统计过程控制之通用控制图
- 格式:doc
- 大小:1.90 MB
- 文档页数:37
控制图(control charts)又名:统计过程控制( statistical process control)方法演变:EQ \o(\s\up5(-),\s\do2(x))计量值控制图:⎺X-R控制图(又名均值极差控制图),⎺X-s控制图,单值控制图(又名X 控制图,X-R控制图,IX-MR控制图,XmR控制图,移动极差控制图),移动均值-移动极差控制图(又名MA-MR控制图),目标偏差控制图(又名差异控制图、偏差控制图、名义值偏差控制图),CUSUM(又名累计和控制图),EWMA(又名指数加权移动平均控制图),多元控制图(又名Hotelling T2控制图)。
计数值控制图:p控制图(又名不良品率控制图),np控制图,c控制图(又名缺陷数控制图),u控制图。
两种数据都适用的控制图:短期过程控制图(又名稳定控制图或者Z控制图),组控制图(又名多属性值控制图)。
概述控制图是一种对过程变异进行分析和控制的图形工具。
数据按时间顺序绘制在图上,控制图一般有一条代表均值的中心线,一条上控制限位于中心线上方,一条下控制限位于中心线下方,这些线是根据过程数据确定的。
通过当前数据和由历史数据计算所得的控制限的比较,我们可以判定当前过程变异是稳定的(受控制)还是不稳定的(不受控制,受到某个特定因素的干扰)。
控制图分为很多种,不同的过程、不同的数据,我们采用不同的控制图。
计量值数据的控制图经常是成对应用,其中常绘制在上方的一张控制图监测均值,或者说过程数据的分布中心,而绘制在下方的一张控制图监测极差,或者说分布的波动程度。
如果借助于练习打靶的例子来说明,那么均值就是靶子上射击集中的地方,极差是射击点的离散程度。
计量值数据要成对使用控制图,计数值数据则通常只使用一张控制图就足够了。
适用场合·当你希望控制当前过程,问题出现时能察觉并能对其采取补救措施时;·当你希望对过程输出的变化范围进行预测时:·当你判断一个过程是否稳定(处于统计受控状态)时;·当你分析过程变异来源是随机性(偶然事件)还是非随机性(过程本身固有)时;·当你决定怎样完成一个质量改进项目时——防止特殊问题的出现,或对过程进行基础性的改变。
统计过程控制(SPC)与休哈特控制图(三)第六章通用控制图世界各国的控制图大多采用3σ方式。
在应用控制图时,需要计算控制图的控制界限并根据实测数据计算出所控制的统计量,在控制图中描点。
这两项都需要一定的工作量,尤其是p图与pn图、u图与c图,由于控制界限计算公式中含有样本大小n,控制界线随着n的变化而呈凹凸状,作图十分不便,也难于判稳、判异。
若n变化不大,虽可用n 的平均数n代替n,但不精确,当点子接近控制界限时有误报与漏报异常的可能。
1981年我国张公绪教授与阎育苏教授提出的通用控制图解决了上述问题。
在通用控制图上,控制界线是直线,而且判断异常的结果也是精确的。
通用控制图已于1986年发布为国家标准GB6381。
通用控制图主要包括两个内容:标准变换和直接打(描)点法。
一、标准变换与通用图所谓随机变量的标准变换是指经过变换后随机变量的平均值变成0、方差变成1的变换,即:变换后的随机变量=(随机变量一μ)/σ这是可以理解的。
随机变量的取值减去其平均值后的平均值应为0;其次,分母为标准差,也就是说用标准差作尺度,这样,变换后的标准差应为1。
现在,对3σ控制界限的一般公式UCL=μ+3σCL=μLCL=μ-3σ进行标准变换,于是得到UCLt=(UCL-μ)/σ=3CLt=(UCL-μ)/σLCLt=(UCL+μ)/σ=3式中,下标t表示标准变换后,也表示通用的“通"。
这样,任何3σ控制图都统一变换成式(3.6. 1一2)的控制图,称为通用控制图。
