整式的乘除培优试题1
- 格式:docx
- 大小:74.50 KB
- 文档页数:3
(完整版)整式的乘除培优(可编辑修改word版)整式的乘除培优⼀、选择题:1﹒已知x a=2,x b=3,则x3a+2b 等于()A﹒17 B﹒72 C﹒24 D﹒362﹒下列计算正确的是()A﹒5x6·(-x3)2=-5x12 B﹒(x2+3y)(3y-x2)=9y2-x4C﹒8x5÷2x5=4x5 D﹒(x-2y)2=x2-4y23、已知M=20162,N=2015×2017,则M 与N 的⼤⼩是()A﹒M>N B﹒M<N C﹒M=N D﹒不能确定4、已知x2-4x-1=0,则代数式 2x(x-3)-(x-1)2+3 的值为()A﹒3 B﹒2 C﹒1 D﹒-15、若a x ÷a y =a2,(b x)y=b3,则(x+y)2的平⽅根是()A﹒4 B﹒±4C﹒±6D﹒166、计算-(a -b)4 (b -a)3 的结果为()A、-(a -b)7B、-(a +b)7C、(a-b)7D、(b-a)77、已知a=8131,b=2741,c=961,则a,b,c 的⼤⼩关系是()B、A.a>b>c B.a>c>b C.a<b<c D.b>c>a8、图①是⼀个边长为(m+n)的正⽅形,⼩颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式⼦是()A.(m+n)2﹣(m﹣n)2=4mn B.(m+n)2﹣(m2+n2)=2mnC.(m﹣n)2+2mn=m2+n2 D.(m+n)(m﹣n)=m2﹣n29、若a﹣2=b+c,则a(a﹣b﹣c)+b(b+c﹣a)﹣c(a﹣b﹣c)的值为()=90 pA.4 B.2 C.1 D.810、当x=1 时,ax+b+1 的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8 D.1611、已知a2+a﹣3=0,那么a2(a+4)的值是()A.9 B.﹣12 C.﹣18 D.﹣1512、在求1+6+62+63+64+65+66+67+68+69 的值时,⼩林发现:从第⼆个加数起每⼀个加数都是前⼀个加数的6 倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②,②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的⼩林想:如果把“6”换成字母“a”(a≠0 且a≠1),能否求出1+a+a2+a3+a4+…+a2014 的值?你的答案是()A. B. C. D.a2014﹣1⼆、填空:1、若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=﹒2、若(2x+3y)(mx-ny)=4x2-9y2,则mn=.3. 已知a+b=8,a2b2=4,则1(a2+b2)-ab=. 2999 p999 , q =119,那么9q (填>,<或=)5.已知10a= 20, 10b=1,则3a÷ 3b= 56.设A =(x -3)(x - 7),B =(x - 2)(x -8),则A B(填>,<,或=)7.若关于x 的多项式x2-8x +m =(x - 4)2 ,则m 的值为若关于x 的多项式x2+nx +m2=(x - 4)2 ,则m n=4. 若225 4 3 2 1 3 1 若关于 x 的多项式 x 2 + nx + 9 是完全平⽅式,则 n=8.计算: 20162 - 2015? 2016 =9. 计算: ?1- 1 ??1- 1 ? ?1- 1 ??1- 1 ? =? 32 ? 992 1002 ? 10.计算: (2 +1)(22 +1)(24 +1)(22n+1)=11、已知:(x +1)5 = a x 5 + a x 4 + a x 3 + a x 2+ a x + a ,则 a + a + a =12、已知: x 2 - (m - 2)x + 36 是完全平⽅式,则 m=13、已知:x 2 + y 2- 6 y = 2x - 10 ,则 x - y =14、已知:13x 2 - 6xy + y 2 - 4x +1 = 0 ,则(x + y )2017 x 2016= 15、若 P = a 2 + 2b 2 + 2a + 4b + 2017 ,则 P 的最⼩值是=16、已知 a =1 2018 x2 + 2018,b = 1 2018 x 2 + 2017,c = 1 2018x 2+ 2016 ,则 a 2 + b 2 + c 2 - ab - bc - ac 的值为17、已知(2016 - a )(2018 - a ) = 2017 ,则(2016 - a )2 + (2018 - a )2 =x - 1 18、已知 x x 2 5,则 x 4+ 1 =19、已知: x 2 - 3x - 1 = 0 ,则 x 2 + 1x2三、解答题:=, x 4 +1=x41、(x 2-2x -1)(x 2+2x -1);②(2m+n ﹣p )(2m ﹣n+p )2、形如 a b c的式⼦叫做⼆阶⾏列式,它的运算法则⽤公式表⽰为da c = ad - bc ,⽐如 2b d 1 5= 2 ? 3 -1? 5 = 1,请按照上述法则计算 30 5 =-2ab -3ab2a2b(-ab)2的结果。
2020北师大版七年级数学整式的乘除期末复习培优练习题1(附答案)一、单选题1.下列运算正确( )A .a•a 5=a 5B .a 7÷a 5=a 3C .(2a )3=6a 3D .10ab 3÷(﹣5ab )=﹣2b 22.下列计算正确的是( )A .a 2•a 3=a 5B .a 2+a 3=a 5C .(ab 2)3=ab 6D .a 10÷a 2=a 5 3.已知3ab =-,2a b +=,代数式33a b ab +的值为( )A .10B .30C .-10D .-304.计算:0.1253×(﹣8)3的结果是( )A .﹣8B .8C .1D .﹣1 5.如果a=-3-2,b=-0.32,c=-21-3⎛⎫ ⎪⎝⎭,d=01-5⎛⎫ ⎪⎝⎭,那么a ,b ,c ,d 四数的大小为( ) A .a<b<c<d B .b<a<d<c C .a<d<c<b D .a<b<d<c6.下列式子正确的是 ( )A .22x x -=B .238()ab ab =C .45a a a ⋅=D .22()()a b a b -+=+7.已知3a b +=,2ab =,则22a b +的值为( )A .3B .5C .6D .78.下列计算正确的是( )A .a 2+a 2=a 4B .2(a ﹣b )=2a ﹣bC .a 3•a 2=a 5D .(﹣b 2)3=﹣b 5 9.(-2)4÷(-2)3 等于( )A .(-2)12B .4C .-2D .1210.下列运算中,正确的是( )A .235325x x x +=B .336x x x ⋅=C .235()x x =D .33()ab a b =11.(-6a 3-6a 2c )÷(-2a 2)等于_______; 12.a b =a 8÷a÷a 4,则b= ______13.若3m =6,3n =2,则32m ﹣n =________.14.若ab =1,则(a n -b n )2-(a n +b n )2=________.15.如图,是我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式(a +b )n (n 为整数)的展开时的系数规律,(按a 的次数由大到小的顺序),此规律称之为“杨辉三角”.请依据此规律,写出(a +b )2018展开式中含a 2017项的系数是______________.…… ……16.若22(3)25x m x +-+是关于x 的完全平方式,则m=_____.17.计算:(1)(x +6)(6-x )=________;(2)(-x +12)(-x -12)=______. 18.计算:-x 2·x 3=________;3212a b ⎛⎫ ⎪⎝⎭=________;201712⎛⎫- ⎪⎝⎭×22016=________.19.若22a b 9-=,3a b +=-,则-a b =________.20.计算:x 3·x 2·x 10=________.21.计算:(1)(3a +5b -2c )(3a -5b -2c );(2)(x +1)(x 2-1)(x -1). 22.阅读下列材料:正整数的正整数次幂的个位数字是有规律的,以3为例:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,39=19683,…∴指数以1到4为一个周期,幂的个位数字就重复出现,一般来说,若a k 的个位数字是b ,则a 4m +k 的末位数字也是b (k 为正整数,m 为非负整数).请你根据上面提供的信息,求出下式:(3-1)(3+1)(32+1)(34+1)…(332+1)+1的计算结果的个位数字是几吗?23.利用完全平方公式()2222a b a ab b ±=±+,可对22a b +进行适当变形:如()22222222a b a ab b ab a b ab +=++-=+-或()22222222a b a ab b ab a b ab +=-++=-+ 从而使某些问题得到解决,计算:(1)14a a -=,求221a a ⎛⎫+ ⎪⎝⎭的值; (2)已知2,3a b ab -==,求44a b +的值.24.已知2x -5x 3=,求22x-12x-1-2x 11++()()()的值. 25.本学期我们学习了“有理数乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂”的新运算.定义:a m 与 a n (a≠0,m 、n 都是正整数)叫做同底数幂,同底数幂除法记作 a m ÷a n . 运算法则如下:a m ÷a n =,{=,11,m n m nm n m n n m m n a a a m n a a m n a a a --÷=÷=÷=当>时当时当<时根据“同底数幂除法”的运算法则,回答下列问题:(1)填空:5211()()22÷ = ,43÷45= . (2)如果 3x-1÷33x-4=127,求出 x 的值. (3)如果(x ﹣1)2x+2÷(x ﹣1)x+6=1,请直接写出 x 的值.26.