高考数学 最新模拟专题10 圆锥曲线理
- 格式:doc
- 大小:1.04 MB
- 文档页数:19
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】解:(1)将点A代入双曲线方程得4a2−1a2−1=1,化简得a4−4a2+4=0得:a2=2,故双曲线方程为x22−y2=1;由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1),Q(x2,y2),则联立直线与双曲线得:(2k2−1)x2+4kmx+2m2+2=0,△>0,故x1+x2=−4km2k2−1,x1x2=2m2+22k2−1,k AP+k AQ=y1−1x1−2+y2−1x2−2=kx1+m−1x1−2+kx2+m−1x2−2=0,化简得:2kx1x2+(m−1−2k)(x1+x2)−4(m−1)=0,故2k(2m2+2)2k2−1+(m−1−2k)(−4km2k2−1)−4(m−1)=0,即(k+1)(m+2k−1)=0,而直线l不过A点,故k=−1.(2)设直线AP的倾斜角为α,由tan∠PAQ=2√2,得tan∠PAQ2=√22,由2α+∠PAQ=π,得k AP=tanα=√2,即y1−1x1−2=√2,联立y 1−1x1−2=√2,及x 122−y 12=1得x 1=10−4√23,y 1=4√2−53, 同理,x 2=10+4√23,y 2=−4√2−53, 故x 1+x 2=203,x 1x 2=689而|AP|=√3|x 1−2|,|AQ|=√3|x 2−2|, 由tan∠PAQ =2√2,得sin∠PAQ =2√23, 故S △PAQ =12|AP||AQ|sin∠PAQ =√2|x 1x 2−2(x 1+x 2)+4|=16√29. 【母题来源】2022年新高考II 卷【母题题文】.设双曲线C:x 2a 2−y2b2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x. (1)求C 的方程;(2)经过F 的直线与C 的渐近线分别交于A ,B 两点,点P(x 1,y 1),Q(x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M ,从下面三个条件 ① ② ③中选择两个条件,证明另一个条件成立: ①M 在AB 上; ②PQ//AB; ③|AM|=|BM|.【答案】解:(1)由题意可得ba =√3,√a 2+b 2=2,故a =1,b =√3. 因此C 的方程为x 2−y 23=1.(2)设直线PQ 的方程为y =kx +m(k ≠0),将直线PQ 的方程代入C 的方程得(3−k 2)x 2−2kmx −m 2−3=0, 则x 1+x 2=2km3−k 2,x 1x 2=−m 2+33−k 2,x 1−x 2=√(x 1+x 2)2−4x 1x 2=2√3(m 2+3−k 2)3−k 2.不段点M 的坐标为(x M ,y M ),则{y M −y 1=−√3(x M −x 1)y M −y 2=√3(x M −x 2).两式相减,得y 1−y 2=2√3x M −√3(x 1+x 2),而y 1−y 2=(kx 1+m)−(kx 2+m)=k(x 1−x 2),故2√3x M =k(x 1−x 2)+√3(x 1+x 2),解得x M =k√m 2+3−k 2+km3−k 2.两式相加,得2y M −(y 1+y 2)=√3(x 1−x 2),而y 1+y 2=(kx 1+m)+(kx 2+m)=k(x 1+x 2)+2m ,故2y M =k(x 1+x 2)+√3(x 1−x 2)+2m ,解得y M =3√m 2+3−k 2+3m3−k 2=3k x M ⋅因此,点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 若选择 ① ②:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A,解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3.此时x A +x B =4k 2k 2−3,y A +y B =12kk 2−3.而点M 的坐标满足{y M =k(x M −2)y M =3k x M , 解得x M =2k 2k 2−3=x A +x B2,y M =6kk 2−3=y A +y B2,故M 为AB 的中点,即|MA|=|MB|. 若选择 ① ③:当直线AB 的斜率不存在时,点M 即为点F(2,0),此时M 不在直线y =3k x 上,矛盾.故直线AB 的斜率存在,设直线AB 的方程为y =p(x −2)(p ≠0), 并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =p(x A −2)y A =√3x A,解得x A =p−√3,y A =√3pp−√3.同理可得x B =p+√3,y B =−√3pp+√3.此时x M =x A +x B2=2p 2p 2−3,y M =y A +y B2=6pp 2−3.由于点M 同时在直线y =3k x 上,故6p =3k ·2p 2,解得k =p.因此PQ//AB . 若选择 ② ③:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3,设AB 的中点为C(x C ,y C ),则x C =x A +x B2=2k 2k 2−3,y C =y A +y B2=6kk 2−3.由于|MA|=|MB|,故M 在AB 的垂直平分线上,即点M 在直线y −y C =−1k (x −x C )上.将该直线与y =3k x 联立,解得x M =2k 2k 2−3=x C ,y M =6kk 2−3=y C ,即点M 恰为AB 中点,故点而在直线AB 上. 【命题意图】本题考查双曲线的标准方程和几何性质,考查直线与双曲线的位置关系,考查开放探究能力,属于压轴题.主要考查直线与双曲线的位置关系及双曲线中面积问题,属于难题【命题方向】圆锥曲线综合大题是属于高考历年的压轴题之一,难度较大,对学生的综合要求较高。
高考数学高三模拟考试试卷压轴题圆锥曲线解答题12大题型解题套路归纳:【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】WILL COME ACROSS圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。
中的24类;分门别类按套路求解;1.高考最重要考:直线与椭圆,抛物线的位置关系。
第一问最高频考(总与三个问题有关):(1)———————;(2)——————————;(3)—————————;2.圆锥曲线题,直线代入圆锥曲线的“固定3步走”:;——————————————————————————————————————;3.圆锥曲线题固定步骤前9步:;;————————————;—————————;——————————;—————————————————;———————————;——————————————;4.圆锥曲线题题型一:弦长问题的固定套路:STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;(1)圆的弦长问题:(2法)首选方法:垂径定理+勾股定理:图示:;公式为:;其中求“点线距”的方法:———————;次选:弦长公式;(2)中点弦长问题:(2法)首选方法:“点差法”,结论:中点弦公式:椭圆:(公式一);(公式二);副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一);(公式二);抛物线:形式一:___________;(公式一);(公式二);形式2:___________;(公式一);(公式二);附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;得公式:(公式一);(公式二);附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;得公式:(公式一);(公式二);附:“点差法”步骤:抛物线:形式二:____________;“点”_______________________;_________________;“差”__________________________________;“设而不求法”______________________;“斜率公式”+“中点公式”_____________;___________;___________;得公式:(公式一);(公式二);法二次选:中点公式;(2)焦点弦长问题:(2法)椭圆和双曲线:(公式一)左焦点弦长:;图示:__________________;右焦点弦长:;图示:__________________;公式一适用于:__________________________;(公式二);其中:________________;适用于:__________________________; 抛物线:形式一:________;公式一:__________________;图示:_____________________;公式一适用于:__________________________;焦点弦公式二:____________________;公式2适用于:__________________________;STEP2:除了这三种特殊弦长以外,其余弦长求解都用【弦长公式】(保底方法);【弦长公式】3类型:【类1】___________;___________;_______________;适用于:__________________________;【类2】___________;____________;_______________;适用于:__________________________;【类3】___________;____________;_______________;适用于:__________________________;5.圆锥曲线题题型二:中点问题的固定套路:【2法】首选方法:中点弦公式;次选:中点公式+韦达定理:;;;;6. 圆锥曲线题题型三:垂直问题的固定套路:首先看是否是2种特殊的垂直问题:(1)涉及圆的直径问题:【2法】:法一:“圆的直径式方程”____________________________________;法二:向量垂直法:____________________;____________________________________;(2)“原点张角垂直问题”首选方法:向量垂直法+韦达定理【最快!】图示:_____________________;套路:___________________;_______________________________;7.圆锥曲线题题型四:对称问题的固定套路:“结论法+代入法最快!”【2题型】(1)中心对称问题:结论一:【原点对称】_______________________________;结论二:【任意点对称】_______________________________;(2)轴对称问题:结论一:【x轴对称】_______________________________;结论二:【y轴对称】_______________________________;结论三【x=a对称】;结论四【y=b对称】:______________________;结论5【y=x对称】:__________________________;结论6【y=x对称】:_______________________________;结论7【y=x+c 对称】:___________________;结论8【y=x+c对称】:_____________________;结论9【任意直线Ax+By+C=0对称】:_______________________________;8.圆锥曲线题题型五:切线问题的固定套路:【大纲内2题型】(1)圆的切线问题:【3套路8结论】(1)“点线距等于半径”________________________;(2)斜率乘积等于1;______________;(3)勾股定理:__________________;结论:(1)【切线长公式】_______________________;(2)【圆心在原点时】_______________________;(3)【切点弦直线方程】_______________________;(4)_______________________;(5)_______________________;(6)_______________________;(7)________________________;(2)抛物线的切线问题:【导数法】(2形式)【形式一】________;____________________;【形式二】_________;__________________________;9.圆锥曲线题题型六:焦点三角形问题的固定套路:_________+___________+_____________+___________+_____________+___________+_____________;【相关结论】:【两焦半径】左焦半径_____________;右焦半径_____________;特别的,通径:______________;半通径:______________;【三边长】_____________;_____________;_____________;【周长】_____________;【两焦半径乘积】_____________;【焦点三角形面积】_____________;_____________;作用:_____________;_____________;【余弦定理式】_____________;_____________;_____________;【正弦定理式】________;【求解离心率】__________;_________;________;__________;_____;【焦点三角形中内心公式】_____________________;10.圆锥曲线题题型七:向量问题的固定套路:【平行问题,垂直问题,夹角问题这三种问题“向量法最快”!平解几中,向量问题均采用“坐标运算”最佳!】首先:坐标化【平面向量10公式】【向量平行】_____________________;【向量垂直】_____________________;【向量夹角公式】_____________________;【加减式】_____________________;【数乘式】_____________________;【向量数量积公式】_____________________;【向量模的公式】_____________________;【量模转化公式】_____________________;【向量平方差公式】_____________________;【向量完全平方公式】_____________________;11.圆锥曲线题题型八:夹角问题的固定套路:【2类】(1)定性讨论型【向量法最快!】“成锐角时《=》向量数量积>0;”“成钝角时《=》向量数量积<0;”“成直角时《=》向量数量积=0;”(2)定量计算型:【2法】(1)向量数量积公式_____________________;(2)两直线夹角公式_____________________;12.圆锥曲线题题型9:斜率问题的固定套路:方法基础:斜率3公式:_____________________;_____________________;_____________________;【凡与中点相关的斜率问题】首选:中点弦公式。
高考数学模拟试题分类汇编:圆锥曲线三、解答题(第二部分)26、(某某省某某一中高2008届第一次模拟检测)已知椭圆C :22a x +22by =1(a >b >0)的离心率为36,过右焦点F 且斜率为1的直线交椭圆C 于A ,B 两点,N 为弦AB 的中点。
(1)求直线ON (O 为坐标原点)的斜率K ON ;(2)对于椭圆C 上任意一点M ,试证:总存在角θ(θ∈R )使等式:OM =cos θOA +sin θOB 成立。
解:(1)设椭圆的焦距为2c ,因为36=a c ,所以有32222=-ab a ,故有223b a =。
从而椭圆C 的方程可化为:22233b y x =+①………2分 易知右焦点F 的坐标为(0,2b ), 据题意有AB 所在的直线方程为:b x y 2-=②………3分由①,②有:0326422=+-b bx x ③设),(),,(2211y x B y x A ,弦AB 的中点),(00y x N ,由③及韦达定理有:.422,423200210b b x y b x x x -=-==+=所以3100-==x y K ON ,即为所求。
………5分 (2)显然OA 与OB 可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量OM ,有且只有一对实数μλ,,使得等式OB OA OM μλ+=成立。
设),(y x M ,由1)中各点的坐标有:),(),(),(2211y x y x y x μλ+=,所以2121,y y y x x x μλμλ+=+=。
………7分又点在椭圆C 上,所以有22212213)(3)(b y y x x =+++μλμλ整理为2212122222212123)3(2)3()3(b y y x x y x y x =+++++λμμλ。
④由③有:43,22322121b x x b x x =⋅=+。