通用图的优点是控制界限统一成3,0,-3,可以事先印好,简化控制图,节省管理费用,在图上容易判断稳态和判断异常。
通用图的缺点是在图中打(描)点也需要经过标准变换,计算要麻烦些。
为了解决这个问题,需要应用直接打点法。
二、直接打点法控制图判断异常的准则主要有下列两点:(1)点子出界或恰在控制界限上;(2)界内点子的排列非随机。
前者对于点子位置要求精确,后者对于点子位置要求相对精确就可以了。
SPC统计过程控制—控制图连续数据和离散数据连续型:使用测量的可以有意义地无限分割的连续数值。
(时间,长度)离散型:类别信息,可以计数但是不能有意义的分割。
(合格/不合格)控制图由中心线,控制上限(UCL)及控制下限(LCL)组成。
注意控制限和规格限的区别,控制极限(UCL,LCL)是根据平均值计算得出的,是按过程中心值+/- 3个标准偏差计算出来的。
即控制极限是根据样本数据计算得出的,是过程的内部特征。
控制极限是由过程能力决定的。
规格极限(USL,LSL)是由执行的标准决定的,是过程的外部特征。
大多数规格是关于个体数值的,是由客户的要求决定的。
控制图上表现出来的波动分为由一般原因引起的波动和由特殊原因引起的波动,对于特殊原因引起的波动更加容易发现,比如超出了控制上限或控制下限或者常说的控制图七点判异规则。
控制图的作用就是要发现这些异常,并且分析根源采取纠正措施。
控制图的使用和选择连续的分组数据:XBar-R控制图和XBar-S控制图。
连续的单值数据:I-MR控制图。
离散的符合二项分布的不合格品数:(分组样品容量相等用nP控制图,不等用P控制图) 离散的符合泊松分布的缺陷数:(分组样品容量相等用C控制图,不等用U控制图) XBar-R控制图XBar(平均值控制图)反映变量X随时间的集中趋势及分组样本之间的变动性。
注意控制图中的每个点是每个分组的平均值,而控制图的中心线是分组的平均值的平均值。
R(极差控制图)极差控制图监测的是分组样本内部随时间的变动。
该图的中心线代表长期的分组样本之极差的平均值,或称为R。
对于R控制图只适合于样本容量较小的场合。
XBar-S控制图XBar(平均值控制图)反映变量X随时间的集中趋势及分组样本之间的变动性。
这个同XBar-R控制图。
对于S控制图是值标准差,标准差控制图监测的是分组样本内部随时间的变动。
该图的中心线代表长期的分组样本之标准偏差的平均值,标准差图可适用于分组样本容量(即n)大于2的任何场合。
控制图(control charts)又名:统计过程控制( statistical process control)方法演变:EQ \o(\s\up5(-),\s\do2(x))计量值控制图:⎺X-R控制图(又名均值极差控制图),⎺X-s控制图,单值控制图(又名X 控制图,X-R控制图,IX-MR控制图,XmR控制图,移动极差控制图),移动均值-移动极差控制图(又名MA-MR控制图),目标偏差控制图(又名差异控制图、偏差控制图、名义值偏差控制图),CUSUM(又名累计和控制图),EWMA(又名指数加权移动平均控制图),多元控制图(又名Hotelling T2控制图)。
计数值控制图:p控制图(又名不良品率控制图),np控制图,c控制图(又名缺陷数控制图),u控制图。
两种数据都适用的控制图:短期过程控制图(又名稳定控制图或者Z控制图),组控制图(又名多属性值控制图)。
概述控制图是一种对过程变异进行分析和控制的图形工具。
数据按时间顺序绘制在图上,控制图一般有一条代表均值的中心线,一条上控制限位于中心线上方,一条下控制限位于中心线下方,这些线是根据过程数据确定的。
通过当前数据和由历史数据计算所得的控制限的比较,我们可以判定当前过程变异是稳定的(受控制)还是不稳定的(不受控制,受到某个特定因素的干扰)。
控制图分为很多种,不同的过程、不同的数据,我们采用不同的控制图。