已知a m =2,a n =3,求下列各式的值:(1)a m+1(2)a n+2(3)a m+n+1 .27.动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a +b )2,(a -b )2,ab 之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求x-y的值.28.当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图①,可得等式(a+2b)(a+b)=a2+3ab+2b2.(1)由图②,可得等式_________________________________________________;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图③中的纸片(足够多)画出一种拼图,使该拼图可用来验证等式:2a2+5ab+2b2=(2a+b)(a+2b);(4)小明用2张边长为a的正方形、3张边长为b的正方形、5张邻边长分别为a,b的长方形纸片重新拼出一个长方形,那么该长方形较长的一条边长为____________.29.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.30.计算:(1)32÷2﹣2×20180(2)(﹣3x3)2﹣4x8÷x2参考答案1.D【解析】选项A ,原式=6a ;选项B ,原式=2a ;选项C ,原式=38a ;选项D ,原式=22b .故选D. 2.A【解析】【分析】结合选项分别进行同底数幂的除法、合并同类项、同底数幂的乘法等运算,然后选择正确选项.【详解】解:A 、a 2•a 3=a 5,计算正确,故本选项正确;B 、a 2和a 3不是同类项,不能合并,故本选项错误;C 、(ab 2)3=a 3b 6,计算错误,故本选项错误;D 、a 10÷a 2=a 8,计算错误,故本选项错误.故选A .【点睛】本题考查了同底数幂的除法、合并同类项、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.3.D【解析】【分析】由a+b=2,ab=-3,可得a 2+b 2=10,将a 3b+ab 3分解成ab(a 2+b 2)即可解答.【详解】解:∵a+b=2,∴(a+b)2=4,∴a 2+2ab+b 2=4,∵ab=-3,∴a 2+b 2=10,∴a 3b+ab 3= ab(a 2+b 2)=(-3)×10=-30.故选D.【点睛】本题考查了因式分解的应用. 4.D【解析】解:原式=(18)3×(﹣8)3=[18×(﹣8)]3=﹣1,故选D.5.D 【解析】试题解析:1,0.09,9,1,9a b c d=-=-==.a b d c∴<<<故选D.点睛:正数都大于0,负数都小于0.两个负数,绝对值大的反而小.6.C【解析】解:A.原式=x,不符合题意;B.原式=a3b6,不符合题意;C.原式=a5,符合题意;D.(﹣a+b)2=(a﹣b)2≠(a+b)2,不符合题意.故选C.点睛:本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,以及完全平方公式,熟练掌握运算法则及公式是解答本题的关键.7.B【解析】试题分析:∵(a+b)2=a2+b2+2ab,∴a2+b2=(a+b)2-2ab=32-2×2=5,故选B .点睛:本题考查了完全平方公式的综合应用,熟记完全平方公式的特点是解决此题的关键.8.C【解析】【分析】根据合并同类项、同底数幂的乘法、积的乘方及幂的乘方计算即可.【详解】解:A.a 2+a 2=2a 2,本项错误;B.2(a ﹣b )=2a ﹣2b ,本项错误;C.a 3•a 2=a 5,本项正确;D.(﹣b 2)3=﹣b 6,本项错误.故选C .【点睛】本题考查了根据合并同类项、同底数幂的乘法、积的乘方及幂的乘方等知识点,解题的关键是熟练掌握运算法则.9.C【解析】试题解析:()()43222-÷-=-,故C 项正确.故选C.10.B【解析】A. 2332x x 与 不是同类项,不能合并,故错误;B. 336x x x ⋅= ,正确;C. ()326x x = ,故错误;D. ()33ab a b =3,故错误,故选B.11.3a +3c【解析】(-6a 3-6a 2c )÷(-2a 2)= (-6a 3) ÷ (-2a 2)-6a 2c÷(-2a 2)= 3a+3c, 故答案为:3a+3c.12.3【解析】试题解析:84814b a a a a a --÷÷==,则b =8-1-4,故b =3.故答案为:3.13.18【解析】因为32m ﹣n =32m ÷3n =(3m )2÷3n ,当3m =6,3n =2时,原式=(3m )2÷3n =(6)2÷2=18,故答案为18. 14.-4【解析】(a n -b n )2-(a n +b n )2=(a 2n -2a n b n +b 2n )-(a 2n +2a n b n +b 2n )=-4a n b n =-4(ab)n =-4×1n =-4, 故答案为:-4.【点睛】本题考查了完全平方公式、积的乘方等,熟练掌握完全平方公式是解题的关键. 15.2018【解析】【分析】分析观察所给式子可知,含2017a 的项是2018()a b +的展开式从左至右的第二项,而从表中所给式子可知,()n a b +的展开式的第二项的系数等于n ,由此即可得到所答案了.【详解】观察题中所给式子可得:(1)含2017a 的项是2018()a b +的展开式从左至右的第二项;(2)()n a b +的展开式从左至右的第二项的系数等于n ,∴2018()a b +的展开式中含有2017a 的项的系数是2018.故答案为:2018.【点睛】“通过观察所给式子中的规律得到:(1)含2017a 的项是2018()a b +的展开式从左至右的第二项;(2)()n a b +的展开式从左至右的第二项的系数等于n”是解答本题的关键.16.-2或8【解析】【分析】根据完全平方公式可得.即:a 2+2ab+b 2=(a+b)2【详解】因为,()2x 2m 3x 25+-+是关于x 的完全平方式, 所以,m-3=±5 所以,m=8或m=-2故答案为-2或8【点睛】本题考核知识点:完全平方公式.解题关键点:熟记完全平方公式.17.36-x 2 x 2-14【解析】试题解析:(1)(x +6)(6-x )=(6+x )(6-x )=36-x 2; (2)(-x +12)(-x -12)=(x-12)( x+12)=x 2-14. 故答案为:36-x 2;x 2-14 18.-x 518a 6b 3 -12【解析】 -x 2·x 3=-x 5;3212a b ⎛⎫ ⎪⎝⎭=18a 6b 3;201712⎛⎫- ⎪⎝⎭×22016=(-201611)222⎛⎫⨯-⨯ ⎪⎝⎭=-12. 19.-3【解析】 分析:根据平方差公式将原式进行因式分解,从而得出答案.详解:根据题意可得:(a+b)(a -b)=9, ∴-3(a -b)=9, 解得:a -b=-3.点睛:本题主要考查的就是利用平方差公式进行因式分解,计算代数式的值,属于基础题型.利用平方差公式进行因式分解是解决此题的关键.20.x 15.【解析】【分析】利用同底数幂相乘,底数不变指数相加计算即可【详解】3210321015x x x x x ++⋅⋅==.故答案为:15x .【点睛】本题主要考查同底数幂相乘,底数不变,指数相加的计算.21.(1) 9a 2+4c 2-25b 2-12ac ;(2) x 4-2x 2+1.【解析】试题分析:(1)利用平方差公式进行计算即可;(2)原式先利用平方差公式再利用完全平方公式进行计算即可.试题解析:(1)原式=[(3a -2c) +5b] [(3a -2c) -5b]= (3a -2c)2 -(5b)2=9a 2+4c 2-25b 2-12ac ;(2)原式=(x +1) (x -1) (x 2-1)= (x 2-1)2=x 4-2x 2+1.22.1.【解析】试题分析:先根据平方差公式求出结果,根据规律得出答案即可.试题解析:(3-1)(3+1)(32+1)(34+1)…(332+1)+1=(32-1)(32+1)(34+1)…(332+1)+1=(34-1)(34+1)…(332+1)+1=364-1+1=364,∵64÷4=16,∴(3-1)(3+1)(32+1)(34+1)…(332+1)+1的个位数字是1.23.(1)18;(2)82.【解析】分析:(1)把已知条件两边平方,然后整理即可求解;(2)先求出()2222a b a b ab +=-+的值,然后根据()24422222a b a b a b +=+-即可求出a 4+b 4的值. 详解:(1)∵14a a -= ∴2222111-24218a a a a a a ⎛⎫⎛⎫+=+⋅=+= ⎪ ⎪⎝⎭⎝⎭ (2)2,3a b ab -==Q ∴()2222222310a b a b ab +=-+=+⨯=∴()24422222a b a b a b +=+- 22102382=-⨯=.点睛:本题考查了完全平方公式,根据完全平方公式变形为已知条件的形式,进而得出结果即可.24.7【解析】试题分析:根据整式的乘法的运算法则化简后,整体代入求值即可.试题解析:原式=2(2x2-3x+1) -2(x2+2x+1)+1=4x2-6x+2-2x2-4x-2+1=2x2-10x+1=2(x2-5x)+1=6+1=7.25.(1)18、116;(2)x=3;(3)x=4,x=0,x=2.【解析】【分析】根据同底数幂的乘法、除法法则求解即可. 【详解】解:(1)填空:521122⎛⎫⎛⎫÷⎪ ⎪⎝⎭⎝⎭=18,43÷45=116,故答案为18、116;(2)由题意,得3x﹣4﹣(x﹣1)=3,解得:x=3,∴x=3.