【备战】历高考数学真题汇编专题10 圆锥曲线最新模拟 理
- 格式:doc
- 大小:2.15 MB
- 文档页数:45
黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l与C 交于D ,E 两点,且12AF F 的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛ ⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.9.(2024·江苏南通·二模)已知双曲线E的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.12.(2024·河北·二模)已知椭圆()2222:10x y E a b a b +=>>的离心率e =(1)若椭圆E过点(,求椭圆E 的标准方程.(2)若直线1l ,2l 均过点()()*,00,n n P p p a n <<∈N 且互相垂直,直线1l 交椭圆E 于,A B 两点,直线2l 交椭圆E于,C D 两点,,M N 分别为弦AB 和CD 的中点,直线MN 与x 轴交于点(),0n Q t ,设13n np =.(ⅰ)求n t ;(ⅱ)记n a PQ =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .13.(2024·辽宁沈阳·二模)P 为大圆上一动点,大圆半径OP 与小圆相交于点,B PP x '⊥轴于,P BB PP ⊥'''于,B B ''点的轨迹为Ω.(1)求B '点轨迹Ω的方程;(2)点()2,1A ,若点M N 、在Ω上,且直线AM AN 、的斜率乘积为12,线段MN 的中点G ,当直线MN 与y 轴的截距为负数时,求AOG ∠的余弦值.14.(2024·广东佛山·二模)两条动直线1y k x =和2y k x =分别与抛物线()2:20C y px p =>相交于不同于原点的A ,B 两点,当OAB 的垂心恰是C 的焦点时,AB =(1)求p ;(2)若124k k =-,弦AB 中点为P ,点()2,0M -关于直线AB 的对称点N 在抛物线C 上,求PMN 的面积.15.(2024·广东深圳·二模)设抛物线C :22x py =(0p >),直线l :2y kx =+交C 于A ,B 两点.过原点O 作l 的垂线,交直线=2y -于点M .对任意R k ∈,直线AM ,AB ,BM 的斜率成等差数列.(1)求C 的方程;(2)若直线//l l ',且l '与C 相切于点N ,证明:AMN 的面积不小于16.(2024·湖南·一模)已知双曲线2222:1(1)x y C b a a b-=>>的渐近线方程为y =,C 的半焦距为c ,且44244a b c ++=.(1)求C 的标准方程.(2)若P 为C 上的一点,且P 为圆224x y +=外一点,过P 作圆224x y +=的两条切线12,l l (斜率都存在),1l 与C 交于另一点2,M l 与C 交于另一点N ,证明:(ⅰ)12,l l 的斜率之积为定值;(ⅱ)存在定点A ,使得,M N 关于点A 对称.17.(2024·湖南岳阳·三模)已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=;(2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值.18.(2024·湖北·二模)已知双曲线P 的方程为()()221,,0,,04x y B a C a -=-,其中()()00002,,,0a D x y x a y >≥>是双曲线上一点,直线DB 与双曲线P 的另一个交点为E ,直线DC 与双曲线P的另一个交点为F ,双曲线P 在点,E F 处的两条切线记为121,,l l l 与2l 交于点P ,线段DP 的中点为G ,设直线,DB DC 的斜率分别为12,k k .(1)证明:12114k k <+≤(2)求GBGC的值.19.(2024·湖北·模拟预测)已知椭圆2212:1x C y a +=和()2222:10x C y a b b +=>>的离心率相同,设1C 的右顶点为1A ,2C 的左顶点为2A ,()0,1B ,(1)证明:12BA BA ⊥;(2)设直线1BA 与2C 的另一个交点为P ,直线2BA 与1C 的另一个交点为Q ,连PQ ,求PQ 的最大值.参考公式:()()3322m n m n m mn n +=+-+20.(2024·山东·二模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,设C 的右焦点为F ,左顶点为A ,过F 的直线与C 于,D E 两点,当直线DE 垂直于x 轴时,ADE V 的面积为92.(1)求椭圆C 的标准方程;(2)连接AD 和AE 分别交圆22(1)1x y ++=于,M N 两点.(ⅰ)当直线DE 斜率存在时,设直线DE 的斜率为1k ,直线MN 的斜率为2k ,求12k k ;(ⅱ)设ADE V 的面积为1,S AMN △的面积为2S ,求12S S 的最大值.21.(2024·山东潍坊·二模)已知双曲线C :()222210,0x y a b a b -=>>的实轴长为2F 到一条渐近线的距离为1.(1)求C 的方程;(2)过C上一点(1P 作C 的切线1l ,1l 与C 的两条渐近线分别交于R ,S 两点,2P 为点1P 关于坐标原点的对称点,过2P 作C 的切线2l ,2l 与C 的两条渐近线分别交于M ,N 两点,求四边形RSMN 的面积.(3)过C 上一点Q 向C 的两条渐近线作垂线,垂足分别为1H ,2H ,是否存在点Q ,满足122QH QH +=,若存在,求出点Q 坐标;若不存在,请说明理由.22.(23-24高三下·湖北武汉·阶段练习)已知抛物线2:=E y x ,过点()1,2T 的直线与抛物线E 交于,A B 两点,设抛物线E 在点,A B 处的切线分别为1l 和2l ,已知1l 与x 轴交于点2,M l 与x 轴交于点N ,设1l 与2l 的交点为P .(1)证明:点P 在定直线上;(2)若PMN ,求点P 的坐标;(3)若,,,P M N T 四点共圆,求点P 的坐标.23.(2024·福建漳州·一模)已知过点()11,0F -的直线l 与圆2F :()22116x y -+=相交于G ,H 两点,GH 的中点为E ,过1GF 的中点F 且平行于2EF 的直线交2G F 于点P ,记点P 的轨迹为C .(1)求轨迹C 的方程.(2)若,A B 为轨迹C 上的两个动点且均不在y 轴上,点M 满足OM OA OB λμ=+(λ,μ∈R ),其中O 为坐标原点,从下面①②③中选取两个作为条件,证明另外一个成立.①点M 在轨迹C 上;②直线OA 与OB 的斜率之积为34-;③221λμ+=.注:若选择不同的组合分别解答,则按第一个解答计分.24.(2024·福建福州·模拟预测)点P 是椭圆E :22221x y a b +=(0a b >>)上(左、右端点除外)的一个动点,()1,0F c -,()2,0F c 分别是E 的左、右焦点.(1)设点P 到直线l :2a x c =的距离为d ,证明2PF d 为定值,并求出这个定值;(2)12PF F △的重心与内心(内切圆的圆心)分别为G ,I ,已知直线IG 垂直于x 轴.(ⅰ)求椭圆E 的离心率;(ⅱ)若椭圆E 的长轴长为6,求12PF F △被直线IG 分成两个部分的图形面积之比的取值范围.25.