质量统计基础—控制图
- 格式:ppt
- 大小:339.00 KB
- 文档页数:28
控制图1控制图——过程控制的工具。
用来表示一个过程特性的图象。
它有两个基本用途:①用来判断过程是否一直受统计控制。
②用来帮助过程保持受控状态。
2控制图的构成::上控制线:中心线下控制线取样时间①收集:收集数据并画在图上。
②控制:根据过程数据计算试验控制线识别变差特殊原因并采取措施。
③分析及改进:确定普通变差的大小,并采取减少它的措施。
重复三个阶段,从而不断改进过程。
3控制图的益处:①供正在进行过程控制的操作者使用。
②有助于过程在质量上和成本上能持续地、可预见的保持下去。
③使过程达到:——更高的质量。
——更低的单件成本。
——更高的有效能力。
④为讨论过程的性能提供共同的语言。
⑤区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。
第二章计量型数据控制图第一节均值和极差图参见“均值和极差控制图”1.收集数据1.1子组大小:一般为4-5件(连续生产的产品的组合)。
各子组样本应一样。
选择原则:一子组各样本间出现的变差的机会小。
子组内变差主要由普通原因造成。
1.2子组频率:应在适当时间收集足够的子组,能反映潜在的变化。
过程处于稳定,频率可减少。
(每班两次、每小时一次或其他频率)。
1.3子组组数:≧25个。
总单值≧100个。
2.控制图及记录原始数据:①X图绘在R图的上方。
下面再接一个数据栏。
②X和R值为纵坐标,时间为横坐标。
③数据栏应包括:每个读数空间、读数、和、均值、极差以及日期/时间或其他识别子组的代码的空间等。
3.计算均值(X)和极差(R):X=( X1+X2+…+X n)/n R=X MAX﹣X MINX1,X2,…X n——测量值。
n——子组容量。
4.控制图刻度;①对X图:坐标刻度最大值-最小值≧2(X max–X min)②对R图:坐标刻度最大值≧2R max5.计算控制限:①平均极差(R)及过程平均值(X)R=(R1+R+2…+R K)/K(1X2+…+X K)/KK——子组的数量。
常用质量管理工具之控制图控制图控制图是用来对过程状态进行监控,并可度量、诊断和改进过程状态。
控制图是反映和控制质量特性值分布状态随时间而发生的变动情况的图表。
它是判断工序是否处于稳定状态、保持生产过程始终处于正常状态的有效工具。
控制图与趋势图的比较采用趋势图可以掌握不断变化着的工序状态。
为了判别工序的质量波动是正常波动还是非正常波动,在趋势图的基础上,控制图发生如下变化:①纵坐标可能是质量特性值,也可能是其统计量;②增加上、中、下三条控制线作为判断工序有无异常的标准和尺度。
若点子落在控制界限内,认为工序的波动是正常的波动;若点子落在控制界限外或其排列有明显缺陷,则说明工序有异常因素的影响。
控制图的构造说明:1、以随时间推移而变动着的样品号为横坐标,以质量特性值或其统计量为纵坐标的平面坐标系;2、三条具有统计意义的控制线:中心线CL、上控制线UCL和下控制线LCL;3、一条质量特性值或其统计量的波动曲线。
控制图应用在实际生产过程中,坐标系及三条控制线是由质量管理人员事先经过工序能力调查及其数据的收集与计算绘制好的。
工序的操作人员按预先规定好的时间间隔抽取规定数量的样品,将样品的测定值或其统计量在控制图上打点并联接为质量波动曲线,并通过点子的位置及排列情况判断工序状态。
控制图的类型1、按用途划分(1)分析用控制图。
用间隔取样的方法获得数据。
依据收集的数据计算控制线、作出控制图,并将数据在控制图上打点,以分析工序是否处于稳定状态,若发现异常,寻找原因,采取措施,使工序处于稳定状态;若工序稳定,则进入正常工序控制。
(2)控制用控制图。
当判断工序处于稳定状态后,用于控制工序用的控制图。
操作工人按规定的取样方式获得数据,通过打点观察,控制异常因素的出现。
2、按质量特性值的类型及其统计量划分由于数据分为计量值与计数值两大类。
因此控制图分为计量值控制图和计数值控制图两大类型。
又因各种类型的控制图所选择的统计量不同,因此又可分为不同种类的控制图。
控制图控制图(Control chart)又称为管理图、休哈特图。
由美国贝尔实验室的休哈特博士于1924年发明。
控制图是以假设检验原理为基础设置统计控制线,按照时间坐标记录独立测量值、平均值或其他统计量的折线图,用以区分过程中的异常波动与正常波动,并判断过程是否处于统计过程控制状态的一种工具。
一. 控制图的类型根据控制图在过程控制中所处的阶段,可将控制图分为分析用控制图和管理用控制图,如图1所示。
分析用控制图主要用于分析过程是否处于统计过程控制状态,并对过程的总体参数进行估计。
若分析表明过程处于统计过程控制状态且满足预期的要求,则将分析用控制图的控制界限延长,用作管理用控制图,实现对产品生产过程进行连续监控,及时发现过程的异常波动。
图1 平均值-极差控制图控制图可以用来显示各种不同数据类型的质量特性的波动,常用的控制图类型与适用场合如表1所示。