(3)由题意知,①2x+2﹣(x+6)=0,解得:x=4;②x﹣1=1,解得:x=2;③x﹣1=﹣1且2x+2与x+6为偶数,解得:x=0;综上,x=4,x=0,x=2.本题主要考查同底数幂的乘法、除法法则,其中同底数幂相乘: ·m n m n a a a +=,同底数幂相乘,底数不变, 指数相加;同底数幂相除, m n m n a a a -÷=,同底数幂相除, 底数不变, 指数相减.26.(1) 2a ;(2) 3a 2;(3) 6a.【解析】试题分析:(1)逆用同底数幂的乘法法则,将a m+1化为a m ·a ,再代入计算即可;(2)逆用同底数幂的乘法法则,将a n+2化为a n ·a 2,再代入计算即可;(3)逆用同底数幂的乘法法则,将a m+n+1化为a m ·a n ·a ,再代入计算即可.试题解析:(1)a m+1=a m ·a=2a.(2)a n+2=a n ·a 2=3a 2.(3)a m+n+1=a m ·a n ·a=6a.27.(1) (a -b )2;(a +b )2-4ab;(2) (a +b )2-4ab =(a -b )2,问题解决: x -y =±6【解析】【分析】(1)第一种方法为:大正方形面积-4个小长方形面积,第二种表示方法为:阴影部分正方形的面积;(2)可得等量关系为:(a+b )2-4ab=(a-b )2;利用(a+b )2-4ab=(a-b )2可求解.【详解】解:提出问题:(1) (a -b )2;(a +b )2-4ab.(2) (a +b )2-4ab =(a -b )2问题解决:由(2)得(x -y )2=(x +y )2-4xy .∵x +y =8,xy =7,∴(x -y )2=64-28=36.∴x -y =±6.【点睛】本题考查了完全平方公式的几何背景.解决问题的关键是读懂题意,找到所求的量的等量关系.本题更需注意要根据所找到的规律做题.28.(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)45;(3)答案见解析;(4) 2a +3b.试题分析:(1).根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2).根据(1)中的等式,进行变形,求出所求式子的值即可;(3).根据已知等式,做出长为2a+b,宽为a+2b的长方形图形即可;(4).根据题意知图形的面积是2a2+5ab+3b2,列出关系式2a2+5ab+3b2=(2a+3b)(a+b),即可确定出长方形较长的边.解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2-2(ab+ac+bc)=112-2×38=45.(3)如图所示.(4)根据题意得:2a2+5ab+3b2=(2a+3b)(a+b),则较长的一边为2a+3b.点睛:本题考查了多项式乘以多项式,弄懂图形的面积的不同表示方法,熟练掌握运算法则是解本题的关键;29.(1)矩形的周长为4m;(2)矩形的面积为33.【解析】【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,当m=7,n=4时,S=72-42=33.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.30.(1) 36 (2) 5x6【解析】【分析】根据整式的混合运算法则依次计算即可.【详解】解:(1)原式=9÷14×1=36(2)原式=9x6﹣4x6=5x6【点睛】考查了整式的混合运算法则:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.。
北师⼤版七年级下册第1章《整式的乘除》培优拔尖习题训练(带答案)北师⼤版第1章《整式的乘除》培优拔尖习题训练⼀.选择题(共10⼩题)1.下⾯计算正确的是()A.a2?a3=a5B.3a2﹣a2=2C.4a6÷2a3=2a2D.(a2)3=a52.化简(x+4)(x﹣1)+(x﹣4)(x+1)的结果是()A.2x2﹣8B.2x2﹣x﹣4C.2x2+8D.2x2+6x3.若要使4x2+mx+成为⼀个两数差的完全平⽅式,则m的值应为()A.B.C.D.4.下列计算错误的是()A.(﹣2a3)3=﹣8a9B.(ab2)3?(a2b)2=a7b8C.(xy2)2?(9x2y)=x6y6D.(5×105)×(4×104)=2×10105.已知长⽅形ABCD可以按图⽰⽅式分成九部分,在a,b变化的过程中,下⾯说法正确的有()①图中存在三部分的周长之和恰好等于长⽅形ABCD的周长②长⽅形ABCD的长宽之⽐可能为2③当长⽅形ABCD为正⽅形时,九部分都为正⽅形④当长⽅形ABCD的周长为60时,它的⾯积可能为100.A.①②B.①③C.②③④D.①③④6.若(x2+x+b)?(2x+c)=2x3+7x2﹣x+a,则a,b,c的值分别为()A.a=﹣15,b=﹣3,c=5B.a=﹣15,b=3,c =﹣5C.a=15,b=3,c=5D.a=15,b=﹣3,c=﹣57.如图1,在边长为a的正⽅形中剪去⼀个边长为b的⼩正⽅形(a>b),把剩下部分沿图1中的虚线剪开后重新拼成⼀个梯形(如图2),利⽤这两幅图形⾯积,可以验证的乘法公式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a(a+b)=a2+ab D.(a+b)(a﹣b)=a2﹣b28.若(a﹣c+b)2=21,(a+c+b)2=2019,则a2+b2+c2+2ab的值是()A.1020B.1998C.2019D.20409.我们知道,同底数幂的乘法法则为a m?a n=a m+n(其中a≠0,m、n为正整数),类似地我们规定关于任意正整数m、n的⼀种新运算:h(m+n)=h(m)?h(n);⽐如h(2)=3,则h(4)=h(2+2)=3×3=9,若h(2)=k(k≠0),那么h(2n)?h(2020)的结果是()A.2k+2020B.2k+1010C.k n+1010D.1022k10.观察下列各式:(x2﹣1)÷(x﹣1)=x+1.(x3﹣1)÷(x﹣1)=x2+x+1,(x4﹣1)÷(x﹣1)=x3+x2+x+1,(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1,根据上述规律计算2+22+23+…+262+263的值为()A.264﹣1B.264﹣2C.264+1D.264+2⼆.填空题(共8⼩题)11.2015年诺贝尔⽣理学或医学奖得主中国科学家屠呦呦,发现了⼀种长度约为0.000000456毫⽶的病毒,把0.000000456⽤科学记数法表⽰为.12.已知x2﹣2(m+3)x+9是⼀个完全平⽅式,则m=.13.计算:(16x3﹣8x2+4x)÷(﹣2x)=.14.若计算(x﹣2)(3x+m)的结果中不含关于字母x的⼀次项,则m的值为.15.若(x﹣2)x=1,则x=.16.如图所⽰,如图,边长分别为a和b的两个正⽅形拼接在⼀起,则图中阴影部分的⾯积为.17.在我们所学的课本中,多项式与多项式相称可以⽤⼏何图形的⾯积来表⽰,例如:(2a+b)(a+b)=2a2+3ab+b2就可以⽤下⾯图中的图①来表⽰.请你根据此⽅法写出图②中图形的⾯积所表⽰的代数恒等式:18.观察下列各等式:x﹣2=x﹣2(x﹣2)(x+2)=x2﹣22(x﹣2)(x2+2x+4)=x3﹣23(x﹣2)(x3+2x2+4x+8)=x4﹣24……请你猜想:若A?(x+y)=x5+y5,则代数式A=.19.先化简,再求值:(m﹣2)2﹣(n+2)(n﹣2)﹣m(m﹣1),其中2m2+12m+18+|2n﹣3|=0.20.计算:(1)(﹣4x2)﹣(1+2x)(8x﹣2)(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2(3)先化简再求值:(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2,其中x=﹣,y=321.阅读材料:(1)1的任何次幂都为1:(2)﹣1的奇数次幂为﹣1:(3)﹣1的偶数次幂为1:(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2020的值为1.22.(1)先化简,再求值已知:[(x﹣2y)2﹣4y2+2xy]÷2x,其中x=1,y=2.(2)先化简,再求值:(﹣3ab)2(a2+ab+b2)﹣3ab(3a3b+3a2b2﹣ab3),其中a=﹣,b=23.(1)计算:(a﹣2)(a2+2a+4)=.(2x﹣y)(4x2+2xy+y2)=.(2)上⾯的整式乘法计算结果很简洁,你⼜发现⼀个新的乘法公式(请⽤含a,b的字母表⽰).(3)下列各式能⽤你发现的乘法公式计算的是.A.(a﹣3)(a2﹣3a+9)B.(2m﹣n)(2m2+2mn+n2)C.(4﹣x)(16+4x+x2)D.(m﹣n)(m2+2mn+n2)24.如图1,在⼀个边长为a的正⽅形⽊板上锯掉⼀个边长为b的正⽅形,并把余下的部分沿虚线剪开拼成图2的形状.(1)请⽤两种⽅法表⽰阴影部分的⾯积:图1得:;图2得;(2)由图1与图2⾯积关系,可以得到⼀个等式:;(3)利⽤(2)中的等式,已知a2﹣b2=16,且a+b=8,则a﹣b=.参考答案1.【解答】解:A、结果是a5,故本选项符合题意;B、结果是2a2,故本选项不符合题意;C、结果是2a3,故本选项不符合题意;D、结果是a6,故本选项不符合题意;故选:A.2.【解答】解:(x+4)(x﹣1)+(x﹣4)(x+1)=x2+3x﹣4+x2﹣3x﹣4=2x2﹣8,故选:A.3.【解答】解:∵(2x﹣)2=4x2﹣x+,或[2x﹣(﹣)]2=4x2+x+,∴m=﹣或.故选:A.4.【解答】解:A、(﹣2a3)3=﹣8a9,正确;B、(ab2)3?(a2b)2=a7b8,正确;C、(xy2)2?(9x2y)=x4y5,错误;D、(5×105)×(4×104)=2×1010,正确;故选:C.5.【解答】解:①四边形AEFG、FHKM、SKWC的周长之和等于长⽅形ABCD的周长;②长⽅形的长为a+2b,宽为2a+b,若该长⽅形的长宽之⽐为2,则a+2b=2(2a+b)解得a=0.