(2024·福建三明·三模)已知平面直角坐标系xOy 中,有真命题:函数(0,0)ny mx m n x =+≥>的图象是双曲线,其渐近线分别为直线y mx =和y 轴.例如双曲线4y x=的渐近线分别为x 轴和y 轴,可将其图象绕原点O 顺时针旋转π4得到双曲线228x y -=的图象.(1)求双曲线1y x=的离心率;(2)已知曲线22:2E x y -=,过E 上一点P 作切线分别交两条渐近线于,A B 两点,试探究AOB 面积是否为定值,若是,则求出该定值;若不是,则说明理由;(3)已知函数y x =Γ,直线:30l x -=,过F 的直线与Γ在第一象限交于,M N 两点,过,M N 作l 的垂线,垂足分别为,C D ,直线,MD NC 交于点H ,求MNH △面积的最小值.26.(2024·浙江绍兴·二模)已知抛物线C :()220y px p =>的焦点到准线的距离为2,过点()2,2A 作直线交C 于M ,N 两点,点()1,1B -,记直线BM ,BN 的斜率分别为1k ,2k .(1)求C 的方程;(2)求()121232k k k k -+的值;(3)设直线BM 交C 于另一点Q ,求点B 到直线QN 距离的最大值.27.(2024·浙江绍兴·模拟预测)已知抛物线C :22y px =的焦点F ,直线l 过F 且交C 于两点M N 、,已知当3MF NF =时,MN (1)求C 的标准方程.(2)令,02p F ⎛⎫'- ⎪⎝⎭,P 为C 上的一点,直线F P ',FP 分别交C 于另两点A ,B .证明:·1AF PF PF BF '='.(3)过,,A B P 分别作C 的切线123,,l l l , 3l 与1l 相交于D ,同时与2l 相交于E ,求四边形ABED 面积取值范围.28.(2024·河北保定·二模)平面几何中有一定理如下:三角形任意一个顶点到其垂心(三角形三条高所在直线的交点)的距离等于外心(外接圆圆心)到该顶点对边距离的2倍.已知ABC 的垂心为D ,外心为E ,D 和E 关于原点O 对称,()13,0A .(1)若()3,0E ,点B 在第二象限,直线BC x ⊥轴,求点B 的坐标;(2)若A ,D ,E 三点共线,椭圆T :()222210x y a b a b+=>>与ABC 内切,证明:D ,E 为椭圆T 的两个焦点.29.(2024·浙江杭州·模拟预测)设双曲线22:12x C y -=,直线:l y x m =+与C 交于,A B 两点.(1)求m 的取值范围;(2)已知C 上存在异于,A B 的,P Q 两点,使得PA PB QA QB t ⋅=⋅=.(i )当4t =时,求,P Q 到点()2,m m --的距离(用含m 的代数式表示);(ii )当2t =时,记原点到直线PQ 的距离为d ,若直线PQ 经过点(),m m -,求d 的取值范围.30.(2024·湖北·一模)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为12,A ,B 分别为椭圆的左顶点和上顶点,1F 为左焦点,且1ABF(1)求椭圆M 的标准方程:(2)设椭圆M 的右顶点为C 、P 是椭圆M 上不与顶点重合的动点.(i )若点31,2P ⎛⎫⎪⎝⎭,点D 在椭圆M 上且位于x 轴下方,直线PD 交x 轴于点F ,设APF 和CDF 的面积分别为1S ,2S 若1232S S -=,求点D 的坐标:(ii )若直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点N ,求证:2QN QC k k -为定值,并求出此定值(其中QN k 、QC k 分别为直线QN 和直线QC 的斜率).黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.【答案】(1)2214x y +=;【分析】(1)根据所给条件求出,a b ,即可得出椭圆标准方程;(2)联立直线与椭圆方程,根据根与系数的关系及OA OB ⊥,列出方程求k 即可.【详解】(1)设椭圆的标准方程为22221(0)x y a b a b+=>>.由题意可知22224c a a b c ⎧=⎪=⎨⎪=+⎩,解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆的标准方程为2214x y +=.(2)设()()1122,,,A x y B x y ,如图,联立方程2214y kx x y ⎧=⎪⎨+=⎪⎩,消去y ,得()221440k x +++=,则12122414x x x x k +==+,从而(1212y y kx kx =+()212122k x x x x =+++222414kk-=+,因为,0OA OB OA OB ⊥⋅=,即12120x x y y +=,所以22222424640141414k k k k k --+==+++,解得k =或,经验证知Δ0>,所以k.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,且12AF F的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.【答案】(1)2214x y +=【分析】(1)由椭圆离心率和焦点三角形的周长,列方程组求出,a b ,得椭圆C 的方程;(2)设直线1l ,2l 的方程,与椭圆联立,利用韦达定理和32AB DE =求出DE 和2l 的方程,再求出O 到直线2l 的距离,可求ODE 的面积.【详解】(1)由题意知,222224a c ca b a c ⎧+=+⎪⎪=⎨⎪=-⎪⎩,解得2,1,a b c ===所以椭圆C 的方程为2214x y +=;(2)若直线1l 的斜率不存在,则直线2l 的斜率为0,不满足32AB DE =,直线1l 的的斜率为0,则12,,A F F 三点共线,不合题意,所以直线1l 的斜率存在且不为0,设直线1l的方程为x my =由2214x my x y ⎧=⎪⎨+=⎪⎩,消去x得2211044m y y ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y,则12y y +=1221414y y m =-+,()2241.4m AB m +∴===+同理可得()222214141.1144m m DE m m ⎛⎫+ ⎪+⎝⎭==++,由32AB DE =,得()()2222414134214m m m m++=⋅++,解得22m =,则43DE =,∴直线2l的方程为y x =,∴坐标原点O 到直线2l的距离为d ==1423ODE S =⨯= 即ODE【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.【答案】(1)2214x y +=(2)存在,3个【分析】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,根据条件得到41314m m n =⎧⎪⎨+=⎪⎩,即可求出结果;(2)设直线DA 为1y kx =+,直线DB 为11y x k=-+,当1k =时,由椭圆的对称性知满足题意;当21k ≠时,联立直线与椭圆方程,求出,A B 的坐标,进而求出AB 中垂线方程,根据条件中垂线直经过点(0,1)D ,从而将问题转化成方程42710k k -+=解的个数,即可解决问题.