计量值数据的控制图经常是成对应用,其中常绘制在上方的一张控制图监测均值,或者说过程数据的分布中心,而绘制在下方的一张控制图监测极差,或者说分布的波动程度。
如果借助于练习打靶的例子来说明,那么均值就是靶子上射击集中的地方,极差是射击点的离散程度。
计量值数据要成对使用控制图,计数值数据则通常只使用一张控制图就足够了。
适用场合·当你希望控制当前过程,问题出现时能察觉并能对其采取补救措施时;·当你希望对过程输出的变化范围进行预测时:·当你判断一个过程是否稳定(处于统计受控状态)时;·当你分析过程变异来源是随机性(偶然事件)还是非随机性(过程本身固有)时;·当你决定怎样完成一个质量改进项目时——防止特殊问题的出现,或对过程进行基础性的改变。
SPCSPC(Statistical Process Control,统计过程控制或统计制程控制)目录∙ 1 什么是SPC∙ 2 SPC起源与发展∙ 3 3σ原理简介∙ 4 SPC技术原理∙ 5 SPC控制图及计算∙ 6 SPC控制图(管制图)的实施∙7 SPC控制图(管制图)异常的判断及处理∙8 制程能力指数(参数)CPK∙9 SPC的发展特点∙10 SPC对企业带来的好处什么是SPCSPC即英文“Statistical Process Control”之缩写,意为“统计制程控制” SPC或称统计过程控制。
SPC主要是指应用统计分析技术对生产过程进行实时监控,科学的区分出生产过程中产品质量的随机波动与异常波动,从而对生产过程的异常趋势提出预警,以便生产管理人员及时采取措施,消除异常,恢复过程的稳定,从而达到提高和控制质量的目的。
在生产过程中,产品的加工尺寸的波动是不可避免的。
它是由人、机器、材料、方法和环境等基本因素的波动影响所致。
波动分为两种:正常波动和异常波动。
正常波动是偶然性原因(不可避免因素)造成的。
它对产品质量影响较小,在技术上难以消除,在经济上也不值得消除。
异常波动是由系统原因(异常因素)造成的。
它对产品质量影响很大,但能够采取措施避免和消除。
过程控制的目的就是消除、避免异常波动,使过程处于正常波动状态。
SPC起源与发展1. 1924年休哈特博士在贝尔实验室发明了品质控制图。
2. 1939年休哈特博士与戴明博士合写了《品质观点的统计方法》。
3.二战后美英将品质控制图方法引进制造业,并应用于生产过程。
4. 1950年,戴明到日本演讲,介绍了SQC的技术与观念。
5.SQC是在发生问题后才去解决问题,是一种浪费,所以发展出了SPC。
6.美国汽车制造商福特、通用汽车公司等对SPC很重视,所以SPC得以广泛应用。
7.ISO9000(2000)体系亦注重过程控制和统计技术的应用(如8.1,8.2.3)。
统计过程控制SPC的核心工具(控制图)摘要:过程控制是以影响过程结果的冈素为处理对象的活动,它遵循质量是在生产过程制造的这个预防为主的原则。
在实施过程管理中,控制图技术是质量控制的行之有效的手段 ,是SPC技术的核心工具。
控制图是用于分析和判断工序是否处于稳定状态所使用的带有控制界限的图。
控制图的基本形式是纵坐标是特征值 ,横坐标为样本号或时间。
图上有三条线:上控制线VCL ,中心线 CL ,下控制线LCL。
SPC就是利用控制图对工序进行质量控制的一种统计方法。
控制图的工艺过程受控判断规则规则 1:数据点超出(低于)中心线 3σ;规则 2:二个连续点中有两点超出(低于)中心线 2σ;规则 3:五个连续点中有四点超出(低于)中心线σ;规则 4:连续七个点大于(小于)中心线;规则 5:连续六个点呈现单调上升(下降)趋势;规则 6:十个连续点中有八点呈现单调上升(下降)趋势;规则 7:相邻两个点之间数值之差大于等于 4σ;控制图失控因素分析造成工艺过程失控的原因很多 ,可从以下七个主要因素方面进行综合分析。