这与题意不符,故②的说法不正确;③当长⽅形ABCD为正⽅形时,2a+b=a+2b所以a=b,所以九部分都为正⽅形,故③的说法正确;④当长⽅形ABCD的周长为60时,即2(2a+b+a+2b)=60整理,得a+b=10所以四边形GHWD的⾯积为100.故当长⽅形ABCD的周长为60时,它的⾯积不可能为100,故④的说法不正确.综上正确的是①③.故选:B.6.【解答】解:∵(x2+x+b)?(2x+c)=2x3+7x2﹣x+a,2x3+2x2+2bx+cx2+cx+bc=2x3+7x2﹣x+a,2x3+(2+c)x2+(2b+c)x+bc∴2+c=7,2b+c=﹣1,bc=a.解得c=5,b=﹣3,a=﹣15.故选:A.7.【解答】解:图1阴影部分的⾯积等于a2﹣b2,图2梯形的⾯积是(2a+2b)(a﹣b)=(a+b)(a﹣b)根据两者阴影部分⾯积相等,可知(a+b)(a﹣b)=a2﹣b2⽐较各选项,只有D符合题意故选:D.8.【解答】解:(a﹣c+b)2=a2+b2+c2﹣2ac﹣2bc+2ab=21①,(a+c+b)2=a2+b2+c2+2ac+2bc+2ab=2019②,①+②,得2(a2+b2+c2)+4ab=2040,a2+b2+c2+2ab=1020.故选:A.9.【解答】解:∵h(2)=k(k≠0),h(m+n)=h(m)?h(n),∴h(2n)?h(2020)=h()?h()=?=k n?k1010=k n+1010,故选:C.10.【解答】解:有上述规律可知:(x64﹣1)÷(x﹣1)=x63+x62+…+x2+x+1当x=2时,即(264﹣1)÷(2﹣1)=1+2+22+…+262+263∴2+22+23+…+262+263=264﹣2.故选:B.⼆.填空题(共8⼩题)11.【解答】解:把0.000000456⽤科学记数法表⽰为4.56×10﹣7,故答案为:4.56×10﹣7.12.【解答】解:∵x2﹣2(m+3)x+9是⼀个完全平⽅式,∴m+3=±3,解得:m=﹣6或m=0,故答案为:﹣6或013.【解答】解:(16x3﹣8x2+4x)÷(﹣2x)=﹣8x2+4x﹣2.故答案为:﹣8x2+4x﹣2.14.【解答】解:原式=3x2+(m﹣6)x﹣2m,由结果不含x的⼀次项,得到m﹣6=0,解得:m=6,故答案为:615.【解答】解:∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.16.【解答】解:∵去掉△DEF,则剩余部分为⼀个直⾓梯形∴图中阴影部分的⾯积为:(a+a+b)b﹣(b﹣a)a﹣(a+b)a=ab+b2﹣ab+a2﹣a2﹣ab=b2故答案为:.17.【解答】解:根据图形列得:(a+2b)(2a+b)=2a2+5ab+2b2.故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.18.【解答】解:(x4﹣x3y+x2y2﹣xy3+y4)(x+y)=x5+y5,故答案为:x4﹣x3y+x2y2﹣xy3+y4.三.解答题(共6⼩题)19.【解答】解:(m﹣2)2﹣(n+2)(n﹣2)﹣m(m﹣1)=m2﹣4m+4﹣n2+4﹣m2+m=﹣n2﹣3m+8,∵2m2+12m+18+|2n﹣3|=0,∴2(m+3)2+|2n﹣3|=0,∴m+3=0,2n﹣3=0,∴m=﹣3,n=1.5,当m=﹣3,n=1.5时,原式=﹣1.52﹣3×(﹣3)+8=﹣3.20.【解答】解:(1)(﹣4x2)﹣(1+2x)(8x﹣2)=﹣4x2﹣8x+2﹣16x2+4x=﹣20x2﹣4x+2;(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2=4x2﹣y2﹣4x2﹣4xy﹣y2=﹣2y2﹣4xy;(3)(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2=﹣6xy+y2﹣4x2+8xy﹣4y2=2xy﹣4x2﹣y2﹣,当,y=3时,原式=2×(﹣)×3﹣4×(﹣)2﹣×32﹣=﹣36.21.【解答】解:①由2x+3=1,得x=﹣1,当x=﹣1时,代数式(2x+3)x+2020=12019=1;②由2x+3=﹣1,得x=﹣2,当x=﹣2时,代数式(2x+3)x+2020=(﹣1)2018=1;③由x+2020=0,得x=﹣2020,当x=﹣2020时,2x+3=﹣4037≠0所以(2x+3)x+2020=(﹣4037)0=1.当x=﹣2020时,代数式(2x+3)x+2020的值为1.答:当x为﹣1、﹣2、﹣2020时,代数式(2x+3)x+2020的值为1.22.【解答】解:(1)[(x﹣2y)2﹣4y2+2xy]÷2x=[x2﹣4xy+4y2﹣4y2+2xy]÷2x=[x2﹣2xy]÷2x=,当x=1,y=2时,原式=;(2)(﹣3ab)2(a2+ab+b2)﹣3ab(3a3b+3a2b2﹣ab3)=9a2b2(a2+ab+b2)﹣(9a4b2+9a3b3﹣3a2b4)=9a4b2+9a3b3+9a2b4﹣9a4b2﹣9a3b3+3a2b4=12a2b4,当a=,b=时,原式=.23.【解答】解:(1)原式=a3﹣8;原式=8x3﹣y3;(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(3)能⽤发现的乘法公式计算的是(4﹣x)(16+4x+x2).故答案为:(1)a3﹣8;8x3﹣y3;(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(3)C.24.【解答】解:(1)图1中阴影部分的⾯积为:a2﹣b2,图2中阴影部分的⾯积为:(2b+2a)(a﹣b),即(a+b)(a﹣b);故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图1与图2⾯积关系,可以得到⼀个等式:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(3)∵a2﹣b2=16,且a+b=8,∴(a+b)(a﹣b)=16,即8(a﹣b)=16,∴a﹣b=2.故答案为:2.。
整式的乘除运算培优练习一.选择题(共12小题)1.下列运算正确的是()A.3x2+2x2=6x4B.(﹣2x2)3=﹣6x6C.x3•x2=x6D.﹣6x2y3÷2x2y2=﹣3y2.计算2(a3)2•3a2的结果()A.5a7B.5a8C.6a7D.6a83、用科学记数法表示(4×102)×(15×105)的计算结果是()A.60×107B.6.0×106C.6.0×108D.6.0×10104.化简(2x+1)(x﹣2)﹣x(2x﹣3)的结果是()A.﹣2B.﹣6x﹣2C.4x2﹣2D.4x2﹣6x﹣2 5.若(x﹣3)(2x+m)=2x2+nx﹣15,则()A.m=﹣5,n=1B.m=5,n=﹣1C.m=﹣5,n=﹣1D.m=5,n=1 6.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①②B.③④C.①②③D.①②③④7.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+3b),宽为(a+2b)的大长方形,则需要A类、B类和C类卡片的张数分别为()A.2,8,5B.3,8,6C.3,7,5D.2,6,78.使(x2+p)(x2﹣qx+4)乘积中不含x2与x3项,则p+q的值为()A.﹣4B.﹣8C.﹣2D.89.已知x2﹣2=y,则x(x﹣2023y)﹣y(1﹣2023x)的值为()A.2B.0C.﹣2D.110.下列计算不正确的是()A.(ab﹣1)×(﹣4ab2)=﹣4a2b3+4ab2B.(3x2+xy﹣y2)•3x2=9x4+3x3y﹣3x2y2 C.(﹣3a)•(a2﹣2a+1)=﹣3a3+6a2D.(﹣2x)•(3x2﹣4x﹣2)=﹣6x3+8x2+4x11.若不等式组的解集为﹣3<x<1,则(a+1)(b﹣1)值为()A.﹣6B.7C.﹣8D.912.观察下列关于x的单项式:x,﹣3x2,5x3,﹣7x4,9x5,﹣11x6,…,按此规律,第n 个单项式为()A.(2n﹣1)x n B.﹣(2n﹣1)x nC.(﹣1)n(2n﹣1)x n D.(﹣1)n+1(2n﹣1)x n二.填空题(共6小题)13.今天数学课上,老师讲了单项式乘以多项式.放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:﹣3xy•(4y﹣2x﹣1)=﹣12xy2+6x2y+_____.空格的地方被钢笔水弄污了,你认为横线上应填写.14、一个三角形铁板的底边长是(2a+6b)米,这条边上的高是(a﹣3b)米,则这个三角形铁板的面积为平方米.15.(x﹣y)(x2+xy+y2)=.16.若(x+2m)(x2﹣x+n)的积中不含x项与x2项.则代数式m2023n2022的值为.17.若a2+a﹣5=0,代数式(a2﹣5)(a+1)的值为.18.已知有甲、乙两个长方形,它们的边长如图所示(m为正整数),面积分别为S1、S2.(1)请比较S1与S2的大小:S1S2;(2)若满足条件3<n<|S1﹣S2|的整数n有且只有5个,则m的值为.三.解答题(共16小题)19.计算:(1)(a2+3)(a﹣2)﹣a(a2﹣2a﹣2);(2)(﹣ab3c)•a2bc•(﹣8abc)2;(3)(a+b)(a﹣b)+(a+b)2﹣2(a﹣b)2;(4)(a5b3+a7b4﹣a5b5) a5b3.20.小明在计算代数式的值时,发现当x=2022和x=2023时,他们的值是相等的.小明的发现正确吗?说明你的理由.21.小明在计算一个多项式乘以﹣2x2+x﹣1时,因看错运算符号,变成了加上﹣2x2+x﹣1,得到的结果为﹣2x2﹣2x+1,请你帮助小明得到正确的计算结果.22.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=.②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)=.③根据②求出:1+2+22+…+234+235的结果.23.当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式:2a2+5ab+2b2=(2a+b)(a+2b).24.若关于x的多项式ax2+bx+c与dx2+ex+f的积为M(x),其中a,b,c,d,e,f是常数,显然M(x)也是一个多项式.(1)M(x)中,最高次项为,常数项为;(2)M(x)中的三次项由ax2•ex,bx•dx2的和构成,二次项时由ax2•f,bx•ex,c•dx2的和构成.若关于x的多项式x2+ax+b与2x2﹣3x﹣1的积中,三次项为﹣x3,二次项为﹣6x2,试确定a,b的值.25.给出如下定义:我们把有序实数对(a,b,c)叫做关于x的二次多项式ax2+bx+c的特征系数对,把关于x的二次多项式ax2+bx+c叫做有序实数对(a,b,c)的特征多项式.(1)关于x的二次多项式3x2+2x﹣1的特征系数对为;(2)求有序实数对(1,4,4)的特征多项式与有序实数对(1,﹣4,4)的特征多项式的乘积;(3)若有序实数对(p,q,﹣1)的特征多项式与有序实数对(m,n,﹣2)的特征多项式的乘积的结果为2x4+x3﹣10x2﹣x+2,直接写出(4p﹣2q﹣1)(2m﹣n﹣1)的值为.。