【详解】(1)由题设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,因为椭圆过()2,0,1,M N ⎛ ⎝两点,所以41314m m n =⎧⎪⎨+=⎪⎩,得到1,14m n ==,所以椭圆C 的方程为2214x y +=.(2)由(1)知(0,1)D ,易知直线,DA DB 的斜率均存在且不为0,不妨设(0)DA k k k =>,1DB k k=-,直线DA 为1y kx =+,直线DB 为11y x k =-+,由椭圆的对称性知,当1k =时,显然有DA DB =,满足题意,当21k ≠时,由22114y kx x y =+⎧⎪⎨+=⎪⎩,消y 得到221()204k x kx ++=,所以2814A k x k =-+,222281411414A k k y k k -=-+=++,即222814(,)1414k k A k k--++,同理可得22284(,44k k B k k -++,所以()2222222222222414(4)14(4)(14)1414888(144)5414ABk k k k k k k k k k k k k k k k k k ----+-+--++===++++++,设AB 中点坐标为00(,)x y ,则2220228812(1)1442(4)(14)k kk k k k x k k -+-++==++,22222022144151442(4)(14)k k k k k y k k --+-++==++,所以AB 中垂线方程为222222215512(1)()(4)(14)1(4)(14)k k k k y x k k k k k -+=--++-++,要使ADB 为AB 为底边的等腰直角三角形,则直AB 中垂线方程过点(0,1),所以222222215512(1)1(0)(4)(14)1(4)(14)k k k k k k k k k -+=--++-++,整理得到42710k k -+=,令2t k =,则2710t t -+=,4940∆=->,所以t 有两根12,t t ,且121270,10t t t t +=>=>,即2710t t -+=有两个正根,故有2个不同的2k 值,满足42710k k -+=,所以由椭圆的对称性知,当21k ≠时,还存在2个符合题意的三角形,综上所述,存在以D 为顶点,AB 为底边的等腰直角三角形,满足条件的三角形的个数有3个.【点睛】关键点点晴:本题的关键在于第(2)问,通过设出直线DA 为1y kx =+,直线DB 为11y x k=-+,联立椭圆方程求出,A B 坐标,进而求出直线AB 的中垂线方程,将问题转化成直线AB 的中垂线经过点(0,1)D ,再转化成关于k 的方程的解的问题.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.【答案】(1)22182x y +=(2)证明见解析【分析】(1)通过椭圆的性质和中点的坐标,然后根据向量的数量积得到等量关系即可求出椭圆的标准方程;(2)设出直线l 的方程并与椭圆方程联立,化简写出根与系数的关系,求得点,P Q 的坐标,进而证得线段PQ 的中点为定点.【详解】(1)由题可得()28,,0a E a = ,()()120,,0,B b B b -,1EB ∴的中点为,22a b G ⎛⎫ ⎪⎝⎭,2221233(,),1,2,2222a b a bEB GB a b b ⎛⎫⋅=-⋅--=-=∴= ⎪⎝⎭ 故椭圆C 的方程为22182x y +=;(2)依题意可知直线l 的斜率存在,设直线l 的方程为()4y k x =+,由()224182y k x x y ⎧=+⎪⎨+=⎪⎩消去y 并化简得()222214326480k x k x k +++-=,由()()422Δ10244146480k k k =-+->,得2111,422k k <-<<.设()(),,,M M N N M x y N x y ,则222232648,1414M N M N k k x x x x k k -+=-=++,依题意可知直线,MA NA 的斜率存在,直线MA 的方程为()1122M M y y x x ++=++,令4x =-,得()2442422M M M M P M M k x x y x y x x -+-----==++()()()2184212424221222M M M M M k x k k x k k k x x x ------+--+===---+++,同理可求得42212Q N k y k x +=---+,()N 4242114242422222P Q M N M k k y y k k k x x x x ⎛⎫++∴+=----=---++ ⎪++++⎝⎭()()4424224M N M N M N x x k k x x x x ++=---+⋅+++()22222232414424242(42)064832241414k k k k k k k k k k -++=---+⋅=--++=⎛⎫-+-+ ⎪++⎝⎭,∴线段PQ 的中点为定点()4,0-.【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般将直线和圆锥曲线联立,利用韦达定理带入计算求解.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.【答案】(1)22143x y +=(2)点Q 在定直线上,定直线方程为330x y +-=【分析】(1)设点,,P A B 的坐标,利用平面向量的坐标表示消参得0032x x y ⎧=⎪⎨⎪=⎩,结合正方形面积得Γ的方程;(2)设:14l y kx k =+-,,,Q M N 的坐标,与椭圆联立并根据韦达定理得,M N 横坐标关系,再根据线段乘积关系化为比值关系得01120244x x x x x x --=--,化简得0243kx k+=+,代入直线方程即可0y ,从而求出定直线方程.【详解】(1)设()()()00,,,0,0,P x y A x B y ,由0000222(,0))()333OP OA x y x y ==+=,得0023x x y y ⎧=⎪⎪⎨⎪=⎪⎩,所以032x x y ⎧=⎪⎨⎪=⎩,因为正方形ABCD 的面积为29AB =,即22009x y +=,所以223())92x +=,整理可得22143x y +=,因此C 的轨迹方程为22143x y +=.(2)依题意,直线l 存在斜率,设l :1(4)y k x -=-,即14y kx k =+-,设点()00,Q x y ,()11,M x y ,()22,N x y ()102x x x <<,由22143412y kx kx y =+-⎧⎨+=⎩,消y 得2234(14)12x kx k ++-=,即222(34)8(14)4(14)120k x k k x k ++-+--=,由()()()2222Δ64141634143k k k k ⎡⎤=--+--⎣⎦()()()()()22222216144344834483414k k k k k k ⎡⎤⎡⎤=--+++=+--⎣⎦⎣⎦()()22481282966410k k k k =-++=-++>,k <<所以3k ≠-,可得1228(14)34k k x x k -+=-+,21224(14)1234k x x k --=+,由||||||||EM QN QM EN ⋅=⋅ ,得||||||||QM EM QN EN =,所以01120244x x x x x x --=--,可得222121201228(14)4(14)124234344()28(14)8()834k k k k k x x x x x k k x x k ⎡⎤---⎡⎤--⎢⎥⎢⎥+++-⎣⎦⎣⎦==--+⎡⎤--⎢⎥+⎣⎦()()2222232148142432128128648242432824248k k k k k k k k k k k----+-+-+-+==++-+1632242483k kk k++==++,所以()()200143243914333k k k k ky kx k k k k-++-=+-=+=+++,因为00612393333k kx y k k+-+=+=++,所以点Q 在定直线上,定直线方程为330x y +-=.