●人:操作者的质量意识、技术水平、文化素养、熟练程度和身体素质等;●机器设备:机器设备的精度、工作稳定性和维护保养状况等;●材料:材料的成分、性能和质量等;●工艺方法:加工工艺、工艺装备、操作规程等;●环境:工作地点的温度、湿度、震动、照明、噪音和净化情况等;●能:水、电、煤、汽等;●测:测试方法。
控制图生成软件传统制作控制图的方法是,先去收集,然后把数据一个个绘制到坐标上形成控制图,这种方法工作量大,不利于我们做统计分析.现在我们可以直接通过SPC软件来自成生产各种控制图,且系统可自动判断失控状态,对于失控的数据会直接在控制图上用红点标注,让管理人员一目了然地了解到整个工艺控制过程,下图是直接利用QSmart SPC软件来自动生成平均值-极差控制图的示意图:。
统计过程控制(SPC)与休哈特控制图(三)第六章通用控制图世界各国的控制图大多采用3σ方式。
在应用控制图时,需要计算控制图的控制界限并根据实测数据计算出所控制的统计量,在控制图中描点。
这两项都需要一定的工作量,尤其是p图与pn图、u图与c图,由于控制界限计算公式中含有样本大小n,控制界线随着n的变化而呈凹凸状,作图十分不便,也难于判稳、判异。
若n变化不大,虽可用n的平均数n代替n,但不精确,当点子接近控制界限时有误报与漏报异常的可能。
1981年我国公绪教授与阎育教授提出的通用控制图解决了上述问题。
在通用控制图上,控制界线是直线,而且判断异常的结果也是精确的。
通用控制图已于1986年发布为国家标准GB6381。
通用控制图主要包括两个容:标准变换和直接打(描)点法。
一、标准变换与通用图所谓随机变量的标准变换是指经过变换后随机变量的平均值变成0、方差变成1的变换,即:变换后的随机变量=(随机变量一μ)/σ这是可以理解的。
随机变量的取值减去其平均值后的平均值应为0;其次,分母为标准差,也就是说用标准差作尺度,这样,变换后的标准差应为1。
现在,对3σ控制界限的一般公式UCL=μ+3σCL=μLCL=μ-3σ进行标准变换,于是得到UCLt=(UCL-μ)/σ=3CLt=(UCL-μ)/σLCLt=(UCL+μ)/σ=3式中,下标t表示标准变换后,也表示通用的“通"。
这样,任何3σ控制图都统一变换成式(3.6. 1一2)的控制图,称为通用控制图。
通用图的优点是控制界限统一成3,0,-3,可以事先印好,简化控制图,节省管理费用,在图上容易判断稳态和判断异常。
通用图的缺点是在图中打(描)点也需要经过标准变换,计算要麻烦些。
为了解决这个问题,需要应用直接打点法。
二、直接打点法控制图判断异常的准则主要有下列两点:(1)点子出界或恰在控制界限上;(2)界点子的排列非随机。
前者对于点子位置要求精确,后者对于点子位置要求相对精确就可以了。
这就启控制图判断异常的准则主要有下列两点:(1)点子出界或恰在控制界限上;(2)界点子的排列非随机。
前者对于点子位置要求精确,后者对于点子位置要求相对精确就可以了。
这就启发我们在通用图上作出K=-3,-2,...3,3的七根水平横线,把整个通用图分成Ⅰ,Ⅱ,...,Ⅷ共八个区域,如图3.6.2一1所示。
如果点子落在区域Ⅰ或Ⅷ中,则点子显然出界,而且其结果是精确的;如果点子落在其余区域,则只需将此点描在该区域中即可,其具体位置不要求那么精确。
将通用图分成Ⅰ,Ⅱ,...,Ⅷ共八个区域的七根线:K=-3,K=-2,...,K=2,K=3称为标杆线。
如果在现场数据中找出与此对应的七个数据(可称之为现场标杆数据),则在现场测得所控制质量指标的数据后,将它与这七个现场标杆数据相比较,便立刻知道应在通用图上哪个区域中描点。
这就是直接打(描)点法。
直接打(描)点法的公式仍然从标准变换公式导出。