整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。
浙教版七年级数学下册第三单元《整式的乘除》培优题一.选择题(共7小题)1.=()A.1 B.C.2D.2.已知x m=a,x n=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2b B.a3﹣b2C.a3b2 D.3.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b24.使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0 B.p=﹣3,q=﹣1 C.p=3,q=1 D.p=﹣3,q=15.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.06.设0<n<m,m2+n2=4mn,则的值等于()A.3 B.C.D.27.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.8.若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是.9.有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片张,3号卡片张.10.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=.11.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为.12.若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为.13.已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=;②(x﹣1)(x2+x+1)=;③(x﹣1)(x3+x2+x+1)=;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=;(5)根据猜想的规律,计算:226+225+…+2+1.15.杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是;(2)利用上述规律直接写出27=;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与的积.(4)由此你可以写出115=.(5)由第行可写出118=.浙教版七年级数学下册第三单元《整式乘除》参考答案与试题解析一.选择题(共7小题)1.(2012秋•南陵县期末)=()A.1 B.C.2D.【分析】根据x a•y a=(xy)a,进行运算即可.【解答】解:原式=(×)2004×=.故选B.【点评】此题考查了同底数幂的乘法运算,属于基础题,注意式子:x a•y a=(xy)a的运用.2.(2001•乌鲁木齐)已知x m=a,x n=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2b B.a3﹣b2C.a3b2 D.【分析】利用同底数幂的除法和幂的乘方的性质的逆运算计算即可.【解答】解:∵x m=a,x n=b(x≠0),∴x3m﹣2n=x3m÷x2n=.故选D.【点评】本题考查了同底数幂的除法,幂的乘方的性质,逆用性质是解题的关键.3.(2016春•苏州期中)根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b2【分析】大长方形的长为3a+2b,宽为a+b,表示出面积;也可以由三个边长为a的正方形,2个边长为b的正方形,以及5个长为b,宽为a的长方形面积之和表示,即可得到正确的选项.【解答】解:根据图形得:(3a+2b)(a+b)=3a2+5ab+2b2.故选:D.【点评】此题考查了多项式乘多项式,弄清题意是解本题的关键.4.(2016秋•简阳市期中)使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0 B.p=﹣3,q=﹣1 C.p=3,q=1 D.p=﹣3,q=1【分析】根据多项式乘多项式的法则计算,然后根据不含x2项和x3项就是这两项的系数等于0列式,求出p和q的值,从而得出.【解答】解:(x2+px+8)(x2﹣3x+q),=x4+(p﹣3)x3+(8﹣3p+q)x2+(pq﹣24)x+8q,∵(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,∴解得:.故选:C.【点评】本题考查了多项式乘多项式的运算法则,根据不含哪一项就是让这一项的系数等于0列式是解题的关键.5.(2015春•房山区期末)已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.0【分析】根据完全平方公式,可得平方差公式,根据平方差公式,可得答案.【解答】解:4a2﹣b2﹣4b=4a2﹣(b2+4b+4)+4=(2a)2﹣(b+2)2+4=[2a+(b+2)][2a﹣(b+2)]+4=(2a+b+2)(2a﹣b﹣2)+4当2a﹣b=2时,原式=0+4=4,故选:B.【点评】本题考查了完全平方公式,利用完全平方公式得出平方差公式是解题关键.6.(2012•宁波模拟)设0<n<m,m2+n2=4mn,则的值等于()A.3 B.C.D.2【分析】已知等式变形后利用完全平方公式化简得到关系式,代入所求式子计算即可得到结果.【解答】解:m2+n2=4mn变形得:(m﹣n)2=2mn,(m+n)2=6mn,∵0<n<m,∴m﹣n>0,m+n>0,∴m﹣n=,m+n=,∴原式===2.故选D.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.7.(2014•金水区校级模拟)为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.【分析】根据题目所给计算方法,令S=1+5+52+53+…+52012,再两边同时乘以5,求出5S,用5S﹣S,求出4S的值,进而求出S的值.【解答】解:令S=1+5+52+53+ (52012)则5S=5+52+53+…+52012+52013,5S﹣S=﹣1+52013,4S=52013﹣1,则S=.故选D.【点评】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.二.填空题(共5小题)8.(2012•泰州)若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是11.【分析】利用x2+3x+2=(x﹣1)2+a(x﹣1)+b,将原式进行化简,得出a,b的值,进而得出答案.【解答】解:∵x2+3x+2=(x﹣1)2+a(x﹣1)+b=x2+(a﹣2)x+(b﹣a+1),∴a﹣2=3,∴a=5,∵b﹣a+1=2,∴b﹣5+1=2,∴b=6,∴a+b=5+6=11,故答案为:11.【点评】此题主要考查了整式的混合运算与化简,根据已知得出x2+3x+2=x2+(a ﹣2)x+(b﹣a+1)是解题关键.9.(2012•杭州模拟)有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是a2+3ab+2b2=(a+b)(a+2b).(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片3张,3号卡片7张.【分析】(1)画出相关草图,表示出拼合前后的面积即可;(2)得到所给矩形的面积,看有几个b2,几个ab即可.【解答】解:(1)如图所示:故答案为:a2+3ab+2b2=(a+b)(a+2b);(2)(a+3b)(2a+b)=2a2+ab+6ab+3b2=2a2+7ab+3b2,需用2号卡片3张,3号卡片7张.故答案为:a2+3ab+2b2=(a+b)(a+2b);3;7.【点评】考查多项式与多项式相乘问题;根据面积的不同表示方法得到相应的等式是解决本题的关键.10.(2015•崇左)4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=1.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:利用题中新定义得:(x+3)2﹣(x﹣3)2=12,整理得:12x=12,解得:x=1.故答案为:1.【点评】此题考查了整式的混合运算,弄清题中的新定义是解本题的关键.11.(2014春•苏州期末)若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为y=4(x+1)2+1.