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.【答案】(1)24y x =;(2)(.【分析】(1)先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,联立直线与抛物线方程,结合韦达定理及抛物线定义即可求解;(2)先设出()221,2R m m +,进而可求,P Q 的坐标,可得直线//QR x 轴,求出QR 的范围,再由三角形面积公式即可求解.【详解】(1)不妨先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,代入22y px =,可得2220y mpy p --=,所以122y y mp +=,212y y p =-,则()21212222MN x x p m y y p m p p =++=++=+,由题意可知当斜率为1时,1m =,又8MN =,即228p p +=,解得2p =,所以C 的方程为24y x =;(2)由(1)知2p =,直线l 的方程为1x my =+,抛物线方程24y x =,124y y m +=,124y y =-所以R 的纵坐标1222R y y y m +==,将R 的纵坐标2m 代入1x my =+,得221x m =+,所以R 的坐标()221,2m m +,易知抛物线的准线为=1x -,又因为l 与C 的准线交于点P ,所以P 的坐标21,m ⎛⎫-- ⎪⎝⎭,则直线OP 的方程为2m x y =,把2mx y =代入24y x =,得22y my =,即2y m =或0y =,因为点Q 异于原点,从而Q 的纵坐标为2m ,把2y m =代入2m x y =,得22mx y m ==,所以()2,2Q m m ,因为R 的坐标()221,2m m +,所以R ,Q 的纵坐标相同,所以直线//QR x 轴,且222211QR m m m =+-=+,所以MNQ △面积1212MNQ MRQ NRQ S S S QR y y =+=- ,因为()22212121241616y y y y y y m -=+-=+,所以12y y -==,所以()332222112122MNQS m m QR =+⨯=+= ,因为点Q 异于原点,所以0m ≠,所以210m +>,因为3QR ≤,所以13QR <≤,所以3222QR <≤MNQ △面积的取值范围为(.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.【答案】(1)1(2)221499x y ⎛⎫-+=⎪⎝⎭【分析】(1)根据已知条件作出图形,设出直线AB 的方程,与抛物线联立,利用韦达定理及直线的点斜式方程即可求解;(2)根据(1)的结论及向量的数量积的坐标表示,进而得出直线AB 的方程,利用直线的斜率公式及直线的点斜式方程,结合角平分线的性质及圆的标准方程即可求解.【详解】(1)设直线AB 的方程为()()()11220,,,,x my t m A x y B x y =+>,则()()11,,,0C x y M t -,由24x my ty x =+⎧⎨=⎩,消去x ,得2440y my t --=,()22Δ1600m t m t =+>⇒+>,所以12124,4y y m y y t +==-,直线BC 的方程为()211121y y y y x x x x ++=--,化简得1221214y y xy y y y y =---,令0y =,得124Q y y x t ==-,所以(),0Q t -因此1OM t OQt==-.(2)因为点Q 的横坐标为1-,由(1)可知,()()1,0,1,0Q M -,设QA 交抛物线于D ,()()()()11221144,,,,,,,A x y B x y C x y D x y -,如图所示又由(1)知,124y y =-,同理可得144y y =,得42y y =-,又()212121211242x x my my m y y m +=+++=++=+,()22212121214416y y y y x x =⋅==,又()()22111,,1,MB x y MC x y =-=-- ,则()()()221121212111444MB MC x x y y x x x x m ⋅=---=-+++=- ,故2844,9m -=结合0m >,得m =所以直线AB的方程为330,x -=又12163y y -===,则141414221214141412443444AD y y y y y y k y y x x x x y y y y ---======--+--,所以直线AD 的方程为3430x y -+=,设圆心(,0)(11)T s s -<<,因为QM 为AQB ∠的平分线,故点T 到直线AB 和直线AD 的距离相等,所以333354s s +-=,因为11s -<<,解得19s =,故圆T 的半径33253s r +==,因此圆T 的方程为221499x y ⎛⎫-+= ⎪⎝⎭.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.【答案】(1)23122y x x =-+;(2)0b <或1b >;(3)证明见解析.【分析】(1)根据题意,由平面向量的坐标运算,结合等差中项的定义代入计算,即可得到结果;(2)根据题意,由平移公式可得曲线2C 的方程,然后与直线MN 的方程联立,由平面向量的夹角公式,代入计算,即可得到结果;(3)根据题意,求导可得在点,M N 处的切线方程,联立两条切线方程,代入计算,即可得到结果.【详解】(1)由题意可得(1,)PA x y =-- ,(,1)PB x y =-- ,(1,1)PC x y =--,则22(1)()()(1)PA PB x x y y x y x y ⋅=-⋅-+-⋅-=+--,22(1)(1)()(1)21PA PC x x y y x y x y ⋅=-⋅-+-⋅-=+--+,又2y 是PA PB ⋅ ,PA PC ⋅的等差中项,()()22222212x y x y x y x y y ∴+--++--+=,整理得点(,)P x y 的轨迹方程为23122y x x =-+.(2)由(1)知2131:22C y x x =-+,又31,416a ⎛⎫=- ⎪⎝⎭ ,∴平移公式为34116x x y y ⎧=-⎪⎪⎨⎪=+'⎩'⎪即34116x x y y ⎧=+⎪⎪⎨⎪=-'⎩'⎪,代入曲线1C 的方程得到曲线2C 的方程为:213331164242y x x ''⎛⎫⎛⎫-=+-++ ⎪ ⎪⎝⎭⎝⎭',即2y x ¢¢=.曲线2C 的方程为2y x =.