从式(3.61-1)有K=(现场标杆数据一μ)/σ于是现场标杆数据=μ+Kσ (K=-3,-2,-1,0,1,2,3)这就是直接打点公式。
根据具体的控制图,得出相应的均值与标准差数据,代人上式,可以列出直接打点表。
现场工人可根据现场实测数据,查直接打点表,然后直接在通用图中描点,无需任何计算,十分方便。
实践证明,这对于推广控制图十分重要。
三、Pt(通用不合格晶率)控制图和pnt(通用不合格品数)控制图p图的统计量为样本不合格品率p=D/n,这里D为样本不合格品数,n为样本大小。
pn图的统计量为样本不合格品数D=np 。
若过程的不合格品率P 已知,则从式(3.6.1-1)知,统计量户经过标准变换后为pt=n P P P p /)1(--=)1(P nP nP np --=)1(P nP nPD --=Dt从上式可见,经过标准变换后,p 图的统计量pt 与pn 图的统计量Dt 恒等,即对同一个二项分布总体的数据而言,无论应用统计量pt 还是应用统计量Dt,在通用图上都得到相同的图形。
这样,在原来应用p 图或如图的场合都可采用pnt 图,以便直接利用不合格品数D 。
现在给出pnt 图的直接打点公式,以便作出pnt 图的直接打点表。
令DK,n 为对应于通用图上标杆线K 和样本大小n 的现场标杆数据,于是从式(3.6.2一2),有DK,n=n p +K)1(p p n -,(K=-3,-2,-1,0,1,2,3,)式中,p 为P 的估计量。
例 用通用图重做例3.5.7一1并与p 图比较。
;解 采用Pnt 图重做例3.5.7一1。
进行步骤如下:步骤1: 计算样本平均不合格品率p 。
参见表 3.5.7一1末, p =0.93890步骤2: 选择参数n的围。
由于在表3.5.7一1中n的最小值为55,最大值为99,所以pnt图的直接打点表最好选择n为50,55,60,...,100,105,以包括可能出现的n的数值。
步骤3: 计算直接打点表。
根据式(3.6.3一2)计算如T图的直接打点表,如表3.6.3-1所示。
例如,表中,当K=3,n=55时D3,55=55×0.0389+3)55-⨯=6.4.0.0038903891(其余类推。
注:由于DK,n不可能为负,故表中每列只列出第一个负数以估计描点之用。
步骤4: 应用直接打点表在通用图上描点。
例如,对于第一组样本,n=85,D=2,从表3.6.3一1中n=85的这一列查得D=2在D0.85=3.3和D-1.85=1.5之间。
故第一组样本的点子应描在K=0与K=-1这两根标杆线之间。
再如,对于第27组样本,n=99,D=10,从表16.3一1中与n=99最接近的n=100这一列查得D=10>D3.100=9.7,于是判断该样本的点子超过上控制界限,过程失控。
其余类推,如图3.6.3一1所示。
由图可见,pnt图和p图的性状一致,但pnt图的控制界线为直线,而且所得结果是精确的,要方便得多。
此外,无论样本大小n是否为常数,pnt图均可用。
所以通用图不但减少了常规控制图的种类,由8种减为6种,而且也扩大了休哈特控制图(Pn图与C图)的应用围。
四、Ct(通用缺陷数)控制图和Ut(通用单位缺陷数)控制图c图的统计量为样本(即一定检查单位)的缺陷数c。
u图的统计量为样本的单位缺陷数u =C/。
若过程的平均缺陷数λ已知,则从式(3.6.1一1)知,统计量u 经过标准变换后为 Ut=n U U U u /)1(--=n n C //λλ-=λλn n C -=λλ''-C式中,λ'=n λ',它是与n 个检查单位的总缺陷数C 对应的过程参数。
从上式可见,经过标准变换 后,u 图的统计量Ut 与c 图的统计量Ct 恒等,即对同一个泊松分布总体的数据而言,无论应用统计量Ut 还是应用统计量Ct,在通用图上都得到相同的图形。
这样,在原来应用u 图或c 图的场合都可采用Ct 图,以便直接利用缺陷数c 。