表1 常用控制图类型与适用场合二. 控制图的基本原理控制图的设计原理可以概括为“正态性”假定、“3σ”原则、“小概率事件不发生”原理和“统计反证推断”思想。
具体说就是,假定所收集的质量特性数据服从正态分布,在此假定下,过程特性值落在分布中心上下各三倍标准差范围内的概率是99.73%,也就是说质量特性值落在上下三倍标准差之外的概率仅为0.27%,这是一个小概率事件,而“小概率事件不发生”原理认为小概率事件在一次观测中不发生,因此,一旦控制图出现“小概率事件发生”的现象,则表明过程发生了异常变化,这就是“统计反证推断”思想。
表2和表3分别表示计量值控制图和计数值控制图的中心线和控制界限的公式,以及样本量的确定。
表2 计量值控制图的中心线和控制界限表3 计量值控制图的中心线和控制界限三. 控制图的应用控制图显示随时间采集的数据和由这些数据计算出的波动;控制图与过程能力分析结合在一起称为统计过程控制(SPC)。
图2是一个典型的SPC的应用流程。
图2 典型的SPC的应用流程。
控制图(control charts)又名:统计过程控制( statistical process control)方法演变:EQ \o(\s\up5(-),\s\do2(x))计量值控制图:⎺X-R控制图(又名均值极差控制图),⎺X-s控制图,单值控制图(又名X 控制图,X-R控制图,IX-MR控制图,XmR控制图,移动极差控制图),移动均值-移动极差控制图(又名MA-MR控制图),目标偏差控制图(又名差异控制图、偏差控制图、名义值偏差控制图),CUSUM(又名累计和控制图),EWMA(又名指数加权移动平均控制图),多元控制图(又名Hotelling T2控制图)。
计数值控制图:p控制图(又名不良品率控制图),np控制图,c控制图(又名缺陷数控制图),u控制图。
两种数据都适用的控制图:短期过程控制图(又名稳定控制图或者Z控制图),组控制图(又名多属性值控制图)。
概述控制图是一种对过程变异进行分析和控制的图形工具。
数据按时间顺序绘制在图上,控制图一般有一条代表均值的中心线,一条上控制限位于中心线上方,一条下控制限位于中心线下方,这些线是根据过程数据确定的。
通过当前数据和由历史数据计算所得的控制限的比较,我们可以判定当前过程变异是稳定的(受控制)还是不稳定的(不受控制,受到某个特定因素的干扰)。
控制图分为很多种,不同的过程、不同的数据,我们采用不同的控制图。
计量值数据的控制图经常是成对应用,其中常绘制在上方的一张控制图监测均值,或者说过程数据的分布中心,而绘制在下方的一张控制图监测极差,或者说分布的波动程度。
如果借助于练习打靶的例子来说明,那么均值就是靶子上射击集中的地方,极差是射击点的离散程度。
计量值数据要成对使用控制图,计数值数据则通常只使用一张控制图就足够了。
适用场合·当你希望控制当前过程,问题出现时能察觉并能对其采取补救措施时;·当你希望对过程输出的变化范围进行预测时:·当你判断一个过程是否稳定(处于统计受控状态)时;·当你分析过程变异来源是随机性(偶然事件)还是非随机性(过程本身固有)时;·当你决定怎样完成一个质量改进项目时——防止特殊问题的出现,或对过程进行基础性的改变。
常见工程质量统计分析方法引言工程质量的统计分析是为了帮助工程师和决策者了解工程项目的质量水平,从而采取相应的措施来提高工程质量。
本文将介绍几种常见的工程质量统计分析方法,包括质量控制图、假设检验和回归分析。
1. 质量控制图质量控制图是一种常用的工程质量统计方法,它能够对工程项目的质量数据进行监控和分析。
质量控制图主要有控制图和直方图两种类型。
1.1 控制图控制图是用来监控过程中质量特性的变化情况,通过绘制样本数据的点和控制限来判断过程是否处于统计控制状态。
常见的控制图有: -均值控制图:用于监控样本均值的变化情况; - 范围控制图:用于监控样本范围的变化情况。
1.2 直方图直方图是用来分析质量特性分布的一种方法,通过将数据分组并绘制柱状图来展示质量特性的分布情况。
2. 假设检验假设检验是一种以统计学为基础的工程质量统计方法,用于检验关于总体参数的假设。
假设检验的步骤包括: 1. 提出原假设和备择假设;2. 根据样本数据计算检验统计量的值;3. 根据检验统计量的分布和显著性水平进行假设判断。
常见的假设检验方法有: - 单样本 t 检验:用于检验一个样本的均值是否等于给定值; - 双样本 t 检验:用于检验两个样本的均值是否相等; - 方差分析:用于检验多个样本的均值是否相等。
3. 回归分析回归分析是一种用于研究因变量与一个或多个自变量之间关系的统计方法。
回归分析可以帮助工程师了解影响工程质量的因素,并预测工程质量的变化趋势。
常见的回归分析方法有: - 简单线性回归:用于研究一个自变量与因变量之间的关系; - 多元线性回归:用于研究多个自变量与因变量之间的关系; - Logistic 回归:用于研究因变量为二分类的情况。
结论工程质量的统计分析方法在工程实践中起着重要的作用,它能够帮助工程师和决策者了解工程项目的质量状况,从而采取相应的措施来提高工程质量。
本文介绍了几种常见的工程质量统计分析方法,包括质量控制图、假设检验和回归分析。