如图由题意可设M ,N 所在的直线方程为y kx b =+,由2y x y kx b⎧=⎨=+⎩消去y 得20x kx b --=,令()11,M x y ,()()2212,N x y x x ≠,则1212x x kx x b +=⎧⎨=-⎩,()()21111,,OM x y x x ∴== ,()()22222,,ON x y x x == ,又MON ∠ 为锐角,cos 0||||OM ONMON OM ON ⋅∴∠=>⋅,即2212120||||x x x x OM ON +>⋅ ,2212120x x x x ∴+>,又12x x b =-,2()0b b ∴-+->,得0b <或1b >.(3)当2b =时,由(2)可得12122x x kx x b +=⎧⎨=-=-⎩,对2y x =求导可得2y x '=,∴抛物线2C 在点,()211,M x x ∴=,()222,N x x 处的切线的斜率分别为12M k x =,22N k x =,∴在点M ,N 处的切线方程分别为()2111:2M l y x x x x -=-,()2222:2N l y x x x x -=-,由()()()211112222222y x x x x x x y x x x x ⎧-=-⎪≠⎨-=-⎪⎩,解得交点R 的坐标(,)x y .满足12122x x x y x x +⎧=⎪⎨⎪=⋅⎩即22k x y ⎧=⎪⎨⎪=-⎩,R ∴点在定直线=2y -上.【点睛】关键点点睛:本题主要考查了曲线的轨迹方程问题以及切线问题,难度较大,解答本题的关键在于联立方程结合韦达定理计算以及转化为坐标运算.9.(2024·江苏南通·二模)已知双曲线E 的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.【答案】(1)2213x y -=(2)①⎫⎪⎪⎭;②27π16S >且7π4S ≠【分析】(1)根据渐近线方程及顶点求出,a b 得双曲线方程;(2)①设(),0D t ,由四点共圆可得1AG OH k k ⋅=,根据斜率公式转化为,B C 点坐标表示形式,由直线与双曲线联立得出根与系数的关系,据此化简即可求出t ;②求出G 点坐标得出OG ,利用正弦定理求出外接圆的半径,根据均值不等式求出半径的最值,即可得出圆面积的最值.【详解】(1)因为双曲线的渐近线关于坐标轴及原点对称,又顶点在x 轴上,可设双曲线的方程为22221x y a b-=(0a >,0b >),从而渐近线方程为:b y x a =±,由题条件知:b a =因为双曲线的左顶点为()A ,所以a =1b =,所以双曲线的方程为:2213x y -=.(2)如图,①(),0D t ,设直线BC 的方程为:my x t =-,将x my t =+代入方程:22330x y --=,得()2223230m y mty t -++-=,当230m -≠且()22Δ1230t m =+->时,设()11,B x y ,()22,C x y ,则12223mt y y m +=--,212233t y y m -=-.设直线AG 的倾斜角为α,不妨设π02α<<,则π2AGH α∠=-,由于O ,A ,G ,H 四点共圆知:HOD AGH ∠=∠,所以直线OH 的倾斜角为π2α-,πsin πsin 2tan tan 1π2cos cos 2AG OH k k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭.直线AC的方程为:y x =,令x t =,则y =H t ⎛ ⎝,所以OH k=AGABk k==1=((1212t y y t x x ⇒=,又11x my t =+,22xmy t =+代入上式得:((1212t y yt my t my t =++,((()(22121212t y y t m y y m t y y t ⎡⎤⇒=+++⎢⎥⎣⎦,(((2222222332333t t mtt t m m t t m m m ⎛⎤---⇒⋅=⋅+⋅++ ⎥---⎝⎦,化简得:2430t +-=,解得:t =(舍)或t =故点D 的坐标为⎫⎪⎪⎭.②直线AG 的方程为(tan y x α=⋅,由①知:t =所以G α⎫⎪⎪⎭.直线OH 方程;1tan y x α=,所以H ,若G ,H 在x 轴上方时,G 在H 的上方,即tan 0α>α>若G ,H 在x 轴下方时,即t an 0α<α<所以tan α>tan α<又直线AG 与渐近线不平行,所以tan α≠所以0πα<<,tan α>tan α<tan α≠因为OG ==设圆P 的半径为R ,面积为S ,则2sin OG R α==所以()()()2222222125tan 125tan sin cos 3164sin 64sin R αααααα+⋅++=⨯=⨯()()22222125tan 1tan 33125tan 2664tan 64tan ααααα++⎛⎫=⨯=++ ⎪⎝⎭327266416⎛⎫≥= ⎪ ⎪⎝⎭,当且仅当22125tan tan αα=即tan α=tan α>tan α<tan α≠所以22716R >且274R ≠,从而27π16S >且7π4S ≠.【点睛】关键点点睛:本题的关键点在于利用直线的倾斜角与圆的内接四边形的角的关系,得出πsin πsin 2tan tan 1π2cos cos 2AG OHk k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭这一关键数量关系,再转化为直线与双曲线相交,利用根与系数的关系化简求参数的常规问题.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.【答案】(1)y x =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,a ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围.【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =.由222+=a b c,得a ,所以E的渐近线的方程为y =(2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,11112OP OQ y +=+设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,1AF2p =由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)2213y x -=(2)(i )证明见解析;(ii )是,12【分析】(1)设曲线C 上任意一点坐标为(),x y ,利用坐标可得曲线C 的方程;(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,联立方程组可得1221231my y m +=--,122931y y m =-,求得直线AM :()1111y y x x =++,求得P ,H ,进而可得Q 的坐标,求得FQ 的坐标,直线MN 的方向向量的坐标,利用向量法可证结论.(ii) 法一:利用(i )可求得()226113mMN m +=-;QF=()()322329112213m S MN QF m+=⋅=-,进而求得()1212114S S PH x x +=⋅+-,代入运算可求得()()32212291413m S S m++=-,可求结论.