所以 06936)(234)2)(2(332222212*********=+-=++-=--+=+b b b b x x b x x b x b x x x y y x x ⑤又A ﹑B 在椭圆上,故有22222221213)3(,3)3(b y x b y x =+=+⑥将⑤,⑥代入④可得:122=+μλ。
1.(2023·浙江·校联考模拟预测)高考数学复习:圆锥曲线已知双曲线−=>>a bC a b x y :1(0,0)2222A (2,1)在双曲线C 上.(1)求双曲线C 的方程;(2)若点M ,N 在双曲线C 上,且⊥AM AN ,直线MN 不与y 轴平行,证明:直线MN 的斜率k 为定值. 利用韦达定理用坐标表示出0AM AN ⋅=,进而可求解,所以0AM AN ⋅=,2.(2023·广东佛山·统考一模)已知椭圆+=a b x y :1Γ2222>>a b 0)(的左焦点为−F 1,0)(,左、右顶点及上顶点分别记为A 、B 、C ,且1CF CB ⋅=. (1)求椭圆Γ的方程;(2)设过F 的直线PQ 交椭圆Γ于P 、Q 两点,若直线PA 、QA 与直线l :+=x 40分别交于M 、N 两点,l 与x 轴的交点为K ,则⋅MK KN 是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.的坐标,即可得到CF ,CB ,根据1CF CB ⋅=及,所以(1,CF b =−−),(,CB a b =−),由1CF CB ⋅=,可得3.(2023·广东江门·统考一模)已知M 是平面直角坐标系内的一个动点,直线MA 与直线=y x 垂直,A 为垂足且位于第一象限,直线MB 与直线=−y x 垂直,B 为垂足且位于第四象限,四边形OAMB (O 为原点)的面积为8,动点M 的轨迹为C . (1)求轨迹C 的方程;(2)已知T 5,3)(是轨迹C 上一点,直线l 交轨迹C 于P ,Q 两点,直线TP ,TQ 的斜率之和为1,∠=PTQ tan 1,求TPQ 的面积.,即可求出TPQ 的面积=αk tan ,=−βk tan 1,T 5,3(则>k 1或<−k 1,同时−>k 1+∠=−=βαPTQ 1tan tan tan tan )(=k 3时,直线TP 的方程为y 联立⎩−=⎨⎧=−x y y x 1631222,消y 得:4.(2023·浙江·永嘉中学校联考模拟预测)已知双曲线E 的顶点为−A 1,0)(,,B 10)(,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且△=S OFG 点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程; (2)求证:OP OH ⋅为定值.故OP OH mx m ⋅==⨯=mH 11,得证5.(2023·江苏徐州·徐州市第七中学校考一模)已知双曲线−=>a b C a b x y :1(,0)2222的实轴长为4,左、右顶点分别为A A ,12,经过点B 4,0)(的直线l 与C 的右支分别交于M N ,两点,其中点M 在x 轴上方.当⊥l x 轴时,=MN (1)设直线MA NA ,12的斜率分别为k k ,12,求k k 12的值; (2)若=∠∠BA N BA M 221,求1A MN 的面积.y或解得43所以1A MN的面积为1A MNS=6.(2023·江苏泰州·统考一模)已知双曲线的左顶点为A ,过左焦点F 的直线与C 交于P Q ,两点.当⊥PQ x轴时,=PA △PAQ 的面积为3. (1)求C 的方程;(2)证明:以PQ 为直径的圆经过定点.(2)方法一:设PQ 方程为=x my ⎩−=⎨⇒−+⎧=−x y m y my x my 3334422222)(以PQ 为直径的圆的方程为−x x 1(−+++−+x x x x x x y y y 12121222()(000EP EQ x t x t y y x x t x x t y y ∴⋅=⇒−−+=⇒−+++=12121212122)()()(,7.(2023·辽宁葫芦岛·统考一模)在平面直角坐标系中,已知点−A (2,0),B (2,0),直线P A 与直线PB 的斜率乘积为−43,点P 的轨迹为M .(1)求M 的方程;(2)分别过−F (1,0)1,F (1,0)2做两条斜率存在的直线分别交M 于C ,D 两点和E ,F 两点,且+=CD EF ||||12117,求直线CD 的斜率与直线EF 的斜率之积.8.(2023·江苏南通·统考模拟预测)已知A x y ,11)(,B x y ,22)(,C x y ,33)(三个点在椭圆+=y x 2122,椭圆外一点P 满足2OP AO =,2BP CP =,(O 为坐标原点). (1)求+x x y y 21212的值;(2)证明:直线AC 与OB 斜率之积为定值.,因为2OP AO =,所以又因为2BP CP =,所以9.(2023·河北衡水·衡水市第二中学校考模拟预测)已知抛物线C :=>y px p 202)(和椭圆E :++=>a a a x y 11022)(有共同的焦点F(1)求抛物线C 的方程,并写出它的准线方程(2)过F 作直线l 交抛物线C 于P , Q 两点,交椭圆E 于M , N 两点,证明:当且仅当⊥l x 轴时,MNPQ取得最小值10.(2023·河北石家庄·统考一模)已知点P (4,3)在双曲线C :−=a bx y12222(>a 0,>b 0)上,过P 作x 轴的平行线,分别交双曲线C 的两条渐近线于M ,N 两点,⋅=PM PN ||||4.(1)求双曲线C 的方程;(2)若直线l:=+y kx m与双曲线C交于不同的两点A,B,设直线PA,PB的斜率分别为k1,k2,从下面两个条件中选一个(多选只按先做给分),证明:直线l过定点.①+=k k112;②=k k1 12.后把求解方程得出k m ,的关系式,从而可得定点,定点问题虽然运算过程繁琐,但是求解思路较为明确.11.(2023·福建漳州·统考二模)已知椭圆+=>>a b C a b x y :1(0)2222的左、右焦点分别为F 1,F 2,且=F F 412.过右焦点F 2的直线l 与C 交于A ,B 两点,1ABF 的周长为(1)求C 的标准方程;(2)过坐标原点O 作一条与垂直的直线'l ,交C 于P ,Q 两点,求PQ AB ||||的取值范围; (3)记点A 关于x 轴的对称点为M (异于B 点),试问直线BM 是否过定点?若是,请求出定点坐标;若不是请说明理由.12.(2023·福建泉州·统考三模)已知椭圆+=C x y 43:122的左、右顶点分别为A ,B .直线l与C 相切,且与圆+=O x y :422交于M ,N 两点,M 在N 的左侧.(1)若=MN ||l 的斜率; (2)记直线AM BN ,的斜率分别为k k ,12,证明:k k 12为定值.13.(2023·山东·烟台二中校考模拟预测)已知椭圆+=>>a bC a b x y :1(0)22122过点P (4,1),且C 1的焦距是椭圆⎝⎭+ ⎪+=−⎛⎫a b a b C x y a b :2222222222的焦距的3倍.(1)求C 1的标准方程;(2)设M ,N 是C 1上异于点P 的两个动点,且0PM PN ⋅=,试问直线是否过定点?若过,求出定点坐标;若不过,请说明理由.⋅=列方程,整理后可求得定点坐标PM PN因为0⋅=,所以PM PN由0PM PN ⋅=,得14.(2023·山东青岛·统考一模)已知O 为坐标原点,椭圆+=>>a b C a b x y :102222)(的左,右焦点分别为F 1,F 2,A 为椭圆C 的上顶点,△AF F 12为等腰直角三角形,其面积为1. (1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于P ,Q 两点,点W 在过原点且与l 平行的直线上,记直线WP ,WQ 的斜率分别为k 1,k 2,△WPQ 的面积为S .从下面三个条件①②③中选择两个条件,证明另一个条件成立.①=S =−k k 2112;③W 为原点O .注:若选择不同的组合分别解答,则按第一个解答计分.12AF F S==c 1,∴椭圆C15.(2023·山东济南·一模)已知抛物线=H x py :22(p 为常数,>p 0).(1)若直线=−+l y kx pk p :22与H 只有一个公共点,求k ;(2)贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:==DE FC BF AD EF DB ||||||||||||. 【答案】(1)=k 2 (2)证明见解析【分析】(1)联立直线l 的方程和抛物线方程,消去y 后利用判别式求得的值.(2)求得过A B C ,,三点的切线方程,进而求得D E F ,,的恒坐标,根据抛物线的知识证得结论成立.【详解】(1)将=−+y kx pk p 22代入=x py 22, 化简得++−=x pkx p k 24(1)022(*),方程(*)的判别式=−−=p k p k p 44440Δ2222)(,化简得−+=k k 4402, 即=k 2.(2)设A x y B x y C x y D x y E x y F x y A A B B C C D D E E F F ,,,,,,,,,,,)()()()()()(, 设抛物线=x py 22在A 点处的切线方程为−=−y y k x x A A A )(,由⎩=⎨−=−⎧x pyy y k x x A A A 22)(消去y 并化简得−+−=x pk x pk x py A A A A 22202, ∆=−−=−+=p k pk x py p k pk x py A A A A A A A A 442248802222)(,16.(2023·山东聊城·统考一模)已知双曲线C :−=a bx y 12222(>a 0,>b 0)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1. (1)求C 的方程;(2)设点O 0,0)(,M 0,2)(,动直线l :=+y kx m 与C 的右支相交于不同两点A ,B ,且∠=∠AFM BFM ,过点O 作⊥OH l ,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.,(2,2FM =−),,则()(2,,2,,FA x y FB x y =−=−1122) 于是()()FA x y x x x =−+=−+−=−223321111112222,同理21FB x =−2,即FA FM FB FM FAFB⋅⋅=17.(2023·湖北·校联考模拟预测)已知椭圆+=>>a b E a b x y :1(0)2222过点⎝⎭ ⎛A . (1)若椭圆E 的离心率⎝⎦⎥ ∈⎛⎤e 20,1,求b 的取值范围;(2)已知椭圆E 的离心率=e 2,M ,N 为椭圆E 上不同两点,若经过M ,N 两点的直线与圆+=x y b 222相切,求线段的最大值.由直线与+=x y 122相切,故联立⎩⎪+=⎨⎪⎧=+y x y kx m 41,,22得++k x 1422)(−km m 844218.(2023·湖北武汉·统考模拟预测)过坐标原点O 作圆++=C x y :(2)322的两条切线,设切点为P Q ,,直线PQ 恰为抛物=>E y px p :2,(0)2的准线. (1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点A B M N ,,,满足:2,2TA TM TB TN ==,设AB 中点为D .(i )求直线TD 的斜率;(ii )设△TAB 面积为S ,求S 的最大值. 【答案】(1)=y x 22 (2)(i )0;(ii )48CPP与由几何性质易得:019.(2023·江苏·统考一模)已知直线l 与抛物线=C y x :212交于两点A x y ,11)(,B x y ,22)(,与抛物线=C y x :422交于两点C x y ,33)(,D x y ,44)(,其中A ,C 在第一象限,B ,D 在第四象限.(1)若直线l 过点M 1,0)(,且−BM AM 11l 的方程; (2)①证明:+=+y y y y 11111234; ②设AOB ,△COD 的面积分别为S 1,S 2,(O 为坐标原点),若=AC BD 2,求S S 21.,整理得220y my n 2,,2y y n 12,20.(2023·湖北·荆州中学校联考二模)已知点A 2,2)(为抛物线y px Γ=:22上的点,B ,C 为抛物线Γ上的两个动点,Q 为抛物线Γ的准线与x 轴的交点,F 为抛物线Γ的焦点.(1)若︒∠=BOC 90,求证:直线BC 恒过定点;(2)若直线BC 过点Q ,B ,C 在x 轴下方,点B 在Q ,C 之间,且∠=BFC 7tan 24,求△AFC 的面积和△BFC 的面积之比.)根据∠=BOC 90,可得,OB OC x x y y ⋅=+=01212,利用韦达定理求解;可得7cos ,FA FB =25,利用韦达定理和向量夹角的坐标∵∠=BOC 90∴OB OC x x y y ⋅=+=01212,∵FA x y ⎛⎫=− ⎪⎝⎭2,111,FB x y ⎛⎫=− ⎪⎝⎭2,122,,x FA FB FA FB FA FB⎛⋅⎝==1+−++m y y y y m y y 111221212)()由于直线BC 过点Q ,B ,C 在21.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知A ,B 为椭圆+=a b x y 12222左右两个顶点,动点D 是椭圆上异于A ,B 的一点,点F 是右焦点.当点D 的坐标为−1)(时,=DF 3. (1)求椭圆的方程.(2)已知点C 的坐标为4,0)(,直线CD 与椭圆交于另一点E ,判断直线AD 与直线BE 的交点P 是否在一定直线上,如果是,求出该直线方程;如果不是,请说明理由.设D x y ,11)(,E x y ,22)(,则++=k x x k 21162122,x x 12∴=+−x x x x 2451212)(,又−A 2,0)(,B 2,0)(, ∴直线AD 的方程为+=+x y x y 2211)(,直线BE 的方程为22.(2023·湖南邵阳·统考二模)已知双曲线−=<a bC a b x y :1010,02222)(的右顶点为A ,左焦点−F c ,0)(到其渐近线+=bx ay 0的距离为2,斜率为31的直线l 1交双曲线C 于A ,B 两点,且=AB 3. (1)求双曲线C 的方程;(2)过点T 6,0)(的直线l 2与双曲线C 交于P ,Q 两点,直线AP ,AQ 分别与直线=x 6相交于M ,N 两点,试问:以线段为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.,则6,RM t ⎛⎫=− ⎪⎝⎭−x y 3311,6,RN t ⎛⎫=− ⎪⎝⎭−x y 3322,故(()()6RM RN t ⋅=−+−−x x y y 33912122)y y 923.(2023·湖南·模拟预测)已知椭圆+=>>a bE a b x y :1(0)2222的左、右焦点分别为,F F 12,上顶点为B 1,若△F B F 112为等边三角形,且点⎝⎭ ⎪⎛⎫P 21,3在椭圆E 上.(1)求椭圆E 的方程;(2)设椭圆E 的左、右顶点分别为,A A 12,不过坐标原点的直线l 与椭圆E 相交于A 、B 两点(异于椭圆E 的顶点),直线、AA BA 12与y 轴的交点分别为M 、N ,若=ON OM ||3||,证明:直线过定点,并求该定点的坐标.24.(2023·湖南张家界·统考二模)已知曲线C 的方程:−=>x x y 451022)(,倾斜角为α的直线l 过点F 3,02)(,且与曲线C 相交于A ,B 两点. (1)=︒α90时,求三角形ABO 的面积;(2)在x 轴上是否存在定点M ,使直线l 与曲线C 有两个交点A 、B 的情况下,总有∠=∠OMA OMB 如果存在,求出定点M ;如果不存在,请说明理由.过焦点F 3,02)(,倾斜角为所以△=⨯⨯=S AOB 2235115(2)设直线l 的方程为:=−y k x (整理得−+−k x k x 542436222)(因为直线l 与曲线C 有两个交点,设5与椭圆+=>>a bC a b x y :1(0)2222交于P Q ,两点(P 在x 轴上方),且=PQ a 56,设点P 在x 轴上的射影为点N ,PQN ,抛物线=>E y px p :2(0)2的焦点与椭圆C 的焦点重合,斜率为的直线l 过抛物线E 的焦点与椭圆C 交于A B ,两,点,与抛物线E 交于C D ,两点.(1)求椭圆C 及抛物线E 的标准方程;(2)是否存在常数λ,使+λAB CD ||||为常数?若存在,求λ的值;若不存在,说明理由.26.(2023·湖南常德·统考一模)已知双曲线:−=>>a b C a b x y 1(0,0)2222的右顶点到渐近线的C 的右焦点F 作直线MN (不与x 轴重合)与双曲线C 相交于M ,N 两点,过点M 作直线l :=−<<x t a t a )(的垂线ME ,E 为垂足. (1)求双曲线C 的标准方程;(2)是否存在实数t ,使得直线EN 过x 轴上的定点P ,若存在,求t 的值及定点P 的坐标;若不存在,说明理由.27.(2023·广东揭阳·校考模拟预测)椭圆、双曲线、抛物线三种圆锥曲线有许多相似性质.比如三种曲线都可以用如下方式定义(又称圆锥曲线第二定义):到定点的距离与到定直线的距离之比为常数e 的点的轨迹为圆锥曲线.当<<e 01为椭圆,当=e 1为抛物线,当>e 1为双曲线.定点为焦点,定直线为对应的准线,常数e 为圆锥曲线的离心率.依据上述表述解答下列问题.已知点F (1,0),直线=l x :4动点E 满足到点F 的距离与到定直线l 的距离之比为21(1)求曲线E 的轨迹方程;(2)在抛物线中有如下性质:如图,在抛物线=>y px p 2(0)2中,O 为抛物线顶点,过焦点F 的直线交抛物线与A ,B 两点,连接AO ,BO 并延长交准线l 与D ,C ,则以CD 为直径的圆与AB 相切于点F ,以AB 为直径的圆与CD 相切于CD 中点.那么如图在曲线E 中是否具有相同的性质?若有,证明它们成立;若没有,说明理由.圆联立方程,结合韦达定理证明=0CF DF ⋅且,()()9CF DF ⋅=+−−x x y y 2241212 +m 34()()90CF DF ∴⋅=+=−−x x y y 2241212,CF DF ∴⊥28.(2023·广东广州·统考二模)已知直线l 与抛物线=C y x :42交于A ,B 两点,且与x 轴交于点>M a a ,00)()(,过点A ,B 分别作直线=−l x a :1的垂线,垂足依次为A 1,B 1,动点N 在l 1上.(1)当=a 1,且N 为线段A B 11的中点时,证明:⊥AN BN ;(2)记直线NA ,NB ,NM 的斜率分别为k 1,k 2,k 3,是否存在实数λ,使得+=λk k k 123?若存在,求λ的值;若不存在,请说明理由.(恰为抛物线当=a1时,M1,0)AM AA 由抛物线的定义可得:=取AB的中点D,连接DN,则DNDA因为D为AB的中点,所以=DA DN可得:在△ADN中,由=29.(2023·广东惠州·统考模拟预测)已知椭圆+=>>a bC a b x y :1(0)22的右焦点为F ,点−A 2,0)(在椭圆上且=AF ||3.(1)求椭圆C 的方程;(2)点、P Q 分别在椭圆C 和直线=x 4上,∥OQ AP ,M 为AP 的中点,若T 为直线OM 与直线QF 的交点.是否存在一个确定的曲线,使得T 始终在该曲线上?若存在,求出该曲线的轨迹方程;若不存在,请说明理由.进而求出(3x OM FQ ⋅=2代入得0OM FQ ⋅=,从而FQ ,判断出点T (1)因为椭圆=|3,所以+a。