【分析】将4m变形,转化为关于2m的形式,然后再代入整理即可【解答】解:∵4m+1=22m×4=(2m)2×4,x=2m﹣1,∴2m=x+1,∵y=1+4m+1,∴y=4(x+1)2+1,故答案为:y=4(x+1)2+1.【点评】本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.12.(2015•雅安)若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为510.【分析】通过m1,m2,…m2015是从0,1,2这三个数中取值的一列数,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510从而得到1的个数,由m1+m2+…+m2015=1525得到2的个数.【解答】解:∵(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,∵m1,m2,…,m2015是从0,1,2这三个数中取值的一列数,∴m1,m2,…,m2015中为1的个数是2015﹣1510=505,∵m1+m2+…+m2015=1525,∴2的个数为(1525﹣505)÷2=510个.故答案为:510.【点评】此题考查完全平方的性质,找出运算的规律.利用规律解决问题.三.解答题(共3小题)13.(2015秋•厦门期末)已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.【分析】(1)根据已知条件可得a3=2,代入可求p﹣q的值;(2)根据作差法得到p﹣(a3+)=2﹣n﹣,分三种情况:当n=1时;当n=2时;当n≥3时进行讨论即可求解.【解答】解:(1)∵a3+a﹣3=p①,a3﹣a﹣3=q②,∴①+②得,2a3=p+q=4,∴a3=2;①﹣②得,p﹣q=2a﹣3==1.(2)∵q2=22n+﹣2(n≥1,且n是整数),∴q2=(2n﹣2﹣n)2,∴q2=22n+2﹣2n,又由(1)中①+②得2a3=p+q,a3=(p+q),①﹣②得2a﹣3=p﹣q,a﹣3=(p﹣q),∴p2﹣q2=4,p2=q2+4=(2n+2﹣n)2,∴p=2n+2﹣n,∴a3+a﹣3=2n+2﹣n③,a3﹣a﹣3=2n﹣2﹣n④,∴③+④得2a3=2×2n,∴a3=2n,∴p﹣(a3+)=2n+2﹣n﹣2n﹣=2﹣n﹣,当n=1时,p>a3+;当n=2时,p=a3+;当n≥3时,p<a3+.【点评】考查了负整数指数幂:a﹣p=(a≠0,p为正整数),关键是加减消元法和作差法的熟练掌握.14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=x14+x13+x12+…+x2+x+1;(5)根据猜想的规律,计算:226+225+…+2+1.【分析】(1)运用乘法公式以及多项式乘多项式的法进行计算即可;(2)根据(1)中的计算结果的变换规律进行判断即可;(3)根据(1)(2)中的计算结果总结变换规律即可;(4)根据(3)中的规律,直接求得m的表达式即可;(5)根据(3)中的规律列出等式进行变形,求得226+225+…+2+1的值.【解答】解:(1)①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4+x3+x2+x﹣x3﹣x2﹣1=x4﹣1;(2)①(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1(n为整数);(4)∵(x﹣1)•m=x15﹣1,∴m=x14+x13+x12+…+x2+x+1;(5)∵(2﹣1)(226+225+224+…+22+2+1)=227﹣1,∴226+225+…+2+1=227﹣1.【点评】本题主要考查了多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.计算时按一定的顺序进行,必须做到不重不漏.15.(2014春•泰兴市校级期末)杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.【分析】观察图表寻找规律:三角形是一个由数字排列成的三角形数表,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.【解答】解:(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.故答案为:15,128,11,161051,9,214358881.【点评】考查了学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.。
整式乘除培优经典题型详解------博奥堂教育王老师第一类:平方差公式应用1.平方差公式:22))((b a b a b a -=-+ 典型例题:222222222249))(32(94))(32())(())(())((1x y y x yx y x m n n m m n n m n m n m -=---=---=--=+-=+例【例2】 ()()()()()()()12121212121212643216842+++++++计算:【拓展】()()()()()()()13131313131313643216842+++++++【例3】(1-221)(1-231)(1-241)…(1-291)(1-2011)的值. 【拓展】()()()()()()2222222222299100 (8767452312)-++-+-+-+-+-第二类:完全平方公式变形及其应用()()()211211222222222222222222222-+=⎪⎭⎫ ⎝⎛-++=⎪⎭⎫ ⎝⎛++++++=+++-=-++=+x x x x x x x x bc ac ab c b a c b a b ab a b a b ab a b a【例 4 】已知19992000a x =+,19992001b x =+,19992002c x =+,则多项式222a b c ab bc ca ++---的值为( )A.0B.1C.2D.3【例5】 已知2()4x y -=,2()64x y +=;求代数式值:(1)22x y +; (2)xy【例6】 已知x +x1=2,求x 2+21x ,x 4+41x 的值.第三类:整体带入法【例7】已知a+2b=0,则式子a 3+2ab (a+b )+4b 3的值是___________.【拓展】.1..若133=-x x ,则199973129234+--+x x x x 的值等于( ) A .1997 B .1999 C .2001 D .20032. 已知3x 2-x-1=0,求6x 3十7x 2一5x+1999的值第四类:幂的个位数【例8】 20154的个位是_______ 201527的个位是:______【例9】 2005200423125⨯积的个位数字是:________ 【拓展】1. 若3a =-,25b =,则20072006a b +的个位数字是( ) A.3 B.5 C.8 D.9第五类 :不含某一项【例10】多项式875223-+-x x x 与多项式112++bx ax 的乘积中,没有含4x 的项,也没有含3x 的项,则b a +2= .第六类:待定系数法【例11】))(2(67222B y x A y x y x y xy x +++-=-----.求A 、B 的值.【拓展】1 已知)3)(32(1437622c y x b y x a y x y xy x +++-=+++--试确定c b a 、、 值.2 若多项式7432+-x x 能表示成c x b x a ++++)1()1(2的形式,则a = .第七类:走进竞赛1.已知,,a b c 均不为0,且0a b c ++=,那么111111()()()a b c bccaab+++++的值为 .2、设1abc =.试求111a b cab a bc b ca c ++++++++的值.3.把(x 2一x+1)6展开后得012211111212a x a x a x a x a +++++ ,则024681012a a a a a a a ++++++ .4.. 已知200025=x ,200080=y ,则yx11+等于( ).A .2 B .1 C .21 D .235.设d c b a 、、、都是自然数,且17,,2345=-==c a d c b a ,求d 一b 的值6..已知102222=⋅=⋅d c b a ,求证:(a 一1)(d —1)=(b 一1)(c 一1).。
整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x++ B 、2m x + C 、1m x+ D 、2n m x++3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x 2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x 31)y x 2x 31(x n 1n n 2n n --=--+D 、当n 为正整数时,n 4n 22a )a (=-4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(--6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( )A 、0B 、-7C 、-9D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