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,计算可得1218S S PH MN +=⋅,又312S MN QF =⋅,12314PH S S S QF +=,进而计算可得结论成立.【详解】(1)设曲线C 上任意一点坐标为(),x y ,则由题意可知:()2222222212444441123y x y x x x y x x x ⎛⎫-+=-⇒-++=-+⇒-= ⎪⎝⎭,故曲线C 的方程为2213y x -=.(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,其中m <<且11x >,21x >()22222311290330x my m y my x y =+⎧⇒-++=⎨--=⎩,故1221231my y m +=--,122931y y m =-;直线AM :()1111y y x x =++,当12x =时,()11321y y x =+,故()1131,221y P x ⎛⎫⎪ ⎪+⎝⎭,同理()2231,221y H x ⎛⎫⎪ ⎪+⎝⎭,Q 为PH 中点,故()()()()1221121212111332211411Q y x y x y y y x x x x +++⎛⎫=⋅+=⋅ ⎪++++⎝⎭;()()()()()()222212121212293693111333931m m m x x my my m y y m y y m -+-++=++=+++=-2931m =--;(*)()()()()()122112211212221836181133233131m m my x y x y my y my my y y y m m -+++=+++=++==---;故3183492Q m m y =⋅=,即13,22m Q ⎛⎫⎪⎝⎭,则33,22m FQ ⎛⎫=- ⎪⎝⎭ ,直线MN 的方向向量(),1a m =,33022m m a FQ ⋅=-+= ,故QF MN ⊥.(ii)法一:12y y -===(**)故()2226113m MN y m +=-=-;QF==又QF MN ⊥,故()()322329112213mSMN QF m+=⋅=-.()12121211111122224S S PQ x HQ x PH x x ⎛⎫⎛⎫+=⋅-+⋅-=⋅+- ⎪ ⎪⎝⎭⎝⎭;()()222121222311293133113m m m x x m y y m m +-+-+-=++==--;()()()()()()1221121212113332121211y x y x y y PH x x x x +-+=-=++++,()()()()()()12211212123339211211y my y my y y x x x x +-+-==++++,由(*)知()()12291113x x m ++=-,由(**)知12y y -=,故291329m PH -==故()()()3222122231911413413m mS S m m+++=⋅=--,则12312S S S +=.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,故()()12121111488S S PH x x PH MF NF PH MN +=+-=⋅+=⋅,又312S MN QF =⋅,故12314PH S S S QF +=,又()()12129411P H y y y y x x =++,且由(*)知229993194431P Hm y y m -==--,记直线PH 与x 轴相交于点K ,由94P Hy y =可得2PK HK FK ⋅=,即PK FK FK HK =,即PKF PFH ∽△△,故PF HF ⊥;又Q 为PH 的中点,故12QF PH =,即1231142PH S S S QF +==.【点睛】方法点睛:直线与双曲线联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可设出直线方程.。
高考数学模拟试题分类汇编:圆锥曲线三、解答题(第二部分)26、(某某省某某一中高2008届第一次模拟检测)已知椭圆C :22a x +22by =1(a >b >0)的离心率为36,过右焦点F 且斜率为1的直线交椭圆C 于A ,B 两点,N 为弦AB 的中点。
(1)求直线ON (O 为坐标原点)的斜率K ON ;(2)对于椭圆C 上任意一点M ,试证:总存在角θ(θ∈R )使等式:OM =cos θOA +sin θOB 成立。
解:(1)设椭圆的焦距为2c ,因为36=a c ,所以有32222=-ab a ,故有223b a =。
从而椭圆C 的方程可化为:22233b y x =+①………2分 易知右焦点F 的坐标为(0,2b ), 据题意有AB 所在的直线方程为:b x y 2-=②………3分由①,②有:0326422=+-b bx x ③设),(),,(2211y x B y x A ,弦AB 的中点),(00y x N ,由③及韦达定理有:.422,423200210b b x y b x x x -=-==+=所以3100-==x y K ON ,即为所求。
………5分 (2)显然OA 与OB 可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量OM ,有且只有一对实数μλ,,使得等式OB OA OM μλ+=成立。
设),(y x M ,由1)中各点的坐标有:),(),(),(2211y x y x y x μλ+=,所以2121,y y y x x x μλμλ+=+=。
………7分又点在椭圆C 上,所以有22212213)(3)(b y y x x =+++μλμλ整理为2212122222212123)3(2)3()3(b y y x x y x y x =+++++λμμλ。
④由③有:43,22322121b x x b x x =⋅=+。
所以 06936)(234)2)(2(332222212*********=+-=++-=--+=+b b b b x x b x x b x b x x x y y x x ⑤又A ﹑B 在椭圆上,故有22222221213)3(,3)3(b y x b y x =+=+⑥将⑤,⑥代入④可得:122=+μλ。
以下题目全是经典的高考题目,希望对您有帮助!!圆锥曲线1.如图,设抛物线方程为x 2=2py (p >0),M 为直线p y 2-=上任意一点,过M 引抛物线的切线,切点分别为A ,B .(1)求证:A ,M ,B 三点的横坐标成等差数列; (2)已知当M 点的坐标为(2,p 2-)时,AB = (3)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由. 