专题10 圆锥曲线的性质及其应用专题点拨1.熟练掌握椭圆、双曲线以及抛物线的标准方程中基本量的关系,能够准确应用三种曲线的轨迹定义来解决问题.2.弦长公式:斜率为k 的直线与圆锥曲线交于两点A (x 1,y 1),B (x 2,y 2),则截得的弦长: |AB |=2212121()4k x x x x ++- =1+k 2·|x 1-x 2|=1+1k2·|y 1-y 2|(k ≠0). 3. 涉及焦点弦问题:一般要联想圆锥曲线的轨迹定义加以分析求解. 涉及中点弦及直线的斜率问题:需要利用“根与系数的关系”求解.真题赏析1.(2018·上海)双曲线﹣y 2=1的渐近线方程为 .【答案】12y x =±【解析】由a=2,b=1,故渐近线方程为12y x =±.2. (2017·上海)设双曲线x 29-y 2b 2=1(b >0)的焦点为F 1、F 2,P 为该双曲线上的一点,若|PF 1|=5,则|PF 2|=__________. 【答案】3【解析】依题意,有⎩⎪⎨⎪⎧|PF →1|+|PF 2→|=2a |PF 1→|·|PF 2→|=18|PF 1→|2+|PF 2→|2=4c2,可得4c 2+36=4a 2,即a 2-c 2=9,故有b =3.例题剖析【例1】设AB 是椭圆Γ的长轴,点C 在Γ上,且∠CBA =π4,若AB =4,BC =2,则Γ的两个焦点之间的距离为________.【答案】436【解析】如图所示:设D 在AB 上,且CD ∠AB ,AB =4,BC =2,∠CBA =45°∠CD =1,DB =1,AD =3,以AB 所在直线为x 轴,AB 中垂线为y 轴建立平面直角坐标系得C (1,1),2a =4,把C (1,1)代入椭圆标准方程得1a 2+1b 2=1,a 2=b 2+c 2∠b 2=43,c 2=83∠2c =436.【变式训练1】 设P 是椭圆²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )A. 【答案】C【解析】由椭圆的定义可知两个焦点的距离之和为【例2】已知1F ,2F 分别为双曲线2222:1(,0)x y C a b a b-=>的左、右焦点,过2F 的直线l 与双曲线的右支分别交于A ,B 两点,△12AF F 的内切圆半径为1r ,△12BF F 的内切圆半径为2r ,若122r r =,则直线l 的斜率为 .【答案】±【解析】记△12AF F 的内切圆圆心为C ,边1AF 、2AF 、12F F 上的切点分别为M 、N 、E , 易见C 、E 横坐标相等, 则||||AM AN =, 11||||F M F E =, 22||||F N F E =,由12||||2AF AF a -=,即12||||(||||)2AM MF AN NF a +-+=, 得12||||2MF NF a -=,即12||||2F E F E a -=,记C 的横坐标为0x ,则0(E x ,0), 于是00()2x c c x a +--=,得0x a =,同样内心D 的横坐标也为a ,则有CD x ⊥轴,设直线的倾斜角为θ,则22OF D θ∠=,2902CF O θ∠=︒-,在2CEF ∆中,12tan tan(90)2||r CF O EF θ∠=︒-=,在2DEF ∆中,22tan tan 2||r DF O EF θ∠==, 由122r r =,可得2tan tan(90)cot 222θθθ=︒-=,解得tan22θ=则直线的斜率为22tan2tan 1122tan θθθ===-- 由对称性可得直线l的斜率为±故答案为:±【变式训练2】已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C的渐近线方程为y =,则2C 的渐近线方程为__________. 【答案】y =±32x 【解析】 设C 1的方程为x 2a 2-y 2b 2=1,则它的渐近线为y =±b a x ,即b =3a .有x 2a 2-y 23a 2=1,又∠P 的纵坐标是Q 的2倍,横坐标相同.∠C 2的方程为x 2a 2-()2y 23a 2=1,故渐近线方程为y =±32x .【例3】在平面直角坐标系xOy 中,已知抛物线24y x =上一点P 到焦点的距离为5,则点P 的横坐标是 . 【答案】4【解析】Q 抛物线242y x px ==, 2p ∴=,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,||15PF x ∴=+=, 4x ∴=,故答案为:4.【变式训练3】已知抛物线24y x =的焦点为F ,该抛物线上点P 的横坐标为2,则||PF = . 【答案】3【解析】抛物线24y x =的准线方程为:1x =-,P Q 到焦点F 的距离等于P 到准线的距离,P 的横坐标是2,||213PF ∴=+=.故答案为:3.【例4】椭圆C :22221x y a b+=(0a b >>)过点()2,0M ,且右焦点为()1,0F ,过F 的直线l 与椭圆C 相交于A 、B 两点,设点()4,3P ,记PA 、PB 的斜率分别为1k 和2k ; (1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值;(3)探讨12k k +是否为定值?如果是,求出该定值,如果不是,求出12k k +的取值范围;【解析】(1)2,1a c ==Q ,b ∴=22143x y +=.(2)直线l :1y x =-+,设()11,A x y ,()22,B x y ,由221143y x x y =-+⎧⎪⎨+=⎪⎩,消y 得27880x x --=,有1287x x +=,1287x x =-,所以()()121212121212121212243322144444162x x x x y y x x k k x x x x x x x x +++------⋅=⋅=⋅==-----++.(3)当直线AB 的斜率不存在时,不妨设31,2A ⎛⎫ ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭,则13312412k -==-,23332412k +==-,故122k k +=.当直线AB 斜率存在时,设为k ,则直线AB :()1y k x =-.设()11,A x y ,()22,B x y ,由()221143y k x x y =-⎧⎪⎨+=⎪⎩,消y 得()()22224384120k x k x k +-+-=,有2122843k x x k +=+,212241243k x x k -⋅=+,则()()()()1212121212121212122538333334444416kx x k x x k y y kx k kx k k k x x x x x x x x -++++------+=+=+=-----++ ()()227212361k k +==+.巩固训练一、填空题1.已知双曲线221x y -=,则其两条渐近线的夹角为 . 【答案】90︒【解析】双曲线2211x y -=的两条渐近线的方程为:y x =±, 所对应的直线的倾斜角分别为90︒,∴双曲线221x y -=的两条渐近线的夹角为90︒,故答案为:90︒.2.若直线l 经过抛物线2:4C y x =的焦点且其一个方向向量为(1,1)d =r,则直线l 的方程为 .【答案】10x y --=【解析】抛物线24y x =的焦点为(1,0),方向向量为(1,1)d =r 的直线l 的斜率为 1,故直线l 的方程是01(1)y x -=-g ,即1y x =-, 故答案为:10x y --=.3.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是2y x =,它的一个焦点与抛物线220y x =的焦点相同,则此双曲线的方程是 .【答案】221520x y -=【解析】抛物线220y x =的焦点为(5,0), 则双曲线的焦点在x 轴上,双曲线22221(0,0)x y a b a b-=>>的一条渐近线为2y x =,可得2b a =,由题意双曲线22221(0,0)x y a b a b-=>>的一个焦点与抛物线220y x =5=,解得a =b =,则双曲线的方程为:221520x y -=.故答案为:221520x y -=.4.已知点O ,A ,B ,F 分别为椭圆2222:1(0)x y C a b a b+=>>的中心、左顶点、上顶点、右焦点,过点F 作OB 的平行线,它与椭圆C 在第一象限部分交于点P ,若AB OP λ=u u u r u u u r,则实数λ的值为 .【解析】如图,(,0)A a -,(0,)B b ,(,0)F c ,则2(,)b P c a,∴(,)AB a b =u u u r ,2(,)b OP c a=u u u r ,由AB OP λ=u u u r u u u r ,得2a c b b a λλ=⎧⎪⎨=⎪⎩,即b c =,22222a b c b ∴=+=,ab=则abλ=5.已知椭圆22194x y +=,直线2180x y ++=,则椭圆上点到这条直线的最短距离是 .【解析】由直线l 的方程与椭圆的方程可以知道,直线2180lx y ++=与椭圆不相交, 设直线m 平行于直线l ,则直线m 的方程可以写成20x y k ++= (1) 由方程组2219420x y x y k ⎧+=⎪⎨⎪++=⎩消去x ,得2225164360y ky k ++-= (2) 令方程(2)的根的判别式△0=,得22216425(436)0k k -⨯-= (3) 解方程(3)得15k =或25k =-,∴当15k =时,直线m 与椭圆交点到直线l 的距离最近,此时直线m 的方程为250x y ++=,直线m 与直线l间的距离d ==,. 二、选择题6.已知椭圆2212516x y +=的左右焦点分别为1F 、2F ,点P 在椭圆上,若P 、1F 、2F 是一个直角三角形的三个顶点,则点p 到x 轴的距离为( ) A .95B .4 CD .165【答案】D【解析】设椭圆短轴的一个端点为M . 由于5a =,4b =, 3c b ∴=<; 1290F MF ∴∠<︒,∴只能1290PF F ∠=︒或2190PF F ∠=︒.令3x =±,得2165b y a ==,故选:D .7.点A 为椭圆2222:1(0)x y C a b a b+=>>的右顶点,P 为椭圆C 上一点(不与A 重合),若0(PO PA O =u u u r u u u r g 是坐标原点),则(cc a 为半焦距)的取值范围是(( )A .1(,1)2B.(2C. D .以上说法都不对【答案】B【解析】Q 设(,)P x y ,Q 0(PO PA O =u u u r u u u rg 是坐标原点),∴22222322222222()024a a x y c x a x a b b x a y a b ⎧-+=⎪⇒-+=⎨⎪+=⎩, 22()()0c x ab x a ⇒--=.x a ⇒=,22ab x c =,220ab a c∴<<.22b c ∴<.∴c a >∴则ca的取值范围是(2,1)故选:B .8.已知M(00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<u u u u r u u u u r ,则0y 的取值范围是( )A.(B.(,3) D.(3-,3) 【答案】A【解析】由题意()1F,)2F ,220012x y -=,所以())120000,,MF MF x y x y ⋅=-⋅-u u u u r u u u u r2220003310x y y =+-=-<,解得0y <<. 9.已知点E 是抛物线2:2(0)C y px P =>的对称轴与准线的交点,点F 为抛物线C 的焦点,点P 在抛物线C 上,在EFP ∆中,若sin sin EFP FEP μ∠=∠g ,则μ的最大值为( )A .2B C D 【答案】C【解析】过(P x 轴上方)作准线的垂线,垂足为H ,则由抛物线的定义可得||||PF PH =,由sin sin EFP FEP μ∠=∠g , 则PFE ∆中由正弦定理可知:则||||PE PF μ=, ||||PE PH μ∴=,设PE 的倾斜角为α,则1cos PH PE αμ==, 当μ取得最大值时,cos α最小,此时直线PM 与抛物线相切, 设直线PM 的方程为2px ty =-,则, 即2220y pty p -+=,∴△222440p t p =-=,1k ∴=,即tan 1α=,则cos 2α=则μ, 故选:C . 三、解答题10.已知椭圆的两个焦点为1(1,0)F -,2(1,0)F,且椭圆过点. (1)求椭圆的方程.(2)已知斜率为(0)k k ≠的直线11过2F ,与椭圆分别交于P ,Q ;直线2l 过2F ,与直线11垂直,与椭圆分别交于M ,N ,求四边形PMQN 面积的函数解析式()f k .【解析】(1)设椭圆的方程为22221x y a b+=,0a b >>由题意可得2222211112c a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得22a =,21b =(2)设直线1l 的方程为(1)y k x =-,则直线2l 的方程为1(1)y x k=--设1(P x ,1)y ,2(Q x ,2)y ,联立方程2212(1)x y y k x ⎧+=⎪⎨⎪=+⎩,化简得2222(21)4220k x k x k +-+-=.则2122412k x x k +=+,21222212k x x k -=+,12||||PQ x x ∴=-22112k k +==+g , 同理,得221||2k MN k+=+g , ()()222214(1)2122PMNQk S PQ MN k k +∴===++四边形, 22224(1)()(12)(2)k f k k k +∴=++,0k ≠. 11.已知抛物线2y x =上的A ,B 两点满足2OA OB =u u u r u u u rg ,点A 、B 在抛物线对称轴的左右两侧,且A 的横坐标小于零,抛物线顶点为O ,焦点为F . (1)当点B 的横坐标为2,求点A 的坐标;(2)抛物线上是否存在点M ,使得||||(0)MF MO λλ=>,若请说明理由;(3)设焦点F 关于直线OB 的对称点是C ,求当四边形OABC 面积最小值时点B 的坐标. 【解析】(1)由题意知,(2,4)B ,设2(,)A t t ,由2OA OB =u u u r u u u r g ,得2242t t +=,解得:12t =(舍)或1t =-, (1,1)A ∴-;(2)由条件知222221()()4x x x y λ+-=+,把2y x =代入得22211(1)()0216y y λλ-+-+=,∴223()4λλ=-V ,当1λ=,M有两个点,当λ,M 点存在,1λ<<,M 点有四个,当1λ>,M 点有二个,当0λ<<,M 点不存在; (3)设211(,)B x x ,222(,)A x x ,由题意得:2212122x x x x +=,解得122x x =-. 设直线AB 的方程为y kx m =+, 联立2y kx m y x=+⎧⎨=⎩,得20x kx m --=, 得12x x m =-,又122x x =-,2m ∴=,则直线经过定点(0,2),OAB OBC OAB OBF OABC S S S S S ∆∆∆∆∴=+=+四边形12111111922()32248x x x x x =⨯⨯-+⨯⨯=+=…, 当且仅当143x =等号成立,四边形OABC 面积最小, 4(3B ∴,16)9.12.