整式的乘除培优练习题1.(2023秋·重庆綦江·八年级统考期末)有依次排列的2个整式:x ,3x +,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:x ,3,3x +,这称为第一次操作;将第一次操作后的整式串按上述方式再做一次操作,可以得到第二次操作后的整式串;以此类推.通过下列实际操作:①第二次操作后整式串为:x ,3x -,3,x ,3x +;②第二次操作后,当()30x x <≠时,所有整式的积为正数;③第四次操作后整式串中共有19个整式;④第2021次操作后,所有的整式的和为26066x +;⑤第二次操作后,所有整式的绝对值之和为333x x x x +-++++,则其最小值为:9;上面五个结论中正确的个数是()A .2个B .3个C .4个D .5个当0x =时,323x x x -+++取最小值6,∴此时333x x x x +-++++的最小值为9,故⑤正确,符合题意;正确的说法有①②④⑤,故选:C .【点睛】本题考查整式的加减运算,整式的乘法运算,平方差公式的应用,2.(2022秋·重庆沙坪坝·八年级重庆市第七中学校校考阶段练习)有依次排列的2个整式:x ,3x +,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:x ,3,3x +,这称为第一次操作;将第一次操作后的整式串按上述方式再做一次操作,可以得到第二次操作后的整式串;以此类推.通过下列实际操作,①第二次操作后整式串为:x ,3x -,3,x ,3x +;②第二次操作后,当3x <时,所有整式的积为正数;③第四次操作后整式串中共有19个整式;④第2022次操作后,所有的整式的和为26069x +.下列结论正确的是()A .①②B .①③C .②④D .①④3.(2022秋·重庆·九年级重庆市第十一中学校校考阶段练习)已知多项式224A x x n =++,多项式222633B x x n =+++.①若多项式224x x n ++是完全平方式,则2n =或2-②2B A -③若A B +=6A B ⋅=-,则8A B -=±④若(2022)(2018)10A A --=-,则22(2022)(2018)36A A -+-=⑤代数式22591262031AB A B A +-⋅-+的最小值为2022以上结论正确的个数有()A .1个B .2个C .3个D .4个22(2022)(2018)2(10)A A =-+-+⨯-16=,22(2022)(2018)36A A ∴-+-=;故结论正确;⑤22591262031A B A B A +-⋅-+2224912692022A B A B A A =+-⋅+-++22(23)(3)2022A B A =-+-+,2(23)0A B - ,2(3)0A - ,当3A =,2B =时有最小值为2022,但是根据②2B A - ,∴结论错误.故选:C .【点睛】本题主要考查了完全平方公式和配方法的应用,同时也利用非负数的性质求最值,题目比较难.4.(2022秋·重庆黔江·八年级统考期末)若多项式241x Q ++是完全平方式,请你写出所有满足条件的单项式Q 是_______.【答案】±4x ,4x 4【分析】根据题意可知本题是考查完全平方式,设这个单项式为Q ,①如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q =±4x ;②如果如果这里首末两项是Q 和1,则乘积项是4x 2=2×2x 2,所以Q =4x 4.【详解】解:∵4x 2+1±4x =(2x ±1)24x 2+1+4x 4=(2x 2+1)2;∴加上的单项式可以是±4x ,4x 4,中任意一个,故答案为:±4x ,4x 4.【点睛】本题主要考查完全公式的有关知识,根据已知两个项分类讨论求出第三项是解题的关键.5.(2019秋·重庆·八年级西南大学附中校考期中)已知3x y +=,3336x y +=,则xy =______.【答案】-1【分析】将3336x y +=利用立方和公式以及完全平方公式进行变形后再计算即可得出答案.【详解】解:∵3x y +=∴33222()()3()33(93)279x y x y x xy y x y xy xy xy⎡⎤+=+-+=⨯+-=-=-⎣⎦∵3336x y +=∴27936xy -=∴1xy =-故答案为:-1.【点睛】本题考查的知识点是立方和公式以及完全平方公式,解此题的关键是记住立方和公式.6.(2020春·重庆渝中·七年级重庆巴蜀中学校考阶段练习)已知x 2=2y +5,y 2=2x +5(x ≠y ),则x 3+2x 2y 2+y 3的值为____.【答案】12-【分析】首先根据题意得出()()()222x y x y x y y x -=+-=-且()22210x y x y +=++,从而进一步得出2x y +=-,由此进一步求出xy 的值,最后再通过将所求式子分解为()()222x y x y xy ++-+进一步计算即可.【详解】∵225x y =+,225y x =+,∴()()()222x y x y x y y x -=+-=-,()22210x y x y +=++,∵x y ≠,而()()()2x y x y y x +-=-,∴2x y +=-,∴()()22221062x y x y x y xy +=++==+-,∴1xy =-,∴()()3223222227212x x y y x y x y xy ++=++-+=-⨯+=-,故答案为:12-.【点睛】本题主要考查了乘法公式的综合运用,熟练掌握相关公式及方法是解题关键.7.(2021秋·重庆·七年级重庆一中校考期末)若32211123325x ax x x x ⎛⎫⎛⎫-++- ⎪⎪⎝⎭⎝⎭的积不含3x 项,则=a ___________.。
北师大版七年级数学下册第一章:整式的乘除—计算专题培优训练一、计算题1.计算:(1)(a 3)3·(a 4)3;(2)(-a 2)3·(b 3)2·(ab)4.(3)(3x -1)(2x -1);(4)5x(x +1)2-(2x +3)(2x -3).2.计算:(1)(﹣2a 2b )3+8(a 2)2•(﹣a )2•(﹣b )3;(2)(x﹣3)0﹣()﹣2+(﹣1)2021+|﹣5|.123.计算:(1)x 3y 2··.23(32xy 2)2(23x )(2);[(−a 5)4÷a 12]2⋅(−2a 4)4.要求:利用乘法公式计算(1)2023×2021−20222(2)(2x−y +3)(2x−y−3)5.计算:(1);(−2022)0−(12)−2+(−2)3(2).(3a−b)2−(a−3b)(a +3b)6.计算:(1);(π−2)0−(12)−2+32(2).(−2x 2)2+x 3⋅x−x 5÷x 7.计算:(1)(π−3)0+(12)−2×2−1(2)2x 2⋅x 4+(−2x 2)3−x 7÷x8.计算:(1);(3−π)0+(−13)−3+(−3)3÷(−3)2(2) .(x−2)2−(x−1)(x +3)9.计算:(1)(12)−1+(π−3.14)0−(−1)2022(2)(−2x 2)3+x 2⋅x 4+(−3x 3)210.计算:(1);(2022−π)0−32+(12)−3(2).m 2⋅m 6−(2m 2)4+m 9÷m 11.计算(1).15x 5(y 4z)2÷(−3x 4y 5z 2)(2).(x +1)(x−1)+x(2−x)12.计算:(1)(−2a 2bc 4)3(2)3x 2−x 6÷x 4(3)[−8a 2b 3+6ab 2−(−2ab)]÷(−2ab)(4)6x 2−2(2x−3)(4x +1)(5)(a +2b)2−(a−2b)2+(a +b)(a−b)13.计算:(1);−42⋅(−12)3−(−1)202(2).[(3xy +1)(3xy−1)+(xy−1)2]÷2xy 14.化简:.[(2a +b)(2a−b)−4(a−b)2−b 2]÷(−2b )15.化简:.[(x−y)(x +y)+(3x−y)2]÷2x 16.计算:(1) .(2m 3)⋅(3m 2p)÷(2mp)(2) .(a +1)2+(a +3)(a−3)17.计算:(1)(﹣x 2y 5)•(xy )3;(2)(a 2﹣b 2)2+2a (ab﹣1).18.计算:(1)a 5·(﹣a )4﹣(﹣a 3)3;(2)20210+()﹣1;13(3)(15x 2y﹣10xy 2)÷5xy .(4)x (x﹣3)﹣(x﹣1)(x+2).(1)已知:=5,=3,计算的值.4m 8n 22m +3n (2)已知:3x+5y =8,求的值.8x ⋅32y 20.计算:(1);|−2|−(2−π)0+(13)−1(2);(3x 2)2⋅(−4y 3)÷(6xy)2(3)(简便运算);1032−102×104(4).[(2x−y)(2x +y)+y(y−6x)]÷2x 21.计算:(1);(x−3)(x +2)(2);(3+a )(3−a )(3);a 3⋅a 4⋅a +(a 2)4+(−2a 4)2(4).(a +b )2−b (2a +b )22.计算题:(1)(−13)−1+(−2)2+(π−2015)0(2)(4x 3y−6x 2y 2+2xy )÷(−2xy )(3)(2a 2b )3⋅(−7ab 2)÷14a 4b 3(4)(用简便方法计算)20152−2014×2016(5)(x +2)2−(x +1)(x−1)(6)(2a-b+3)(2a+b-3)(1)2-3÷+(﹣)2;1212(2)(﹣2x 3y )2·(﹣3xy 2)÷(6x 4y 3);(3)(2x +1)(2x﹣1)+(x +2)2;(4)20212﹣2020×202224.计算或化简:(1)(−x 2)3⋅x 4(2)(13)2022×(−3)2021(3)(m +1)2−(m +1)(m−1)+2m(m−1)(4)(a 4−8a 2+16)÷(a 2+4a +4)25.计算(1)x 5•(-2x )3+x 9÷x 2•x-(3x 4)2(2)(2a-3b )2-4a (a-2b )(3)(3x-y )2(3x+y )2(4)(2a-b+5)(2a+b-5)26.计算:(1)4mn 2 (2m+3n -n 2);(2)(3m + 4n ) 2-(3m -4n )2;(3)(6a 3b 2-3a 2b 2+9a 2b )(-3a 2b );÷(4)(-8)2020 ×(-0.125)2021.