解:(1)证明:由题意设221212120(,),(,),,(,2).22x x A x B x x x M x p p p-<由22x py =得22x y p =,则,x y p'= 所以12,.MA MB x x k k p p ==因此直线MA :102(),x y p x x p +=- 直线MB :202().xy p x x p+=-所以211102(),2x x p x x p p +=- ① 222202().2x x p x x p p+=- ② 由①、②得: 0122.x x x =+所以A 、M 、B 三点的横坐标成等差数列. (2)解:由(1)知,当x 0=2时, 将其代入①、②并整理得:2211440,x x p --= 2222440,x x p --=所以x 1、x 2是方程22440x x p --=的两根,因此212124,4,x x x x p +==-又22210122122,2ABx x x x x p p k x x p p-+===-所以2.AB k p =由弦长公式AB==又AB=p=1或p=2,因此所求抛物线方程为22x y=或24.x y=(3)解:设D(x3,y3),由题意得C(x1+ x2, y1+ y2),则CD的中点坐标为123123(,),22x x x y y yQ++++设直线AB的方程为011(),xy y x xp-=-由点Q在直线AB上,并注意到点1212(,)22x x y y++也在直线AB上,代入得033.xy xp=若D(x3,y3)在抛物线上,则2330322,x py x x==因此x3=0或x3=2x0. 即D(0,0)或22(2,).xD xp(1’ 当x0=0时,则12020x x x+==,此时,点M(0,-2p)适合题意.(2’ 当x≠,对于D(0,0),此时221222221212002(2,),,224CDx xx x x xpC x kp x px+++==又0,ABxkp=AB⊥CD,所以22220121221,44AB CDx x x x xk kp px p++===-即222124,x x p+=-矛盾.对于22(2,),xD xp因为2212(2,),2x xC xp+此时直线CD平行于y轴,又00,ABxkp=≠所以直线AB与直线CD不垂直,与题设矛盾,所以x≠时,不存在符合题意的M点. 综上所述,仅存在一点M(0,-2p)适合题意.2.已知曲线11(0)xyC a ba b+=>>:所围成的封闭图形的面积为1C的内切圆半径为3.记2C为以曲线1C与坐标轴的交点为顶点的椭圆.(O为坐标原点)(Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若MO OA λ=,当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.解:(Ⅰ)由题意得23ab ⎧=⎪⎨= 又0a b >>,解得25a =,24b =.因此所求椭圆的标准方程为22154x y +=. (Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545AAk k OA x y k k k +=+=+=+++.设()M x y ,由(0)MO OA λλ=≠,所以222MO OA λ=,即2222220(1)45k x y kλ++=+, 因为l 是AB 的垂直平分线,所以直线l 的方程为1y x k=-,即x k y =-,因此22222222222220120()4545x y x y x y x y x y λλ⎛⎫+ ⎪+⎝⎭+==++, 又220x y +≠,所以2225420x y λ+=,故22245x y λ+=. 又当0k =或不存在时,上式仍然成立.综上所述,M 轨迹222(0)45x y λλ+=≠. (2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k =+,由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45AAk OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k+=+. 解法一:由于22214AMBSAB OM =△2222180(1)20(1)44554k k k k ++=⨯⨯++ 2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时最小409AMB S =△.当0k =,140229AMB S =⨯=>△. 当k不存在时,140429AMB S ==>△.综上,AMB △的面积的最小值为409.解法二:因为222222111120(1)20(1)4554k k OAOMk k +=+++++2224554920(1)20k k k +++==+,又22112OA OMOAOM+≥,409OA OM ≥,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△.下同解法一. 3.已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?解: (1)直线l 的方程可化为22411m m y x m m =-++,此时斜率21mk m =+ 因为()2112m m ≤+,所以2112m k m =≤+,当且仅当1m =时等号成立 所以,斜率k 的取值范围是11,22⎡⎤-⎢⎥⎣⎦;(2)不能.由(1)知l 的方程为()4y k x =-,其中12k ≤; 圆C的圆心为()4,2C -,半径2r =;圆心C到直线l的距离d =由12k ≤,得1d ≥>,即2rd >,从而,若l 与圆C相交,则圆C截直线l 所得 的弦所对的圆心角小于23π,所以l 不能将圆C分割成弧长的比值为12的两段弧; 4.双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.解:(Ⅰ)设OA m d =-,AB m =,OB m d =+则由题有:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠== 由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e = (Ⅱ)过F 直线方程为()ay x c b=--,与双曲线方程22221x y a b -=联立将2a b =,c =代入,化简有22152104x x b b-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369x y -=。
【备战2013年】历届高考数学真题汇编专题10 圆锥曲线最新模拟 理1、(2012济南一中模拟)过双曲线2222x y a b -=1(a >0,b >0)的左焦点F ,作圆2224a x y +=的切线,切点为E ,延长FE 交双曲线右支于点P ,若E 为PF 的中点,则双曲线的离心率为 .2、(2012滨州二模)设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点PA⊥l ,A 为垂足,如果AF PF |=____3、(2012德州二模)设双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈,316λμ=,则该双曲线的离心率为A .2 B .5 C .3D .98答案:C解析:双曲线的渐近线为:y =bx a±,设焦点F (c ,0),则 A (c ,bc a ),B (c ,-bc a ),P (c ,2b a ),因为OP OA OB λμ=+所以,(c ,2b a)=(()c λμ+,()bc a λμ-),所以,λμ+=1,λμ-=bc ,解得:,22c b c b c c λμ+-==,又由316λμ=,得:32216c b c b c c +-⨯=,解得:2234a c =,所以,e =3,选C 。
4、(2012德州二模)设斜率为1的直线l 过抛物线2(0)y ax a =>的焦点F ,且和y 轴交于点A ,若△OAF(O 为坐标原点)的面积为8,则a 的值为 。