由于Ct 图的控制界线为直线,而且所得结果是精确的,所以要比价图方便得多。
此外,wu 无论样本大小n 是否为常数,Ct 图均可用。
因此,通用图不但减少了常规控制图的种类,而且也扩大了休哈特控制图的应用围。
第七章两种质量诊断理论本章将讨论生产线的分析方法,两种质量的基本概念,两种质量诊断理论。
一、两种质量诊断理论1.生产线的分析方法通常,一个产品在生产过程中要经过若干道工序加工才能完成。
因此,每道工序都对产品的最终质量起作用。
对于由若干道工序组成的一条生产线应如何分析和评价呢?传统的休哈特分析方法是道道工序把关,即上工序只允许把合格品送往下工序加工,这样就可以保证产品的最终质量。
这种场合的分析方法是假定上道工序的产品总是合格品,从而无需考虑上工序对下工序的影响。
因此,在分析生产线时,每道工序都看成是独立的,参见下图的模型Ⅰ。
换言之,在传统分析方法中各工序都假定与其余工序是统计独立的。
这时若分析某道工序的质量问题,只需考虑该工序本身的质量因素就行了,所以这种模型的优点是分析简单。
传统生产线分析模型Ⅰ在现实生活中,对于上下无联系的工序,如机械加工中的镗圆与钻孔,这种传统方法是有效的。
但在许多场合,上下工序是相关的而不是统计独立的,如石油、化工等流程式生产或制药、食品加工等有严格时限要求的场合,传统的道道把关实际上做不到。
因此,传统分析方法有局限性,需要采用新的选控分析方法。
在选控分析方法中(如上图所示),认为上工序对下工序的影响,或多或少,始终存在,即上下工序间都是相关的。
上下工序不相关(上工序影响为零)仅仅是本情况的特例。
换言之,下图的模型Ⅱ更一般,更符合实际,且把上图的模型Ⅰ作为其特例。
…………选控生产线分析模型Ⅱ在模型Ⅰ中,各工序间是统计独立的,故分析工序时只需要考虑本工序的质量因素;而在模型Ⅱ中,各工序是相关的,故分析工序时除去考虑本工序的质量因素以外,还需考虑上工序的影响。
为了简化模型Ⅱ的分析,需要提出两种质量的概念。
二、两种质量为了简化分析图选控生产线分析模型Ⅱ,需要提出两种质量的概念。
例如,在第n道工序(这里可以是生产线的任一道工序),根据质量涵义所涉及的围大小,存在以下两种质量:1. 工序综合质量,简称总质量。
总质量不但包括第n道工序的加工质量,而且综合了所有上道工序的加工质量在。
总质量就是通常意义下的产品质量,不过强调一个“总”,字而已。
总质量的特点是:它可以由用户直接感受到。
对于负责整个生产线的主管人员来说,他当然要关心总质量,因为总质量直接为用户感受到。
但是,只关心总质量是不够的,当总质量发生问题时,往往不能立刻判定究竟是哪道工序造成的。
因此,他还需关心第二种质量,即工序固有质量。
2.工序固有质量,简称分质量。
分质量是指该工序本身的加工质量,而不包括上工序的影响。
分质量是一种新的质量概念。
分质量的特点是:它反映了该工序的工作质量。
事实上,影响一道工序的因素按照来源的不同可分为人、机、料、法、环五大类因素(即4M1E)。
其中,料即原材料、半成品,它来自上道工序,与本工序元关;环即环境,由于整条生产线大多处于相同的环境下,故可将环境看成是一个共同的因素而不必给予特殊的考虑。
而其余的人(操作人员)、机(设备,其可用性与人的维护好坏有关)和法(操作法)都与人的因素有关。
所以说,分质量反映了该工序的工作质量。
总质量是在上道工序提供的半成品(它的特征值反映了上工序的影响水平)的基础上,经过本工序的加工综合而成的产品质量。
总质量和分质量二者的关系可概括表示如下;分质量上工序的影响(简称上影)由此可见,分质量只是形成总质量的一部分。
分质量与上工序无关,如果能够针对每道工序的分质量进行控制,那么就在分析上切断了下工序与上工序的联系(当然,在实际的生产线中,不可能切断上下工序间的联系。