(1)3x(2x−3)(2)(a+b )(3a-2b )(3)(4a 2-6ab+2a )÷2a(4)20192-2017×2021(用乘法公式)28.计算:(1);(−34)2021×(−43)2022(2);(−2a 2)3⋅a 2−3a 11÷a 3(3).(x +2y−3)(x−2y−3)29.计算:(1)2a (3a +2);(2)(4m 3﹣2m 2)÷(﹣2m );(3)(x +2)(x﹣2)﹣(x﹣2)2;(4).(π−3)0+(−12)−2−21+(−1)202130.算一算:(1)3m 2⋅m 8−(m 2)2⋅(m 3)2(2)[(a 5)3⋅(b 3)2]5(3)−t 3⋅(−t)4⋅(−t)5(4)已知,求的值.2x +3y−3=09x ⋅27y (5)已知,求x 的值.2×8x ×16=223(1)a 2⋅a 4+(−a 2)3(2)(a 2)3⋅(a 2)4⋅(−a 2)5(3)(−2a 2b 3)4+(−a)8⋅(2b 4)3(4)−t 3⋅(−t)4⋅(−t)5(5)(p−q)4⋅(q−p)3⋅(p−q)2(6)(−3a)3−(−a)⋅(−3a)232.化简:(1);(x 2)3⋅x 3−(−x)2⋅x 9÷x 2(2)(m﹣n )(m+n )﹣m (m﹣n );(3);(3a +2b)2−(2a−3b)2(4).[(2x +y)2−(3x−y)(3x +y)−2y 2]÷(−12x)33.计算:(1)35×(−3)3×(−3)2(2)−x 11÷(−x)6⋅(−x)5(3)y 3⋅y 3+(−2y 3)2(4)(3x 2y−xy 2+2xy)÷xy34.计算:(1)(−x)(−x)5+(x 2)3;(2) ;2x 3(−x)2−(−x 2)2×(−3x)(3) ;(−4x−3y 2)(3y 2−4x)(4) .(2x−y)2⋅(2x +y)235.计算.(1)(-)9÷(-)5;1313(2)(-a )10÷(-a )3;(3)(2a )7÷(2a )4;(4)a 19÷(a 12÷a 3);(5)(-)6÷(-)2;1414(6)(-x-y )6÷(x+y )4.36.计算.(1)a 2·(ab )3;(2)(ab )3·(ac )4;(3)a 5·(-a )3+(-2a 2)4;(4)(-2x 2)3+x 2·x 4-(-3x 3)237.逆用积的乘方公式计算.(1)()2022·(-1.25)2022;45(2)(-4)3×(-)3×(-)33413(3)(3)12×()11x (-2)318825(4)()100×(1)100x ()2021x4202223121438.计算.(1)(-5a 2b 3)(-3a )(2)6a 2x 5·(-3a 3b 2x 2)(3)(-a 2b )3·(-3ab 3)413(4)(-3a n+2b )3·(-4ab n+3)2(5)(ab 2-2ab )·ab2312(6)-2x·(x 2y+3y-1)1239.计算.(1)20170+2-2-()2+2017;12(2)(-2ab )(3a 2-2ab-b 2);(3)(2a+3b )2-(2a-b )(2a+b );(4)(9x 2y-6xy 2+3xy )÷()40.计算.(1)x 3·(2x 3)2÷(x 4)2;(2)(a 4)3÷a 6÷(-a )3;(3)(-x )3÷x·(-x )2;(4)-102n ×100÷(-10)2n-1.41.计算(1)(−x 2y)3÷(−13xy 3)(2)(−14x−3y)(−14x+3y)(3)(3x−1)(x+2)+(x−3)2(4)(a−b)3÷(a−b)+2ab 42.计算.(1)102×105(2)x·x5x7·(3)a2·(-a)4(4)x2m+1·x m43.计算(1)a2⋅a3(2)(y2)3⋅y2(3)(−15x2y3)3−x6y4(4) .(x−y)8÷(y−x)5⋅(y−x)2二、解答题44.已知,,求代数式的值.(a+b)2=5ab=−2(a−b)245.计算:已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值.46.已知:,求2xy的值.x2+y2=25, x+y=747.已知(a+b)2=25,(a﹣b)2=9.求a2﹣6ab+b2.48.已知a+b=3,ab=2,求①;②的值a2+b2a2+b2−ab 49.①已知a m=2,a n=3,求a m+2n的值。
整式的乘除培优试题
一、 填空1.a 6·a 2÷(-a 2)3=____ 2.( )2=a 6b 4n -2.3___·x m -1=x m +1n +1. 4.(2x 2-4x -10xy )÷( )=21
x -1-2
5y .5.x 2n -x n +______=( )2. 6若3m ·3n =1,则m +n =____. 7.已知x m ·x n ·x 3=(x 2)7,则当n =6时m =___. 8.若x +y =8,x 2y 2=4,则x 2+y 2=____. 9.若3x =a ,3y =b ,则3x -y =_____. 10[3(a +b )2-a -b ]÷(a +b )=____. 11.若2×3×9m =2×311,则m =__. 12.代数式4x 2+3mx +9是完全平方式则m =_____.13. 163·83=2n ,则n= 14. (-8)2×0.253= ,4100×( )101= ,0.1252005×82006= 。
0.252006×(-4)2007= , 二、选择题15.(-a )3·(a 2)3·(-a )2的结果正确的是A a 11B a 11C -a 10 D a 13 16.下列计算正确的是(A )x 2(m +1)÷x m +1=x 2 B (xy )8÷(xy )4=(xy )2 (C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =1
17、4m ·4n 的结果是(A )22(m +n ) (B )16mn (C )4mn (D )16m +n 18.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为
(A )5 (B )2
5 (C )25 (D )10
19.下列算式中,正确的是(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )(3
1)-2=
23
1=9
1
(C )(0.00001)0=(9999)0 (D )3.24×10-4=0.0000324 20.(-a +1)(a +1)(a 2+1)等于A a 4-1 B a 4+1 C a 4+2a 2+1 D1-a 4 21.若(x +m )(x -8)中不含x 的一次项,则m 的值为
(A )8 (B )-8 (C )0 (D )8或-8 22已知a +b =10,ab =24,则a 2+b 2的值是 A148 (B )76 (C )58(D )52
三、解答题1、因式分解23 .x
5
-x 3y 2 24.16x 5+8x 3y 2+xy 4 25. 16x 4-y 4
505012(2)()25
⨯-=20052005
1111(1)(123910)10982
⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1221
12211(6)
()6
-⨯=
26.2m 2-8n 2 27. abx 2-2abx+ab 28. 3mx 2+12mxy+12my 2
29.x 2-3(2x -3) 30.(x+2)(x -3)+4 31. p m+3-p m+1
32. ab -4b+4c -ac 33. a 2c -abd -abc+a 2d 34. x 3-x 2-x+1
35.x 2-4y 2+4+2y 36. x 2-y 2-6x+9 37. a 2+b 2-c 2-2ab
38.x 2-y 2-z 2+2yz 39. 4x 2+y 2-a 2-4xy 40. 1-m 2-n 2+2mn
41、化简求值41.化简求值:x(x 2-x)+2x 2(x -1),其中, x=-1。
.
42.已知:(2a+2b+1)(2a+2b-1)=63,求a+b 的值。
43.[(3x+2y)(3x-2y)-(x+2y)(5x-2y)]÷4x ,其中x=-2,y=-3。
44若2x+y=3,求4x ·2y
的值45若x (y-1)-y (x-1)=4,求 -xy 的值。
46、已知:x+y=4,x 2+y 2 =10,求(x -y )2的值。
47、若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。
48、已知:x 2+y 2=26,4xy=12,求(x+y )2和(x-y )2的值。
49、已知:x+y=7,xy=-8,求5x 2+5y 2的值。
50、已知:x 2+y 2+z 2-2x-4y-6z+14=0,求(xz )y 的值。
22
2
x y
51.[(x +21y )2+(x -21y )2](2x 2-2
1y 2),其中x =-3,y =4.
52.已知x +x 1=2,求x 2+21x ,x 4+4
1x 的值.
53.已知(a -1)(b -2)-a (b -3)=3,求代数式2
22b a -ab 的值.
54.已知x 2+x -1=0,求x 3+2x 2+3的值.
55.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.
3、计算56.(1)(3
2a 2b )3÷(3
1ab 2)2×4
3a 3b 2; (2)(4
x +3y )2-(4
x -3y )2;
(3)(2a -3b +1)2; (4)(x 2-2x -1)(x 2+2x -1);
(5)(a -6
1
b )(2a +3
1b )(3a 2+12
1b 2)
6[(a -b )(a +b )]2÷(a 2-2ab +b 2)-2ab .
57.若a 、b 、c 、为三角形的三边,且a 2+b 2+c 2-ab-bc-ac=0,试确定三角形的形状。
58、已知:a+b=5,ab=3,求代数式a 3b -2a 2b 2+ab 3的值。