已知双曲线2222:1x y C a b-=经过点()2,3,两条渐近线的夹角为60o,直线l 交双曲线于A ,B 两点;(1)求双曲线C 的方程;(2)若l 过原点,P 为双曲线上异于A ,B 的一点,且直线PA 、PB 的斜率PA k 、PB k 均存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(),0M m ,使得直线l 绕点1F 无论怎样转动,都有0MA MB ⋅=u u u r u u u r成立?若存在,求出M 的坐标;若不存在,请说明理由.【解析】(1)由题意得:224913a b b a⎧-=⎪⎪⎨⎪=⎪⎩,解得1,3a b ==,所以双曲线C 的方程为2213y x -=.(2)证明:设()00,A x y ,由双曲线的对称性可得()00,B x y --,设(),P x y ,则2202PA PBy y k k x x -⋅=-,因为220033y x =-,2233y x =-,所以220203PA PBy y k k x x -⋅==-.(3)由(1)得点()12,0F ,当直线l 的斜率存在时,设直线方程()2y k x =-,设()11,A x y ,()22,B x y ,将方程()2y k x =-与双曲线方程联立消去y 得:()222234430k x k x k --++=,所以22121222443,33k k x x x x k k ++=⋅=--,假设存在定点M ,使MA MB ⊥恒成立,设为(),M m m ,则()()()()1212220MA MB x m x m k x n k x n ⋅=--+----=⎡⎤⎡⎤⎣⎦⎣⎦u u u r u u u r,故得()()222224512310m n m k nk m n +----+-=,对任意的23k >恒成立,因此222245012010m n m n m n ⎧+--=⎪=⎨⎪+-=⎩,解得1,0m n =-=.所以当()1,0M -时,MA MB ⊥恒成立.当直线l 斜率不存在时,由()()2,3, 2.3A B -知点()1,0M -使得MA MB ⊥也成立.又因为点()1,0M -是双曲线C 的左顶点,所以存在定点()1,0M -,使得MA MB ⊥恒成立.新题速递1.(2020•闵行区一模)在正四面体A ﹣BCD 中,点P 为△BCD 所在平面上的动点,若AP 与AB 所成角为定值θ,θ∈(0,π2),则动点P 的轨迹不可能是( ) A .圆B .椭圆C .双曲线D .抛物线【分析】建立空间直角坐标系,根据题意,求出P 的轨迹方程,可得其轨迹.【解答】解:由题正四面体A ﹣BCD 中,顶点A 在底面BCD 的射影O 为下底面的中心,则以O 为坐标原点,OB 为x 轴,OA 为z 轴,如图所示的空间直角坐标系, 延长BO 交CD 与E ,设OB =1,据题意得:OB =23BE =23×√32BC =√33BC ⇒BC =√3⇒AO =√(√3)2−12=√2. 所以B (1,0,0),A (0,0,√2),设P (x ,y ,0) 则AB →=(1,0,−√2),AP →=(x ,y ,−√2), ∴|cos θ|=|AB →⋅AP→|AB →|×|AP →||=√3×√⇒3cos 2θ(x 2+y 2+2)=(x +2)2⇒(3cos 2θ﹣1)x 2+3cos 2θy 2﹣4x +6cos 2θ﹣4=0;∵θ∈(0,π2)⇒0<cos θ<1⇒﹣1<3cos 2θ﹣1<2,当3cos 2θ﹣1小于0时,表示双曲线, 当其等于0时,表示抛物线; 当其大于0时,表示椭圆. 故选:A .2.(2020•浦东新区一模)以抛物线y 2=4x 的焦点为右焦点,且长轴为4的椭圆的标准方程为( ) A .x 216+y 215=1 B .x 216+y 24=1C .x 24+y 23=1D .x 24+y 2=1【分析】由抛物线方程求得焦点坐标,可得椭圆半焦距c ,又长轴为4,得a =2,由隐含条件求得b ,则椭圆方程可求.【解答】解:抛物线y 2=4x 的焦点坐标为F (1,0), ∴所求椭圆的右焦点为(1,0),即c =1, 又2a =4,∴a =2,则b 2=a 2﹣c 2=4﹣1=3. ∴椭圆的标准方程为x 24+y 23=1.故选:C .3.(2020•徐汇区一模)若圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点,则实数k 的取值范围是( ) A .(﹣9,11)B .(﹣25,﹣9)C .(﹣∞,﹣9)∪(11,+∞)D .(﹣25,﹣9)∪(11,+∞)【分析】求出两圆的圆心坐标与半径,再由圆心距与半径间的关系列式求解. 【解答】解:化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为(x ﹣3)2+(y ﹣4)2=25+k , 则k >﹣25,圆心坐标为(3,4),半径为√25+k , 圆C 1:x 2+y 2=1的圆心坐标为(0,0),半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点, 则|C 1C 2|>√25+k +1或|C 1C 2|<√25+k −1, 即5>√25+k +1或5<√25+k −1, 解得﹣25<k <﹣9或k >11.∴实数k 的取值范围是(﹣25,﹣9)∪(11,+∞). 故选:D .4.(2020•青浦区一模)过抛物线y 2=2px (p >0)的焦点作两条相互垂直的弦AB 和CD ,则1|AB|+1|CD|的值为( ) A .p2B .2pC .2pD .12p【分析】直接利用直线和曲线的位置关系式的应用建立方程组,进一步利用一元二次方程根和系数关系式的应用求出结果.【解答】解:抛物线y 2=2px (p >0)的焦点坐标为(p2,0),所以设经过焦点直线AB 的方程为y =k (x −p 2),所以{y =k(x −p2)y 2=2px,整理得k 2x 2−(k 2p +2p)x +k 2p 24=0,设点A (x 1,y 1),B (x 2,y 2),所以|AB|=x 1+x 2+p =(2k 2+2)pk2,所以1|AB|=k 2(2k +2)p,同理设经过焦点直线CD 的方程为y =−1k (x −p2), 所以{y =−1k (x −p2)y 2=2px,整理得x 2−(p +2k 2p)x +p 24=0,所以:|CD |=p +(p +2k 2p ),所以|CD|=12p+2k 2p,则则1|AB|+1|CD|=(1+k 2)2p(1+k )=12p.故选:D .5.(2020•奉贤区一模)若双曲线的渐近线方程为y =±3x ,它的焦距为2√10,则该双曲线的标准方程为 .【分析】利用双曲线的焦距求出c ,通过渐近线方程,求出a 、b 关系,然后求出a ,b ,即可得到双曲线方程.【解答】解:双曲线的焦距为2√10,可得c =√10,双曲线的焦点坐标在x 轴上时, 渐近线方程为y =±3x ,可得ba =3,a 2+b 2=10,所以a =1,b =3,当双曲线的焦点坐标在y 轴上时,可得ab=3,a 2+b 2=10,所以b =1,a =3,所以所求双曲线方程为:x 2−y 29=±1. 故答案为:x 2−y 29=±1. 6.(2020•静安区一模)设双曲线x 2a −y 2a+1=1的两个焦点为F 1,F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到坐标原点O 的距离的最小值为 .【分析】利用已知条件PF 1⊥PF 2,点P 到坐标原点O 的距离为c ,转化求解c 的最小值即可. 【解答】解:双曲线x 2a −y 2a+1=1的两个焦点为F 1,F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到坐标原点O 的距离为c , 所以c =√a 2+a +1=√(a +12)2+34≥√32,当且仅当a =−12时,取得最小值:√32. 故答案为:√32. 7.(2020•青浦区一模)已知点P 在双曲线x 29−y 216=1上,点A 满足PA →=(t ﹣1)OP →(t ∈R ),且OA →•OP →=60,OB →=(0,1),则|OB →⋅OA →|的最大值为 .【分析】由PA →=(t ﹣1)OP →,得到OA →=tOP →,则|OA →|=|t|⋅|OP →|,设A (x A ,y A ),P (x P ,y P ),可得{x P =xAt y P =y A t,将点(x A t,y At)代入双曲线中得x A 2=9y A216+9t 2,结合OA →•OP →=60,可得|y A |≤8,从而得到|OB →⋅OA →|=|y A |≤8.【解答】解:∵PA →=(t ﹣1)OP →=tOP →−OP →,∴OA →−OP →=tOP →−OP →, 则OA →=tOP →,∴|OA →|=|t|⋅|OP →|, 设A (x A ,y A ),P (x P ,y P ), ∴(x A ,y A )=t (x P ,y P ),则{x A =tx Py A =ty P ,即{x P =xA t y P =y At,将点(x A t ,y A t )代入双曲线中得: x A 29t 2−y A 216t 2=1,∴x A2=9y A 216+9t 2⋯①,∵OA →•OP →=60,∴|OA →|•|OP →|=|t|⋅|OP →|2=|t|⋅(x P 2+y P 2)=|t |•(x A 2t 2+y A 2t2)=60…②,由①②得60=|t |•(9y A 216t 2+y A 2t 2+9)=|t |•(25y A 216t 2+9)=25y A 216|t|+9|t|≥152|y A |,∴|y A |≤8,∴|OB →⋅OA →|=|y A |≤8. 则|OB →⋅OA →|的最大值为8. 故答案为:8. 8.(2020•杨浦区一模)椭圆x 29+y 24=1的焦点为F 1,F 2,P 为椭圆上一点,若|PF 1|=5,则cos ∠F 1PF 2= .【分析】利用椭圆的定义,结合余弦定理转化求解即可. 【解答】解:椭圆x 29+y 24=1的焦点为F 1,F 2,P 为椭圆上一点,若|PF 1|=5,可得|PF 2|=6﹣5=1,|F 2F 1|=2c =2√5,由余弦定理可得:cos θ=|PF 1|2+|PF 2|2−|F 1F 2|22|PF 1||PF 2|=25+1−202×5×1=35. 故答案为:35.9.(2020•松江区一模)已知椭圆x 29+y 24=1的左、右焦点分别为F 1、F 2,若椭圆上的点P 满足|PF 1|=2|PF 2|,则|PF 1|= .【分析】利用椭圆的定义,结合已知条件转化求解即可. 【解答】解:椭圆x 29+y 24=1的左、右焦点分别为F 1、F 2,椭圆上的点P 满足|PF 1|=2|PF 2|,因为|PF 1|+|PF 2|=2a =6,所以|PF 1|=4. 故答案为:4.10.(2020•奉贤区一模)平面内任意一点P 到两定点F 1(−√3,0)、F 2(√3,0)的距离之和为4. (1)若点P 是第二象限内的一点且满足PF 1→⋅PF 2→=0,求点P 的坐标;(2)设平面内有关于原点对称的两定点M 1、M 2,判别PM 1→⋅PM 2→是否有最大值和最小值,请说明理由? 【分析】由题意知曲线是焦点为F 1(−√3,0)与F 2(√3,0)、长轴长为4的椭圆,由此能求出曲线C 的方程.(1)结合数量积为0以及椭圆方程的运用即可求出点的坐标; (2)设出两点的坐标,结合椭圆中变量的取值范围即可求解.【解答】解:∵曲线C 上任意一点P 到两定点F 1(−√3,0)与F 2(√3,0)的距离之和为4, ∴曲线是焦点为F 1(−√3,0)与F 2(√3,0)、长轴长为4的椭圆, 设椭圆的方程:x 2a 2+y 2b 2=1(a >b >0),由2a =4,a =2,c =√3, b 2=a 2﹣c 2=1, ∴椭圆的标准方程:x 24+y 2=1;(1)设p (x ,y ),则PF 1→=(x +√3,y ),PF 2→=(x −√3,y )⇒PF 1→•PF 2→=x 2+y 2﹣3; ∵PF 1→⋅PF 2→=0, ∴x 2+y 2﹣3=0联立x 24+y 2=1⇒x 2=83,y 2=13;∵点P 是第二象限内的一点; ∴x =−2√63,y =√33, 所以点P (−2√63,√33);(2)设M 1(m ,n ),则M 2(﹣m ,﹣n );∴PM 1→⋅PM 2→=(m ﹣x ,n ﹣y )•(﹣m ﹣x ,﹣n ﹣y )=x 2+y 2﹣(m 2+n 2) ①; ∵x 24+y 2=1 ②;②代入①∴PM 1→⋅PM 2→=1+34x 2﹣(m 2+n 2); 又因为﹣2≤x ≤2;∴当x =±2时,PM 1→⋅PM 2→最大值4﹣(m 2+n 2), 当x =0时PM 1→⋅PM 2→是最小值1﹣(m 2+n 2).。
圆锥曲线中的“设而不求”考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.、解题秘籍(一)“设而不求”的实质及注意事项1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.1(2023届山西省临汾市等联考高三上学期期中)已知椭圆C :x 2a2+y 2b 2=1a >b >0 的长轴长为4,F 1,F 2为C 的左、右焦点,点P x 0,y 0 y 0≠0 在C 上运动,且cos ∠F 1PF 2的最小值为12.连接PF 1,PF 2并延长分别交椭圆C 于M ,N 两点.(1)求C 的方程;(2)证明:S △OPF 1S △OMF1+S△OPN S △OF 2N 为定值.2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)2(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.(二)设点的坐标在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.3(2023届湖南省郴州市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的离心率为22,过坐标原点O 的直线交椭圆E 于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,△PAC 的面积为2.(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:∠APB 是否为定值,若是,求出这个定值;若不是,说明理由.4(2023届江苏省南通市如皋市高三上学期期中)作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△PAB 的内切圆的圆心在一条定直线上.(三)设参数在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.5(2022届湖南省益阳市高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1,F 2,其离心率为32,P 为椭圆C 上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆C 的方程;(2)过右焦点F 2的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA ⋅QB为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.(四)中点弦问题中的设而不求与中点弦有个的问题一般是设出弦端点坐标P x 1,y1,Q x2,y2代入圆锥曲线方程作差,得到关于y1-y2x1-x2,x1+x2,y1+y2的关系式,再结合题中条件求解.6中心在原点的双曲线E焦点在x轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A2,3;②该曲线的渐近线与圆x2-8x+y2+4=0相切;③点P在该双曲线上,F1、F2为该双曲线的焦点,当点P的纵坐标为32时,恰好PF1⊥PF2.(1)求双曲线E的标准方程;(2)过定点Q1,1能否作直线l,使l与此双曲线相交于Q1、Q2两点,且Q是弦Q1Q2的中点?若存在,求出l的方程;若不存在,说明理由.三、跟踪检测1(2023届河南省洛平许济高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,离心率为12,上顶点为0,3 .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,与y 轴交于点M ,若MP =λPF ,MQ =μQF,判断λ+μ是否为定值?并说明理由.2(2023届江西省南昌市金太阳高三上学期10月联考)如图,长轴长为4的椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 与y 轴分别交于M ,N 两点,当直线PQ 的斜率为22时,PQ =23.(1)求椭圆C 的方程.(2)试问是否存在定点T ,使得∠MTN =90°恒成立?若存在,求出定点T 的坐标;若不存在,说明理由.3(2023届黑龙江省大庆铁人中学高三上学期月考)已知椭圆C:x2a2+y2b2=1a>b>0的离心率为12,椭圆的短轴端点与双曲线y22-x2=1的焦点重合,过点P4,0且不垂直于x轴的直线l与椭圆相交于A,B两点.