同的,即p?常数。
这样,边界层的动量积分关系式变为?wd?2d?vdy?vvdy?? x?x??00dxdx?二、本章难点(一)平板层流边界层的近似计算根据三个关系式:(1)平板层流边界层的动量积分关系式;(2)层流边界层内的速度分布关系式;(3)切向应力关系式。
边界层及绕流由于流体粘滞性的存在,紧靠平板的一层流体质点将附着于平板表面上,与平板表面无U,相对运动,流速为0,而在距平板法线方向一定距离处流速仍为未受扰动的原有流速因此从平板表面到未扰动的流体之间存在着一个流速分布不均匀的区域,这个区域就是水流受平板影响的范围叫边界层。
边界层厚度常用符号δ表示。
边界层的厚度是沿平板而变化的。
因为粘滞流体流经平板时有内摩擦阻力发生,克服阻力必耗损一部分能量,以致平板附近部分水流的流速变缓,流经平板距离越长,耗损能量越多,水流受平板影响范围也越大,所以边界层的厚度总是沿板端的距离x而增加的。
边界层内的流体形态可能是层流,也可能是紊流。
在板端附近边界层极薄,流速自0U,因此流速剃度极大,以致产生很大的内摩擦阻力,所以板端附近边界层内的迅速增至流体往往是层流。
沿板端距离越远,边界层厚度越厚。
流速剃度随边界层厚度增加而变小,内摩擦阻力也相应减小,边界层内的流体可自层流逐渐过渡到紊流。
但在紊流边界层中靠近固体表面仍有一层极薄的粘性存在,如图所示若雷诺数用下列形式表示:0Re x U xγ=则距板端距离越远,雷诺数也越大。
当雷诺数达到某一临界值时,流体即自层流转变为紊流。
据实验结果临界雷诺数约在5*510~610之间,如流体非常平静,最高的临界雷诺数也可超过610。
根据边界层的概念,可把粘滞流体分成两个区域:在边界层外,流速剃度为0,无内摩擦力发生,因而也可视为理想流体的流动,符合势流的运动规律;在边界层以内,流速自0增至0U ,流速剃度很大,内摩擦力十分显著。
因此,分析边界层内的运动规律时,必须以粘滞流体所服从的定律(纳为-斯托克斯方程式)为依据。
边界层的分离现象及绕流阻力流体压强在驻点N 处最大,在较高压强作用下,流体由此分道向圆柱体两侧流动。
由于圆柱面的阻滞作用便形成了边界层。
边界层内的特点是流体流动时有能量损失,从N 点起向下游达到A 或B 以前,由于圆柱表面的弯曲,使流体挤压,流速沿程增加,故沿边界层的外边界上0U x ∂∂=正值,p x∂∂=负值,即在外边界上压强是沿程下降的,由此可知在NA 或NB 一段边界层内的流体是处于加速减压状态的,也就是说,在该段边界层内用压强下降来补偿能量损失外,尚有一部分压能转变为动能。