(1)求椭圆C的方程;(2)若点B关于x轴的对称点为点E,证明:直线AE与x轴交于定点.4(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C:x2a2-y2b2=1经过点2,-3,两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程.(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M m,0,使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.5(2023届内蒙古自治区赤峰市高三上学期月考)平面内一动点P到定直线x=4的距离,是它与定点F1,0的距离的两倍.(1)求点P的轨迹方程C;(2)过F点作两条互相垂直的直线l1,l2(直线l1不与x轴垂直).其中,直线l1交曲线C于A,B两点,直线l2交曲线C于E,N两点,直线l2与直线x=m m>2交于点M,若直线MB,MF,MA的斜率k MB,k MF,k MA构成等差数列,求m的值.6(2023届福建省福州华侨中学高三上学期考试)在平面直角坐标系xOy中,已知点F(2,0),直线l:x=12,点M到l的距离为d,若点M满足|MF|=2d,记M的轨迹为C.(1)求C的方程;(2)过点F(2,0)且斜率不为0的直线与C交于P,Q两点,设A(-1,0),证明:以P,Q为直径的圆经过点A.7(2023届河南省安阳市高三上学期10月月考)已知椭圆M1:x2a2+y2b2=1a>b>0的左、右焦点分别为F1,F2,F1F2=2,面积为487的正方形ABCD的顶点都在M1上.(1)求M1的方程;(2)已知P为椭圆M2:x22a2+y22b2=1上一点,过点P作M1的两条切线l1和l2,若l1,l2的斜率分别为k1,k2,求证:k1k2为定值.8(2023届浙江省浙里卷天下高三上学期10月测试)已知F1,F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1(-1,0)且与x轴不重合的直线与椭圆C交于A,B两点,△ABF2的周长为8.(1)若△ABF2的面积为1227,求直线AB的方程;(2)过A,B两点分别作直线x=-4的垂线,垂足分别是E,F,证明:直线EB与AF交于定点.9(2023届江苏省南京市六校高三上学期10月联考)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点P 2,33(1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为k 1,k 2的两直线l 1与l 2,直线l 1交双曲线Γ于A ,B 两点,直线l 2交双曲线Γ于C ,D 两点,设M ,N 分别为AB 与CD 的中点,若k 1⋅k 2=-1,试求△OMN 与△FMN 的面积之比.10(2022届北京市海淀区高三上学期期末)已知点A 0,-1 在椭圆C :x 23+y 2b 2=1上.(1)求椭圆C 的方程和离心率;(2)设直线l :y =k x -1 (其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N .当△AMN 的面积为33时,求k 的值.11(2022届天津市第二中学高三上学期12月月考)已知椭圆x2a2+y2b2=1a>b>0的长轴长是4,且过点B0,1.(1)求椭圆的标准方程;(2)直线l:y=k x+2交椭圆于P,Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.12(2022届广东省华南师范大学附属中学高三上学期1月模拟)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为12,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得弦的长度为42.(1)求椭圆C1和抛物线C2的方程.(2)过点A(-4,0)的直线l与椭圆C1交于M,N两点,点M关于x轴的对称点为E.当直线l绕点A旋转时,直线EN是否经过一定点?请判断并证明你的结论.13(2022届河北省高三上学期省级联测)已知椭圆P焦点分别是F1(0,-3)和F2(0,3),直线y= 3与椭圆P相交所得的弦长为1.(1)求椭圆P的标准方程;(2)将椭圆P绕原点逆时针旋转90°得到椭圆Q,在椭圆Q上存在A,B,C三点,且坐标原点为△ABC的重心,求△ABC的面积.14(2022届广东省佛山市高三上学期期末)已知双曲线C的渐近线方程为y=±33x,且过点P(3,2).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ与C交于另一点D,求证:直线AD过定点.15(2022届江苏省盐城市、南京市高三上学期1月模拟)设双曲线C:x2a2-y2b2=1(a,b>0)的右顶点为A,虚轴长为2,两准线间的距离为26 3.(1)求双曲线C的方程;(2)设动直线l与双曲线C交于P,Q两点,已知AP⊥AQ,设点A到动直线l的距离为d,求d的最大值.16(2022届浙江省普通高中强基联盟高三上学期统测)如图,已知椭圆C1:x24+y23=1,椭圆C2:y29+x24=1,A-2,0、B2,0.P为椭圆C2上动点且在第一象限,直线PA、PB分别交椭圆C1于E、F两点,连接EF交x轴于Q点.过B点作BH交椭圆C1于G,且BH⎳PA.(1)证明:k BF⋅k BG为定值;(2)证明直线GF过定点,并求出该定点;(3)若记P、Q两点的横坐标分别为x P、x Q,证明:x P x Q为定值.17(2022届湖北省新高考联考协作体高三上学期12月联考)已知圆O :x 2+y 2=2,椭圆C :x 2a 2+y 2b2=1a >b >2 的离心率为22,P 是C 上的一点,A 是圆O 上的一点,PA 的最大值为6+2.(1)求椭圆C 的方程;(2)点M 是C 上异于P 的一点,PM 与圆O 相切于点N ,证明:PO 2=PM ⋅PN .18已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为8,离心率e =54.(1)求双曲线C 的方程;(2)直线l 与双曲线C 相交于P ,Q 两点,弦PQ 的中点坐标为A 8,3 ,求直线l 的方程.圆锥曲线中的“设而不求”考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.、解题秘籍(一)“设而不求”的实质及注意事项1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.1(2023届山西省临汾市等联考高三上学期期中)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的长轴长为4,F 1,F 2为C 的左、右焦点,点P x 0,y 0 y 0≠0 在C 上运动,且cos ∠F 1PF 2的最小值为12.连接PF 1,PF 2并延长分别交椭圆C 于M ,N 两点.(1)求C 的方程;(2)证明:S △OPF 1S △OMF 1+S △OPN S △OF 2N为定值.【解析】(1)由题意得a =2,设PF 1 ,PF 2 的长分别为m ,n ,m +n =2a =4则cos ∠F 1PF 2=m 2+n 2-4c 22mn =m +n 2-4c 2-2mn 2mn =2b 2mn-1≥2b 2m +n 22-1=2b 2a2-1,当且仅当m=n 时取等号,从而2b 2a 2-1=12,得b 2a 2=34,∴b 2=3,则椭圆的标准方程为x 24+y 23=1;(2)由(1)得F 1-1,0 ,F 21,0 ,设M x 1,y 1 ,N x 2,y 2 ,设直线PM 的方程为x =x 0+1y 0y -1,直线PN 的方程为x =x 0-1y 0y +1,由x =x 0+1y 0y -1x 24+y 23=1,得3x 0+1 2y 02+4 y 2-6x 0+1 y 0y -9=0,则y 0y 1=-93x 0+1 2y 02+4=-9y 023x 0+1 2+4y 02=-9y 023x 02+4y 02+6x 0+3=-3y 022x 0+5,∴y 1=-3y 02x 0+5,同理可得y 2=-3y 05-2x 0,所以S △OPF 1S △OMF 1+S △OPN S △OF 2N =12OF 1 y 0 12OF 1 y 1 +12OF 2y 0 +y 2 12OF 2 y 2 =-y 0y 1+y 0y 2+1=-y 0-3y 02x 0+5+y 0-3y 05-2x 0+1=133.所以S △OPF 1S △OMF 1+S △OPN S △OF 2N 为定值133.2(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.【解析】(1)∵椭圆的焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆的方程为y 22+x 2=1,当直线l 与x 轴垂直时与题意不符,设直线l 的方程为y =kx +1,C x 1,y 1 ,D x 2,y 2 ,将直线l 的方程代入椭圆的方程化简得k 2+2 x 2+2kx -1=0,则x 1+x 2=-2k k 2+2,x 1⋅x 2=-1k 2+2,∴CD =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅-2k k 2+22+4⋅1k 2+2=22(k 2+1)k 2+2=322,解得k =±2.∴直线l 的方程为y =±2x +1;(2)当l ⊥x 轴时,AC ⎳BD ,不符合题意,当l 与x 轴不垂直时,设l :y =kx +t ,则P -tk ,0 ,设C x 1,y 1 ,D x 2,y 2 ,联立方程组y =kx +tx 2+y 22=1 得2+k 2 x 2+2ktx +t 2-2=0,∴x 1+x 2=-2kt 2+k 2,x 1x 2=t 2-22+k 2,又直线AD :y =y 2x 2+1(x +1),直线BC :y =y 1x 1-1(x -1),由y =y2x 2+1(x +1)y =y 1x 1-1(x -1) 可得y 2x 2+1(x +1)=y 1x 1-1(x -1),即kx 2+t x 2+1(x +1)=kx 1+t x 1-1(x -1),kx 2+t x 1-1 (x +1)=kx 1+t x 2+1 (x -1),kx 1x 2-kx 2+tx 1-t x +1 =kx 1x 2+kx 1+tx 2+t x -1 ,k x 1+x 2 +t x 2-x 1 +2t x =2kx 1x 2-k x 2-x 1 +t x 1+x 2 ,k ⋅-2kt 2+k 2+t x 2-x 1 +2t x =2k ⋅t 2-22+k 2-k x 2-x 1 +t ⋅-2kt 2+k 2,4t 2+k 2+t x 2-x 1 x =-4k 2+k 2-k x 2-x 1 ,即t 42+k 2+x 2-x 1 x =-k 42+k 2+x 2-x 1 ,得x =-k t,∴Q 点坐标为Q -kt,y Q ,∴OP ⋅OQ =-t k ,0 ⋅-k t ,y Q =-t k-kt +0⋅y Q =1,所以OP ⋅OQ=1为定值.(二)设点的坐标在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.3(2023届湖南省郴州市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的离心率为22,过坐标原点O 的直线交椭圆E 于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,△PAC 的面积为2.(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:∠APB 是否为定值,若是,求出这个定值;若不是,说明理由.【解析】(1)∵椭圆离心率e =c a =22,∴c 2=12a 2,则b 2=a 2-c 2=12a 2,当C 为椭圆右焦点时,PC =b 2a =12a ;∵S △PAC =2S △POC =2×12c ⋅12a =12ac =24a 2=2,解得:a 2=4,∴b 2=2,∴椭圆E 的方程为:x 24+y 22=1.(2)由题意可设直线AP :y =kx k >0 ,P x 0,kx 0 ,B x 1,y 1 ,则A -x 0,-kx 0 ,C x 0,0 ,∴k AC =kx 0x 0+x0=k2,∴直线AC :y =k2x -x 0 ;由y =k 2x -x 0x24+y22=1得:k 2+2 x 2-2k 2x 0x +k 2x 20-8=0,∴-x 0+x 1=2k 2x 0k 2+2,则x 1=2k 2x 0k 2+2+x 0,∴y 1=k 2x 1-x 0 =k 22k 2x 0k 2+2+x 0-x 0=k 3x 0k 2+2,∴B 2k 2x 0k 2+2+x 0,k 3x 0k 2+2;∴PB =2k 2x 0k 2+2,-2kx 0k 2+2,又PA =-2x 0,-2kx 0 ,∴PA ⋅PB =-2x 0⋅2k 2x 0k 2+2+-2kx 0 ⋅-2kx 0k 2+2=0,则PA ⊥PB ,∴∠APB 为定值90°.4(2023届江苏省南通市如皋市高三上学期期中)作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△PAB 的内切圆的圆心在一条定直线上.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,AB 中点坐标为x 0,y 0 ,AB :y =32x +m 所以有x 0=x 1+x 22y 0=y 1+y 22,联立x 24+y 29=1y =32x +m,得9x 2+6mx +2m 2-18=0,得Δ=6m 2-4×92m 2-18 >0,得m 2<18,由韦达定理可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以y 1+y 2=32x 1+m +32x 2+m =32x 1+x 2 +2m =m ,所以x 0=-m 3y 0=m 2,化简得:y 0=-32x 0,所以线段AB 的中点在直线y =-32x 上.(2)由题可知PA ,PB 的斜率分别为k PA =y 1-322x 1-2,k PB =y 2-322x 2-2,所以k PA +k PB =y 1-322x 1-2+y 2-322x 2-2=y 1-322 x 2-2 +y 2-322 x 1-2x 1x 2-2x 1+x 1 +2,因为y 1=32x 1+m ,y 2=32x 2+m 得k PA +k PB =3x 1x 2+m -32 x 1+x 1 -22m +6x 1x 2-2x 1+x 1 +2由(1)可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以k PA +k PB =32m 2-189 +m -32 -23m -22m +62m 2-189-2-23m+2=0,又因为P 2,322在直线l 的左上方,所以∠APB 的角平分线与y 轴平行,所以△PAB 的内切圆的圆心在x =2这条直线上.(三)设参数在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.5(2022届湖南省益阳市高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1,F 2,其离心率为32,P 为椭圆C 上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆C 的方程;(2)过右焦点F 2的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA ⋅QB为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.【解析】(1)设椭圆C 的半焦距为c ,因离心率为32,则c a =32,由椭圆性质知,椭圆短轴的端点到直线F 1F 2的距离最大,则有S △F 1PF 2max =12⋅2c ⋅b =bc ,于是得bc =3,又a 2=b 2+c 2,联立解得a =2,b =1,c =3,所以椭圆C 的方程为:x 24+y 2=1.(2)由(1)知,点F 23,0 ,当直线斜率存在时,不妨设l :y =k (x -3),A x 1,y 1 ,B x 2,y 2 ,由y =k (x -3)x 2+4y 2=4消去y 并整理得,(1+4k 2)x 2-83k 2x +12k 2-4=0,x 1+x 2=83k 21+4k 2,x 1x 2=12k 2-41+4k2,假定在x 轴上存在定点Q 满足条件,设点Q (t ,0),则QA ⋅QB=(x 1-t )(x 2-t )+y 1y 2=x 1x 2-t (x 1+x 2)+t 2+k 2(x 1-3)(x 2-3)=(1+k 2)x 1x 2-(3k 2+t )(x 1+x 2)+t 2+3k 2=(1+k 2)⋅12k 2-41+4k 2-(3k 2+t )⋅83k 21+4k 2+t 2+3k2=(4t 2-83t +11)k 2+t 2-41+4k 2,当t 2-4=4t 2-83t +114,即t =938时,QA ⋅QB =t 2-4=-1364,当直线l 斜率不存在时,直线l :x =-3与椭圆C 交于点A ,B ,由对称性不妨令A 3,12 ,B 3,-12,当点Q 坐标为938,0时,QA =-38,12 ,QB =-38,-12 ,QA ⋅QB =-38,12⋅-38,-12 =-1364,所以存在定点Q 938,0,使得QA ⋅QB 为定值-1364.(四)中点弦问题中的设而不求与中点弦有个的问题一般是设出弦端点坐标P x 1,y 1 ,Q x 2,y 2 代入圆锥曲线方程作差,得到关于y 1-y 2x 1-x 2,x 1+x 2,y 1+y 2的关系式,再结合题中条件求解.6中心在原点的双曲线E 焦点在x 轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A 2,3 ;②该曲线的渐近线与圆x 2-8x +y 2+4=0相切;③点P 在该双曲线上,F 1、F 2为该双曲线的焦点,当点P 的纵坐标为32时,恰好PF 1⊥PF 2.(1)求双曲线E 的标准方程;(2)过定点Q 1,1 能否作直线l ,使l 与此双曲线相交于Q 1、Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出l 的方程;若不存在,说明理由.【解析】(1)设双曲线E 的标准方程为x 2a 2-y 2b 2=1a >b >0 .选①:由题意可知,双曲线E 的两个焦点分别为F 1-2,0 、F 22,0 ,由双曲线的定义可得2a =AF 1 -AF 2 =42+32-3 =2,则a =1,故b =c 2-a 2=3,所以,双曲线E 的标准方程为x 2-y 23=1.选②:圆x 2-8x +y 2+4=0的标准方程为x -4 2+y 2=12,圆心为4,0 ,半径为23,双曲线E 的渐近线方程为y =±bax ,由题意可得4b a 1+b a2=23,解得ba=3,即b =3a ,因为c =a 2+b 2=2a =2,则a =1,b =3,因此,双曲线E 的标准方程为x 2-y 23=1.选③:由勾股定理可得PF 1 2+PF 2 2=4c 2=16=PF 1 -PF 2 2+2PF 1 ⋅PF 2 =4a 2+2PF 1 ⋅PF 2 ,所以,PF 1 ⋅PF 2 =2c 2-a 2 =2b 2,则S △F 1PF 2=12PF 1 ⋅PF 2 =b 2=12×32×4,则b =3,故a =c 2-b 2=1,所以,双曲线E 的标准方程为x 2-y 23=1.(2)假设满足条件的直线l 存在,设点Q 1x 1,y 1 、Q 2x 2,y 2 ,则x 1+x 2=2y 1+y 2=2,由题意可得x 21-y 213=1x 22-y 223=1,两式作差得x 1-x 2 x 1+x 2 =y 1-y 2 y 1+y 23,所以,直线l 的斜率为k =y 1-y 2x 1-x 2=3,所以,直线l 的方程为y -1=3x -1 ,即y =3x -2.联立y =3x -2x 2-y 23=1 ,整理可得6x 2-12x +7=0,Δ=122-4×6×7<0,因此,直线l 不存在.三、跟踪检测1(2023届河南省洛平许济高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,离心率为12,上顶点为0,3 .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,与y 轴交于点M ,若MP =λPF ,MQ =μQF,判断λ+μ是否为定值?并说明理由.【解析】(1)由题意可得b =3e =c a =12a 2=b 2+c 2,解得a =2b =3c =1,故椭圆C 的方程x 24+y 23=1.(2)λ+μ为定值-83,理由如下:由(1)可得F 1,0 ,由题意可知直线l 的斜率存在,设直线l :y =k x -1 ,P x 1,y 1 ,Q x 2,y 2 ,则M 0,-k ,联立方程y =k x -1x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2x +4k 2-12=0,则Δ=-8k 2 2-44k 2+3 4k 2-12 =144k 2+1 >0,x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,MP =x 1,y 1+k ,PF =1-x 1,-y 1 ,MQ =x 2,y 2+k ,QF=1-x 2,-y 2 ,∵MP =λPF ,MQ =μQF ,则x 1=λ1-x 1 x 2=μ1-x 2 ,可得λ=x11-x 1μ=x 21-x2,λ+μ=x 11-x 1+x 21-x 2=x 1+x 2 -2x 1x 21-x 1+x 2 +x 1x 2=8k 24k 2+3-24k 2-12 4k 2+31-8k 24k 2+3+4k 2-124k 2+3=-83(定值).2(2023届江西省南昌市金太阳高三上学期10月联考)如图,长轴长为4的椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 与y 轴分别交于M ,N 两点,当直线PQ 的斜率为22时,PQ =23.(1)求椭圆C 的方程.(2)试问是否存在定点T ,使得∠MTN =90°恒成立?若存在,求出定点T 的坐标;若不存在,说明理由.【解析】(1)由题意可知2a =4,a =2,则椭圆方程C :x 2a 2+y 2b 2=1a >b >0 即x 24+y 2b 2=1,当直线PQ 的斜率为22时,PQ =23,故设P x 0,22x 0 ,∴x 20+22x 0 2=3,解得x 20=2,将P x 0,22x 0 代入x 24+y 2b 2=1得x 024+x 022b 2=1,即24+22b2=1,故b 2=2,所以椭圆的标准方程为x 24+y 22=1;(2)设P (x 0,y 0),x 0∈[-2,2],则Q (-x 0,-y 0),则x 204+y 202=1,∴x 20+2y 20=4,由椭圆方程x 24+y 22=1可得A (-2,0),∴直线PA 方程为︰y =y 0x 0+2(x +2),令x =0可得M 0,2y 0x 0+2,直线QA 方程为:y =y 0x 0-2(x +2),令x =0得N 0,2y 0x 0-2,假设存在定点T ,使得∠MTN =90°,则定点T 必在以MN 为直径的圆上,以MN 为直径的圆为x 2+y -2x 0y 0x 02-42=16y 02x 20-42,即x 2+y 2-4x 0y 0x 20-4y +4y 20x 20-4=0,∵x 20+2y 20=4,即x 20-4=-2y 20,∴x 2+y 2+2x 0y 0y -2=0,令y =0,则x 2-2=0,解得x =±2,∴以MN 为直径的圆过定点(±2,0),即存在定点T (±2,0),使得∠MTN =90°.3(2023届黑龙江省大庆铁人中学高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的离心率为12,椭圆的短轴端点与双曲线y 22-x 2=1的焦点重合,过点P 4,0 且不垂直于x 轴的直线l 与椭圆相交于A ,B 两点.(1)求椭圆C 的方程;(2)若点B 关于x 轴的对称点为点E ,证明:直线AE 与x 轴交于定点.【解析】(1)由双曲线y 22-x 2=1得焦点0,±3 ,得b =3,由题意可得b =3a 2=b 2+c 2e =c a =12 ,解得a =2,c =1,故椭圆C 的方程为;x 24+y 23=1.(2)设直线l :y =k x -4 ,点A x 1,y 1 ,B x 2,y 2 ,则点E x 2,-y 2 .由y =k x -4x 24+y 23=1,得4k 2+3 x 2-32k 2x +64k 2-12=0,Δ=32k 2 2-44k 2+3 64k 2-12 >0,解得-12<k <12,从而x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3,直线AE 的方程为y -y 1=y 1+y 2x 1-x 2x -x 1 ,令y =0得x =x 1y 2+x 2y 1y 1+y 2,又∵y 1=k x 1-4 ,y 2=k x 2-4 ,则x =kx 1x 2-4 +kx 2x 1-4 k x 1-4 +k x 2-4 =2x 1x 2-4x 1+x 2x 1+x 2-8,即x =2⋅64k 2-124k 2+3-4⋅32k 24k 2+332k 24k 2+3-8=1,故直线AE 与x 轴交于定点1,0 .4(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C :x 2a 2-y 2b 2=1经过点2,-3 ,两条渐近线的夹角为60°,直线l 交双曲线于A ,B 两点.(1)求双曲线C 的方程.(2)若动直线l 经过双曲线的右焦点F 2,是否存在x 轴上的定点M m ,0 ,使得以线段AB 为直径的圆恒过M 点?若存在,求实数m 的值;若不存在,请说明理由.【解析】(1)∵两条渐近线的夹角为60°,∴渐近线的斜率±b a =±3或±33,即b =3a 或b =33a ;当b =3a 时,由4a 2-9b 2=1得:a 2=1,b 2=3,∴双曲线C 的方程为:x 2-y 23=1;当b =33a 时,方程4a 2-9b2=1无解;综上所述:∴双曲线C 的方程为:x 2-y 23=1.(2)由题意得:F 22,0 ,假设存在定点M m ,0 满足题意,则MA ⋅MB =0恒成立;方法一:①当直线l 斜率存在时,设l :y =k x -2 ,A x 1,y 1 ,B x 2,y 2 ,由y =k x -2x 2-y 23=1得:3-k 2x 2+4k 2x -4k 2+3 =0,∴3-k 2≠0Δ=361+k 2 >0 ,∴x 1+x 2=4k 2k 2-3,x 1x 2=4k 2+3k 2-3,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+k 2x 1x 2-2x 1+x 2 +4 =1+k 2 x 1x 2-2k 2+m x 1+x 2 +4k 2=4k 2+3 1+k 2k 2-3-4k 22k 2+mk 2-3+m 2+4k 2=0,∴4k 2+3 1+k 2 -4k 22k 2+m +m 2+4k 2 k 2-3 =0,整理可得:k 2m 2-4m -5 +3-3m 2 =0,由m 2-4m -5=03-3m 2=0得:m =-1;∴当m =-1时,MA ⋅MB=0恒成立;②当直线l 斜率不存在时,l :x =2,则A 2,3 ,B 2,-3 ,当M -1,0 时,MA =3,3 ,MB =3,-3 ,∴MA ⋅MB=0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.方法二:①当直线l 斜率为0时,l :y =0,则A -1,0 ,B 1,0 ,∵M m ,0 ,∴MA =-1-m ,0 ,MB=1-m ,0 ,∴MA ⋅MB=m 2-1=0,解得:m =±1;②当直线l 斜率不为0时,设l :x =ty +2,A x 1,y 1 ,B x 2,y 2 ,由x =ty +2x 2-y 23=1得:3t 2-1 y 2+12ty +9=0,∴3t 2-1≠0Δ=123t 2+3 >0 ,∴y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+y 1y 2=ty 1+2 ty 2+2 -m ty 1+2+ty 2+2+m 2+y 1y 2=t 2+1 y 1y 2+2t -mt y 1+y 2 +4-4m +m 2=9t 2+1 3t 2-1-12t 2t -mt 3t 2-1+4-4m +m 2=12m -15 t2+93t 2-1+2-m 2=0;当12m -153=9-1,即m =-1时,MA ⋅MB =0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.5(2023届内蒙古自治区赤峰市高三上学期月考)平面内一动点P 到定直线x =4的距离,是它与定点F 1,0 的距离的两倍.(1)求点P 的轨迹方程C ;(2)过F 点作两条互相垂直的直线l 1,l 2(直线l 1不与x 轴垂直).其中,直线l 1交曲线C 于A ,B 两点,直线l 2交曲线C 于E ,N 两点,直线l 2与直线x =m m >2 交于点M ,若直线MB ,MF ,MA 的斜率k MB ,k MF ,k MA 构成等差数列,求m 的值.【解析】(1)设点P x ,y ,由题,有PFx -4 =12,即x -1 2+y 2x -4=12,解得3x 2+4y 2=12,所以所求P 点轨迹方程为x 24+y 23=1(2)由题,直线l 1的斜率存在且不为0,设直线l 1的方程为y =k x -1 ,与曲线C 联立方程组得y =k x -1x 24+y 23=1,解得4k 2+3 x 2-8k 2x +4k 2-12=0,设A x 1,y 1 ,B x 2,y 2 ,则有x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3依题意有直线l 2的斜率为-1k ,则直线l 2的方程为y =-1k x -1 ,令x =m ,则有M 点的坐标为m ,-m -1k,由题,k MF =m -1k 1-m =-1k ,k MA +k MB =y 1+m -1kx 1-m+y 2+m -1kx 2-m=y 1x 1-m +y 2x 2-m +1k m -1x 1-m+m -1x 2-m=k x 1-1 x 1-m +k x 2-1 x 2-m +1k m -1x 1-m+m -1x 2-m=k ×2x 1x 2-1+m x 1+x 2 +2m x 1x 2-x 1+x 2 m +m 2+1k ×m -1 x 1+x 2-2m x 1x 2-x 1+x 2 m +m 2=k ×6m -244k 2+34k 2-124k 2+3-m ×8k 24k 2+3+m2+1k×m -18k 24k 2+3-2m4k 2-124k 2+3-m ×8k 24k 2+3+m 2,因为2k MF =k MA +k MB ,所以k ×6m -244k 2+34k 2-124k 2+3-m ×8k 24k 2+3+m 2+1k×m -18k 24k 2+3-2m4k 2-124k 2+3-m ×8k 24k 2+3+m 2=-2k解得m -4 k 2+1 =0,则必有m -4=0,所以m =4.6(2023届福建省福州华侨中学高三上学期考试)在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =12,点M 到l 的距离为d ,若点M 满足|MF |=2d ,记M 的轨迹为C .(1)求C 的方程;(2)过点F (2,0)且斜率不为0的直线与C 交于P ,Q 两点,设A (-1,0),证明:以P ,Q 为直径的圆经过点A .【解析】(1)设点M x ,y ,则d =x -12,MF =(x -2)2+y 2,由MF =2d ,得(x -2)2+y 2=2x -12,两边平方整理得3x 2-y 2=3,则所求曲线C 的方程为x 2-y 23=1.(2)设直线m 的方程为x =ty +2,P x 1,y 1 ,Q x 2,y 2 ,联立方程x =ty +2,3x 2-y 2=3,消去x 并整理得3t 2-1 y 2+12ty +9=0,,因为直线m 与C 交于两点,故t ≠±33,此时Δ=(12t )2-43t 2-1 ⋅9=36t 2+1 >0,所以y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,而x 1+x 2=t y 1+y 2 +4,x 1x 2=ty 1+2 ty 2+2 =t 2y 1y 2+2t y 1+y 2 +4.又AP =x 1+1,y 1 ,AQ=x 2+1,y 2 ,所以AP ⋅AQ=x 1+1 x 2+1 +y 1y 2=y 1y 2+x 1+x 2+x 1x 2+1=t 2+1 y 1y 2+3t y 1+y 2 +9=9t 2+93t 2-1-36t 23t 2-1+9=9-3t 2+1 3t 2-1+9=0.所以AP ⊥AQ ,即以P ,Q 为直径的圆经过点A .7(2023届河南省安阳市高三上学期10月月考)已知椭圆M 1:x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,F 1F 2 =2,面积为487的正方形ABCD 的顶点都在M 1上.(1)求M 1的方程;(2)已知P 为椭圆M 2:x 22a 2+y 22b 2=1上一点,过点P 作M 1的两条切线l 1和l 2,若l 1,l 2的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)根据对称性,不妨设正方形的一个顶点为A x ,x ,由x 2a 2+x 2b 2=1,得x 2=a 2b 2a 2+b 2,所以2a 2b 2a 2+b 2×2a 2b 2a 2+b2=487,整理得12a 2+b 2 =7a 2b 2.①又a 2-b 2=F 1F 222=1,②由①②解得a 2=4,b 2=3,故所求椭圆方程为x 24+y 23=1.(2)由已知及(1)可得M 2:x 28+y 26=1,设点P x 0,y 0 ,则y 20=61-x 208.设过点P 与M 1相切的直线l 的方程为y -y 0=k x -x 0 ,与x 24+y 23=1联立消去y 整理可得4k 2+3 x 2+8k y 0-kx 0 x +4y 0-kx 0 2-3 =0,令Δ=8k y 0-kx 0 2-4×4k 2+3 ×4y 0-kx 0 2-3 =0,整理可得x 20-4 k 2-2kx 0y 0+y 20-3=0,③根据题意k 1和k 2为方程③的两个不等实根,所以k 1k 2=y 20-3x 20-4=61-x 28 -3x 20-4=-34x 20-4 x 20-4=-34,即k 1k 2为定值-34.8(2023届浙江省浙里卷天下高三上学期10月测试)已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1(-1,0)且与x 轴不重合的直线与椭圆C 交于A ,B 两点,△ABF 2的周长为8.(1)若△ABF 2的面积为1227,求直线AB 的方程;(2)过A ,B 两点分别作直线x =-4的垂线,垂足分别是E ,F ,证明:直线EB 与AF 交于定点.【解析】(1)因△ABF 2的周长为8,由椭圆定义得4a =8,即a =2,而半焦距c =1,又a 2=b 2+c 2,则b 2=3,椭圆C 的方程为x 24+y 23=1,依题意,设直线AB 的方程为x =my -1,由x =my -13x 2+4y 2=12消去x 并整理得3m 2+4 y 2-6my -9=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,|y 1-y 2|=(y 1+y 2)2-4y 1y 2=6m 3m 2+42+363m 2+4=12m 2+13m 2+4,因此S △F 2AB =12F 1F 2 ⋅y 1-y 2 =12×2×12m 2+13m 2+4=1227,解得m =±1,所以直线AB 的方程为x -y +1=0或x +y +1=0.(2)由(1)知A x 1,y 1 ,B x 2,y 2 ,则E -4,y 1 ,F -4,y 2 ,设直线EB 与AF 交点为M (x ,y ),则FA =(x 1+4,y 1-y 2),FM =(x +4,y -y 2),EB =(x 2+4,y 2-y 1),EM =(x +4,y -y 1),而FA ⎳FM ,EB ⎳EM ,则(x +4)(y 1-y 2)=(y -y 2)(x 1+4),(x +4)(y 2-y 1)=(y -y 1)(x 2+4),两式相加得:y (x 1+x 2+8)-y 2(my 1+3)-y 1(my 2+3)=0,而x 1+x 2+8>0,则y (x 1+x 2+8)=2my 1y 2+3(y 1+y 2)=2m ⋅-93m 2+4+3⋅6m3m 2+4=0,因此y =0,两式相减得:2(x +4)(y 1-y 2)=-y 2(x 1+4)+y 1(x 2+4)=-y 2(my 1+3)+y 1(my 2+3)=3(y 1-y 2),而y 1-y 2≠0,则x =-52,即M -52,0 ,所以直线EB 与AF 交于定点M -52,0 .9(2023届江苏省南京市六校高三上学期10月联考)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点P 2,33(1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为k 1,k 2的两直线l 1与l 2,直线l 1交双曲线Γ于A ,B 两点,直线l 2交双曲线Γ于C ,D 两点,设M ,N 分别为AB 与CD 的中点,若k 1⋅k 2=-1,试求△OMN 与△FMN 的面积之比.【解析】(1)由题意得2c =4,得c =2,所以a 2+b 2=4,因为点P 2,33在双曲线上,所以4a 2-13b 2=1,解得a 2=3,b 2=1,所以双曲线方程为x 23-y 2=1,(2)F (-2,0),设直线l 1方程为y =k 1(x +2),A (x 1,y 1),B (x 2,y 2),由y =k 1(x +2)x 23-y 2=1,得(1-3k 12)x 2-12k 12x -12k 12-3=0则x 1+x 2=12k 121-3k 12,x 1x 2=-12k 12-31-3k 12,所以x 1+x 22=6k 121-3k 12,所以AB 的中点M 6k 121-3k 12,2k 11-3k 12,因为k 1⋅k 2=-1,所以用-1k 1代换k 1,得N 6k 12-3,-2k 1k 12-3,当6k 121-3k 12=61-3k 12,即k 1=±1时,直线MN 的方程为x =-3,过点E (-3,0),当k 1≠±1时,k MN =2k 11-3k 12--2k 1k 12-36k121-3k 12-6k 12-3=-2k 13(k 12-1),直线MN 的方程为y -2k 11-3k 12=-2k 13(k 12-1)x -6k 121-3k 12,令y =0,得x =3(k 12-1)1-3k 12+6k 121-3k 12=-3,所以直线MN 也过定点E (-3,0),所以S △OMN S △FMN =12y N-y M OE 12y M-y N FE =OE FE =310(2022届北京市海淀区高三上学期期末)已知点A 0,-1 在椭圆C :x 23+y 2b 2=1上.(1)求椭圆C 的方程和离心率;(2)设直线l :y =k x -1 (其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N .当△AMN 的面积为33时,求k 的值.【解析】(1)将点A 0,-1 代入x 23+y 2b 2=1,解得b 2=1,所以椭圆C 的方程为x 23+y 2=1又c 2=a 2-b 2=3-1=2,离心率e =c 2a 2=23=63(2)联立y =k x -1x 23+y 2=1,整理得(1+3k 2)x 2-6k 2x +3k 2-3=0设点E ,F 的坐标分别为(x 1,y 1),(x 2,y 2)由韦达定理得:x 1+x 2=6k 21+3k 2,x 1x 2=3k 2-31+3k 2直线AE 的方程为y +1=y 1+1x 1x ,令x =3,得y =3y 1+3x 1-1,即M 3,3y 1+3x 1-1直线AF 的方程为y +1=y 2+1x 2x ,令x =3,得y =3y 2+3x 2-1,即N 3,3y 2+3x 2-1MN =3y 2+3x 2-1-3y 1+3x 1-1=3×x 1y 2-x 2y 1+x 1-x 2x 1x 2 =3×k -1 x 1-x2x 1x 2=3×k -1x 1+x 22-4x 1x 2x 1x 22=3×k -1 ×232k 2+1k 2-1 =23×2k 2+1k +1 所以△AMN 的面积S =12×MN ×3=32×MN =33×2k 2+1k +1 =33即2k 2+1k +1 =1⇒2k 2+1=k +1 ,解得k =0或k =2所以k 的值为0或211(2022届天津市第二中学高三上学期12月月考)已知椭圆x 2a 2+y 2b 2=1a >b >0 的长轴长是4,且过点B 0,1 .(1)求椭圆的标准方程;(2)直线l :y =k x +2 交椭圆于P ,Q 两点,若点B 始终在以PQ 为直径的圆内,求实数k 的取值范围.【解析】(1)由题意,得2a =4,b =1,所以椭圆的标准方程为x 24+y 2=1;(2)设P (x 1,y 1),Q (x 2,y 2),联立y =k (x +2)x 24+y 2=1,得x 2+4k 2(x +2)2-4=0,即(1+4k 2)x 2+16k 2x +16k 2-4=0,则x 1+x 2=-16k 21+4k 2,因为直线y =k x +2 恒过椭圆的左顶点(-2,0),所以x 1=-2,y 1=0,则x 2=-16k 21+4k 2+2=2-8k 21+4k 2,y 2=k (x 2+2)=4k1+4k 2,因为点B 始终在以PQ 为直径的圆内,所以π2<∠PBQ ≤π,即BP ·BQ <0,又BP =-2,-1 ,BQ=(x 2,y 2-1),则BP ·BQ=-2x 2-y 2+1<0,即4-16k 21+4k 2+4k 1+4k 2-1>0,即20k 2-4k -3<0,解得-310<k<12,所以实数k的取值范围为-310<k<12.12(2022届广东省华南师范大学附属中学高三上学期1月模拟)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为12,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得弦的长度为42.(1)求椭圆C1和抛物线C2的方程.(2)过点A(-4,0)的直线l与椭圆C1交于M,N两点,点M关于x轴的对称点为E.当直线l绕点A旋转时,直线EN是否经过一定点?请判断并证明你的结论.【解析】(1)设椭圆C1的半焦距为c.依题意,可得a=p2,则C2:y2=4ax,代入x=c,得y2=4ac,即y=±2ac,所以4ac=42,则有ac=2ca=12a2=b2+c2,所以a=2,b=3,所以椭圆C1的方程为x24+y23=1,抛物线C2的方程为y2=8x.(2)依题意,当直线l的斜率不为0时,设其方程为x=ty-4,由x=ty-43x2+4y2=12,得(3t2+4)y2-24ty+36=0.设M(x1,y1),N(x2,y2),则E(x1,-y1).由Δ>0,得t<-2或t>2,且y1+y2=24t3t2+4,y1y2=363t2+4.根据椭圆的对称性可知,若直线EN过定点,此定点必在x轴上,设此定点为Q(m,0).因为k NQ=k EQ,所以y2x2-m=-y1x1-m,(x1-m)y2+(x2-m)y1=0,即(ty1-4-m)y2+(ty2-4-m)y1=0,2ty1y2-(m+4)(y1+y2)=0,即2t·363t2+4-(m+4)·24t3t2+4=0,得(3-m-4)t=(-m-1)t=0,由t是大于2或小于-2的任意实数知m=-1,所以直线EN过定点Q(-1,0).当直线l的斜率为0时,直线EN的方程为y=0,也经过点Q(-1,0),所以当直线l绕点A旋转时,直线EN恒过一定点Q(-1,0).13(2022届河北省高三上学期省级联测)已知椭圆P焦点分别是F1(0,-3)和F2(0,3),直线y= 3与椭圆P相交所得的弦长为1.(1)求椭圆P的标准方程;(2)将椭圆P绕原点逆时针旋转90°得到椭圆Q,在椭圆Q上存在A,B,C三点,且坐标原点为△ABC的重心,求△ABC的面积.。
圆锥曲线中的定点问题思路引导处理圆锥曲线中定点问题的方法:(1)探索直线过定点时,可设出直线方程为,然后利用条件建立,k m 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.母题呈现考法1参数法求证定点【例1】(2022·临沂、枣庄二模联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,其左、右焦点分别为F 1,F 2,点P 为坐标平面内的一点,且|OP →|=32PF 1→·PF 2→=-34,O 为坐标原点.(1)求椭圆C 的方程;(2)设M 为椭圆C 的左顶点,A ,B 是椭圆C 上两个不同的点,直线MA ,MB 的倾斜角分别为α,β,且α+β=π2.证明:直线AB 恒过定点,并求出该定点的坐标.【解题指导】【解析】(1)设P 点坐标为(x 0,y 0),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0).由题意得x 20+y 20=94,x 0+cx 0-c+y 20=-34,解得c 2=3,∴c = 3.又e =c a =32,∴a =2.∴b 2=a 2-c 2=1.∴所求椭圆C 的方程为x 24+y 2=1.(2)设直线AB 方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).y 2=1,kx +m ,消去y 得(4k 2+1)x 2+8kmx +4m 2-4=0.∴x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.又由α+β=π2,∴tan α·tan β=1,设直线MA ,MB 斜率分别为k 1,k 2,则k 1k 2=1,∴y 1x 1+2·y 2x 2+2=1,即(x 1+2)(x 2+2)=y 1y 2.∴(x 1+2)(x 2+2)=(kx 1+m )(kx 2+m ),∴(k 2-1)x 1x 2+(km -2)(x 1+x 2)+m 2-4=0,∴(k 2-1)4m 2-44k 2+1+(km -2)28()41kmk -++m 2-4=0,化简得20k 2-16km +3m 2=0,解得m =2k ,或m =103k .当m =2k 时,y =kx +2k ,过定点(-2,0),不合题意(舍去).当m =103k 时,y =kx +103k 10,0)3-,∴直线AB 恒过定点10(,0)3-【例2】(2022·福建·漳州三模)已知抛物线2:4C y x =的准线为l ,M 为l 上一动点,过点M 作抛物线C 的切线,切点分别为,A B .(1)求证:MAB ∆是直角三角形;(2)x 轴上是否存在一定点P ,使,,A P B 三点共线.【解题指导】【解析】(1)由已知得直线l 的方程为1x =-,设()1,M m -,切线斜率为k ,则切线方程为()1y m k x -=+,(2分)将其与24y x =联立消x 得244()0ky y m k -++=.所以1616()0k m k ∆=-+=,化简得210k mk +-=,(4分)所以121k k =-,所以MA MB ⊥.即MAB ∆是直角三角形.(6分)(2)由(1)知1616()0k m k ∆=-+=时,方程244()0ky y m k -++=的根为2y k=设切点221212,,,44y y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则121222,y y k k ==.因为121k k =-,所以121244y y k k ==-.(10分)设:AB l x ny t =+,【点拨】由M 点出发向抛物线作量条切线,则切点A,B 所在直线与抛物线有两个焦点且其斜率不为零与24y x =联立消x 得2440y ny t --=,则124y y t =-,所以44t -=-,解得1t =,所以直线AB 过定点()1,0P .即x 轴上存在一定点()1,0P ,使,,A P B 三点共线.(12分)【解题技法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【跟踪训练】(2020·新课标Ⅰ卷理科)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -,(),0B a ,()0,1G ∴(),1AG a = ,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭.同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.考法2先求后证法求证定点【例4】(2022·全国乙T21)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()0,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解题指导】(1)将给定点代入设出的方程求解即可;(2)斜率不存在时探究定点→设出直线方程→与椭圆C 的方程联立→求HN 的方程→是否过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得26(1,)3M ,26(1,3N-,代入AB方程223y x=-,可得263,3T+,由MT TH=得到265,)3H.求得HN方程:(223y x=--,过点(0,2)-.②若过点(1,2)P-的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y--+=.联立22(2)0,134kx y kx y--+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k+-+++=,可得1221226(2)343(4)34k kx xkk kx xk+⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34ky ykk ky yk-+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x yk-+=+联立1,223y yy x=⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2yT y H y x y++-可求得此时1222112:()36y yHN y y x xy x x--=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y+-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k+++---+--=显然成立,综上,可得直线HN过定点(0,2).-【解题技法】(1)定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k=0或k不存在时.(2)以曲线上的点为参数,设点P(x1,y1),利用点在曲线f(x,y)=0上,即f(x1,y1)=0消参.【跟踪训练】模拟训练(2)方法一:设PQ 方程为x my =()2222234433x my m y my x y =-⎧⇒-+⎨-=⎩以PQ 为直径的圆的方程为(1x x -()(22121212x x x x x x y y y -+++-+由对称性知以PQ 为直径的圆必过()21212120x x x x x x y y -+++=,而()21212212431m x x m y y m +=+-=-()()212121222x x my my m y y =--=22222434931313m x x m m m --∴-++---()()22313510m x m x ⎡⎤⇒-+--=⎣⎦∴以PQ 为直径的圆经过定点(1,0方法二:设PQ 方程为2,x my P =-()22222311233x my m y my x y =-⎧⇒--⎨-=⎩由对称性知以PQ 为直径的圆必过设以PQ 为直径的圆过(),0E t ,()()1210EP EQ x t x t y ∴⋅=⇒--+ 而()()21212122x x my my m y =--=2229122431313m m m m m -=⋅-⋅+=--【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l过定点问题.解法:设动直线方程得y=k(x+m),故动直线过定点(-(2)动曲线C过定点问题.解法:引入参变量建立曲线等于零,得出定点.7.(2023·浙江·模拟预测)已知双曲线为双曲线E的左、右顶点,P为直线(1)求双曲线E的标准方程.(2)直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.理得1112,y y y y +(或1212,x x x x +),代入交点坐标后可得结论,如果是求动直线过定点,则可以引入参数求得动直线方程后,观察直线方程得定点.。
专题10 切线与切点弦的应用第一讲 切线方程的应用切线本质上是一种特殊的极线,新考纲规定了不再考查直线和圆锥曲线的位置关系,但圆的切线,以及开口朝上的抛物线的切线(可看成函数)仍然是高考的考查范围结论1:点00()M x y ,在圆222()()x a y b R -+-=上,过点M 作圆的切线方程为200()()()()x a x a y b y b R --+--=.结论2:(1)点00()M x y ,在圆222()()x a y b R -+-=外,过点M 作圆的两条切线,切点分别为A B 、,则切点弦AB 的直线方程为200()()()()x a x a y b y b R --+--=.(2)点00()M x y ,在圆222()()x a y b R -+-=内,过点M 作圆的弦AB (不过圆心),分别过A B 、作圆的切线,则两条切线的交点P 的轨迹方程为直线:200()()()()x a x a y b y b R --+--=.结论3:(1)点00()M x y ,在抛物线22x py =(0)p >上,过点M 作抛物线的切线方程为00()x x p y y =+. 点00()M x y ,在抛物线22x py =(0)p >外,过点M 作抛物线的两条切线,切点分别为A B 、,,则切点弦AB 的直线方程为00()x x p y y =+.(3)点00()M x y ,在抛物线22x py =(0)p >内,过点M 作抛物线的弦AB ,分别过A B 、作抛物线的切线,则两条切线的交点P 的轨迹方程为直线:00()x x p y y =+.结论4:点00()M x y ,在椭圆22221x y a b +=(0)a b >>上,过点M 作椭圆的切线方程为00221x x y y a b +=.若点00()M x y ,在椭圆22221x y a b +=(0)a b >>外,则点M 对应切点弦方程为00221x x y y a b+=结论5:点00()M x y ,在双曲线22221x y a b -=(00)a b >>,上,过点M 作双曲线的切线方程为00221x x y y a b -=.若点00()M x y ,在双曲线22221x y a b -=(00)a b >>,外,则点M 对应切点弦方程为00221x x y y a b-=结论6:点00()M x y ,在抛物线22y px =(0)p >上,过点M 作抛物线的切线方程为00()y y p x x =+.点00()M x y ,在抛物线22y px =(0)p >外,过点M 对应切点弦方程为00()y y p x x =+.【例1】(临沂三模)如图,已知抛物线2:2(0)E x py p =>与圆22:5O x y +=相交于A ,B 两点,且||4AB =.过劣弧AB 上的动点00)(P x y ,,作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线1l ,2l ,相交于点M .(1)求抛物线E 的方程;(2)求点M 到直线CD 距离的最大值.【例2】设F 为椭圆C :22143x y +=的右焦点,过椭圆C 外一点P 作椭圆C 的切线,切点为M ,若90PFM ∠=︒,则点P 的轨迹方程为__________.【例3】(洛阳一模)若椭圆22221x y a b +=的焦点在x 轴上,过点1(1)2,作圆221x y +=的切线,切点分别为A 、B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是( )A .22194x y +=B .22145x y +=C .22154x y +=D .22195x y +=第二讲 双切线模型以及切点弦的应用【例4】过点(11)Q --,作已知直线1:14l y x =+的平行线.交双曲线2214x y -=于点M ,N .(1)证明:点Q 是线段MN 的中点.(2)分别过点M ,N 作双曲线的切线1l ,2l ,证明:三条直线l ,1l ,2l 相交于同-点.(3)设P 为直线l 上一动点.过点P 作双曲线的切线PA ,PB ,切点分别为A ,B .证明:点Q 在直线AB 上.【例5】(荔湾期中)已知直线30x y -+=与圆22:40C x y y m +-+=.(1)求圆C 的方程.(2)过原点O 作圆C 的两条切线,与抛物线2y x =相交于M ,N 两点(异于原点).证明:以MN 为直径的圆与圆C 相交.(3)若抛物线2y x =上任意三个不同的点P 、Q ,R ,满足直线PQ 和PR 都与圆C 相切,判断直线QR 与圆C 的位置关系,并加以证明.【例6】(武侯月考)已知抛物线的顶点在坐标原点O ,焦点F 在x 轴正半轴上,倾斜角为锐角的直线l 过F 点,设直线l 与抛物线交于A 、B 两点,与抛物线的准线交于M 点,(0)MF FB λλ=> (1)若1λ=,求直线l 斜率(2)若点A B 在x 轴上的射影分别为1A 1B 且1||B F ,||OF ,12||A F 成等差数列求λ的值(3)设已知抛物线为21:C y x =,将其绕顶点按逆时针方向旋转90︒变成1C '.圆222:(4)1C x y +-=的圆心为点N .已知点P 是抛物线1C '上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C '于T ,S ,两点,若过N ,P 两点的直线l 垂直于TS ,求直线l 的方程.【例7】抛物线2:2(0)C y px p =>的焦点为F ,准线l 与x 轴的交点为M ,点()p m n ,()m p >在抛物线C 上,且FOP △的外接圆圆心到准线l 的距离为32. (1)求抛物线C 的方程;(2)若直线PF 与抛物线C 交于另一点A ,证明:MP MA k k +为定值;(3)过点P 作圆22(1)1x y -+=的两条切线,与y 轴分别交于D 、E 两点,求PDE ∆面积取得最小值时对应的m 值.第三讲 彭赛列闭合定理平面上给定两条圆锥曲线,若存在一封闭多边形外切其中一条圆锥曲线且内接另一条圆锥曲线,则此封闭多边形内接的圆锥曲线上每一个点都是满足这样(切、内外接)性质的封闭多边形的顶点,且所有满足此性质的封闭多边形的边数相同。
【江西省泰和中学2012届高三模拟】已知抛物线22y px =上一点M (1,m )到其焦点的距离为5,则该抛物线的准线方程为( )A .x=8B .x=-8C .x=4D .x=-4【答案】D【解析】由题意得52p1=+,故8p =,所以准线方程为4x =- 【山东省济南一中2012届高三模拟(理)】10.设M (0x ,0y )为抛物线C :28x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是 ( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)故选项为D【衡水中学2012届高三1模拟理】8. 若双曲线22221(0,0)x y a b a b-=>>上不存在点P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,则该双曲线离心率的取值范围为 ( )A .(2,)+∞B .[2,)+∞C .(1,2]D .(1,2)答案:C解析:这里给出否定形式,直接思考比较困难,按照正难则反,考虑存在点P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,因此只要在这个双曲线上存在点P 使得OP 斜率为1即可,所以只要渐进线的斜率大于1,也就是离心率大于2,求其在大于1的补集;该题通过否定形式考查反证法的思想,又考查数形结合、双曲线的方程及其几何性质,是中档题.【2012江西师大附中高三模拟理】设12F F 、分别是椭圆222:1(01)y E x b b+=<<的左、右焦点,过1F 的直线与E 相交于A B 、两点,且22,AF AB BF ,成等差数列,则AB 的长为( ) A .32B .1C .34 D .35 【答案】C【解析】本题主要考查椭圆的定义、标准方程、直线与椭圆的位置关系,等差中项的计算. 属于基础知识、基本运算的考查.椭圆222:1(01)y E x b b+=<<,1a =,∵112221,1AF BF a AF BF +==+=,相加得11222AF BF AF BF +++=221122||AF BF AF BF AB +=-+=-22,AF AB BF ,成等差数列,22221AB AF BF a =+==于是22AB AB =-,∴23AB =【2012年石家庄市高中毕业班教学质检1理】曲线y=x 3在点(1,1)处的切线方程是 A .x+y-2=0 B .3x+y-2=0 C .3x-y-2=0 D .x-y+2=0 【答案 C【解析】本题主要考查直线方程、直线与抛物线的位置关系、导数. 属于基础知识、基本运算的考查. 点(1,1)在曲线y=x 3上,切线的斜率就是曲线的导数,23y x '=,斜率k =3由点斜式方程得切线方程为13(1)y x -=-,即3x-y-2=0【2012唐山市高三模拟试理】已知双曲线的渐近线为3y x =,焦点坐标为(-4,0),(4,0),则双曲线方程为( )A .221824x y -= B .221124x y -= C .221248x y -= D .221412x y -= 【答案】 D【解析】本题主要考查双曲线的简单几何性质. 属于基础知识、基本运算的考查.双曲线的渐近线为3y x =,焦点在x 轴上,双曲线方程设为22(0)3y x λλ-=>即2213x y λλ-=,22,3a b λλ==,∵焦点坐标为(-4,0),(4,0)∴4c = 2224164c a b λλ=+==⇒= ∴双曲线方程为221412x y -= 【2012年石家庄市高中毕业班教学质检2理】双曲线224y x -=1的离心率是 A .21B .23C .25D .3A .10B .10C .10 D .2【答案】 C【解析】本题主要考查双曲线的定义、直线与圆的位置关系、中点公式、双曲线的简单几何性质. 属于基础知识、基本运算的考查.圆的2224a x y +=半径为2a ,由()12OE OF OP =+知,E 是F P 的中点,如图,设(,0)F c ',由于O 是FF '的中点,所以,1,22OE PF OE PF PF OE a '''=⇒== 由双曲线定义,3FP a =,因为FP 是圆的切线,切点为E ,所以FP OE ⊥,从而90FPF ︒'∠=,由勾股定理2222221094FP F P FF a a c e ''+=⇒+=⇒=【2012年石家庄市高中毕业班教学质检1理】已知抛物线y 2=2px ,直线l 经过其焦点且与x 轴垂直,并交抛物线于A 、B 两点,若|AB|=10,P 为抛物线的准线上一点,则△ABP 的面积为A .20B .25C .30D .50设双曲线的两个焦点分别A,B ,由定义,||||||4PA PB -=,|8|||4PB -=,||4PB =或者||12PB =【2012黄冈市高三模拟考试理】设F 为抛物线24y x =的焦点,A ,B ,C 为该抛物线上三点,若0FA FB FC ++=,则||||||FA FB FC ++= ( )A .9B .6C .4D .3【答案】B【解析】本题主要考查抛物线的定义和标准方程、向量共线的知识. 属于基础知识、基本运算的考查.设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),抛物线焦点坐标F(1,0),准线方程:x=-1∵0FA FB FC ++= ∴点F 是△ABC 重心 则x 1+x 2+x 3=3, y 1+y 2+y 3=0而|FA|=x 1-(-1)=x 1+1 |FB|=x 2-(-1)=x 2+1 |FC|=x 3-(-1))=x 3+1∴|FA|+|FB|+|FC|=x 1+1+x 2+1+x 3+1=(x 1+x 2+x 3)+3=3+3=6【2012武昌区高三年级模拟试题理】已知抛物线方程为24y x =,直线l 的方程为40x y -+=,在抛物线上有一动点P 到y 轴的距离为1d ,P 到直线l 的距离为2d ,则12d d +的最小值为( )A .5222+ B .5212+ C .5222- D .5212- 【答案】D【解析】本题主要考查抛物线定义以及点到直线的距离公式以及最值问题以及转化的思想. 属于基础知识、基本运算、基本能力的考查. 由抛物线的定义,PF =11d +, 11d PF =-1221d d d PF +=+-,显然当PF 垂直于直线40x y -+=时,12d d +最小。
此时2d PF +为F 到直线40x y -+=的距离为22|104|52211-+=+ ∴12d d +的最小值为5212- 【2012厦门市高三模拟质检理】已知双曲线方程为22143x y -=,则此双曲线的右焦点坐标为 A.(1,0) B. (5,0) C. (7,0) D. (7,0) 【答案】D【解析】本题主要考查双曲线的标准方程和简单几何性质. 属于基础知识、基本运算的考查.双曲线方程为22143x y -=,双曲线224,3a b ==,227c a b =+=,焦点在x 轴上,此双曲线的右焦点坐标为(7,0)【2012厦门市高三上学期模拟质检理】抛物线y 2=mx 的焦点为F ,点P (2 , 22)在此抛物线上,M 为线段PF 的中点,则点M 到该抛物线准线的距离为 A.1 B.23 C.2 D. 25 【答案】D抛物线的焦点F (,0)2p,对称轴为x 轴,过抛物线的焦点F 垂直于对称轴的直线为2p x =,交抛物线于A (,)2p p ,B (,)2pp -两点,线段AB 的长为8,故284p p =⇒=【2012厦门模拟质检理9】点A 是抛物线C 1:y 2=2px (p >0)与双曲线C 2:122=-by a x (a >0,b >0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p ,则双曲线C 2的离心率等于A.2B.3C.5D.6 【答案】C【解析】求抛物线C 1:y 2=2px (p >0)与双曲线C 2:122=-by a x (a >0,b >0)的一条渐近线的交点, ,222222⎪⎩⎪⎨⎧⎩⎨⎧====bpaxbpaypxyxaby所以,2222pbpa=225,5c a e==,选C;曲线的焦距等于()A.5B.45C.3D.43【答案】A54,所以⎪⎩⎪⎨⎧==2542aca,522,5==cc【2012•宁德质检理6】已知方程221()13x yk Rk k+=∈+-表示焦点在x轴上的椭圆,则k 的取值范围是()A.13k k<>或B.13k<<C.1k>D.3k<【答案】B【解析】因为方程221()13x yk Rk k+=∈+-表示焦点在x轴上的椭圆,所以{101330,13k k kk k +>+>--><<【解析】由条件得21,3,2(13),31AF c AF c a c e ===+=-【2012• 浙江瑞安模拟质检理14】设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为 ▲ . 【答案】251+ 【解析】因为直线FB 与该双曲线的一条渐近线垂直,所以215,1)(+=-=-⨯e cba b 【2012·泉州四校二次联考理4】双曲线2228x y -=的实轴长是( ) A .2 B .22 C .4 D .42【答案】C【解析】双曲线2228x y -=方程化为18422=-y x ,,2=a 实轴长42=a【2012•延吉市质检理9】若双曲线)0(12222>>=-b a by a x 的左右焦点分别为1F 、2F ,线段21F F 被抛物线22y bx = 的焦点分成5:7的两段,则此双曲线的离心率为( )A .98B .3737C .324 D .31010【答案】C【解析】因为线段21F F 被抛物线22y bx = 的焦点分成5:7的两段,所以423,4036,436,622222====e c a c b c b 【2012•延吉市质检理13】已知焦点在x 轴上的双曲线的渐近线方程是x y 4±=,则该双曲线的离心率为( ). 【答案】17【解析】因为焦点在x 轴上的双曲线的渐近线方程是x y 4±=,所以17,17,422===e a c a b【2012金华十校高三模拟联考理】已知抛物线22y px =上任一点到焦点的距离比到y 轴距离大1。