5、(2012德州一模)已知抛物线240y px(p )=>与双曲线2222100x y (a ,b )a b-=>>有相同的焦点F ,点A 是两曲线的交点,且AF x ⊥轴,则双曲线的离心率为( )A .12 B 1 C 1 D .12答案:B解析:依题意,得F (p ,0),因为AF x ⊥轴,设A (p ,y ),224y p =,所以y =2p ,所以,A (p ,2p ),又A 点在双曲线上,所以,22224p p a b-=1,又因为c =p ,所以,222224c c a c a--=1,化简,得:42246c a c a -+=0,即:42610c c a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,所以23e =+e 1,选B 。
高考数学《圆锥曲线》试题汇编1.(湖北文)(19)(本小题共14分)已知椭圆2222:1(0)x y G a b a b+=>>的离心率为63,右焦点为(22,0)。
斜率为1的直线l 与椭圆G交于,A B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -。
(Ⅰ)求椭圆G 的方程;(Ⅱ)求PAB 的面积。
2.福建文11.设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线I 的离心率等于A.1322或 B.223或 C.122或 D.2332或 3.福建文18.(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x2=4y 相切于点A 。
(1) 求实数b 的值;(11)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.4.上海文22.(本题满分16分,第1小题4分,第2小题6分,第3小题6分)已知椭圆222:1x C y m+=(常数1m >),P 是曲线C 上的动点,M 是曲线C 上的右顶点,定点A 的坐标为(2,0)(1)若M 与A 重合,求曲线C 的焦点坐标; (2)若3m =,求PA 的最大值与最小值;(3)若PA 的最小值为MA ,求实数m 的取值范围. 5.天津文(18) 设椭圆)0(12222>>=+b a by ax 的左右焦点分别为21,F F ,点),(b a P 满足212F F PF =。
(1)求椭圆的离心率e ;(2)设直线2PF 与椭圆相交于B A ,两点。
若直线2PF 与圆16)3()1(22=-++y x 相交于N M ,两点,且AB MN 85=,求椭圆的方程。
6.全国新课标文(20)(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上(Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交与A ,B 两点,且OA OB ⊥,求a 的值。
2012-2021十年全国高考数学真题分类汇编 圆锥曲线大题(原卷版)1.(2021年高考全国甲卷理科)抛物线C 地顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 地方程。
(2)设123,,A A A 是C 上地三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 地位置关系,并说明理由.2.(2021年高考全国乙卷理科)已知抛物线()2:20C x py p =>地焦点为F ,且F 与圆22:(4)1M x y ++=上点地距离地最小值为4.(1)求p 。
(2)若点P 在M 上,,PA PB 是C 地两款切线,,A B 是切点,求PAB △面积地最大值.3.(2020年高考数学课标Ⅰ卷理科)已知A ,B 分别为椭圆E :2221x y a+=(a >1)左,右顶点,G 为E 地上顶点,8AG GB ⋅=,P 为直线x =6上地动点,PA 与E 地另一交点为C ,PB 与E 地另一交点为D .(1)求E 方程。
(2)证明:直线CD 过定点.4.(2020年高考数学课标Ⅱ卷理科)已知椭圆C 1:22221x y a b+=(a >b >0)右焦点F 与抛物线C 2地焦点重合,C 1地中心与C 2地顶点重合.过F 且与x 轴垂直地直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1地离心率。
(2)设M 是C 1与C 2地公共点,若|MF |=5,求C 1与C 2地标准方程.5.(2020年高考数学课标Ⅲ卷理科)已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 地左,右顶点.(1)求C 地方程。
(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 地面积.的的的6.(2019年高考数学课标Ⅲ卷理科)已知曲线C :y =22x ,D 为直线y =12-上地动点,过D 作C 地两款切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心地圆与直线AB 相切,且切点为线段AB 地中点,求四边形ADBE 地面积.7.(2019年高考数学课标全国Ⅱ卷理科)已知点()2,0A -,()2,0B ,动点(),M x y 满足直线AM 与BM 地斜率之积为12-.记M 地轨迹为曲线C .()1求C 地方程,并说明C 是什么曲线。
高考数学模拟题汇编《圆锥曲线》专项练习题-带答案一 单选题1.(23-24高三上·辽宁葫芦岛·期末)已知点F 是双曲线2219y x -=的左焦点 点P 是双曲线上在第一象限内的一点 点Q 是双曲线渐近线上的动点 则PF PQ +的最小值为( ) A .8B .5C .3D .22.(23-24高三上·辽宁大连·期末)已知曲线“()()22:log 2024log 20241a b C x y +=表示焦点在y 轴上的椭圆”的一个充分非必要条件是( ) A .0a b << B .1a b << C .32a b << D .1b a <<3.(23-24高三上·辽宁抚顺·期末)已知双曲线22:124x y C -=的左 右焦点分别为1F 2F .过2F 作其中一条渐近线的垂线 垂足为P 则1PF =( ) A 3B .3C .2D .44.(23-24高三上·辽宁沈阳·期末)圆锥曲线的发现与研究起源于古希腊 阿波罗尼奥斯(前262-前190)的《圆锥曲线论》全书8篇 共487个命题. 16世纪天文学和物理学揭示了圆锥曲线是自然界物体运动的普遍性形式. 17 18世纪随着射影几何学和解析几何学的创立发展 18世纪40年代瑞士数学家欧拉给出了现代形式下圆锥曲线的系统阐述. 现有圆锥PO '顶点为P 底面圆心为O ' 母线与底面直径的长度相同. 点A 在侧面上 点B 在底面圆周上 MN 为底面直径 二面角A MN B --为30. 已知平面AMN 与圆锥PO '侧面的交线是某椭圆的一部分 则该椭圆的离心率为( ) A .22B 3C .12D 5二 多选题5.(23-24高三上·辽宁抚顺·期末)直线3x ty =+过抛物线2:2(0)C y px p =>的焦点 且与C 交于M N 两点 则( ) A .3p =B .6pC .MN 的最小值为6D .MN 的最小值为126.(23-24高三上·辽宁大连·期末)已知椭圆22:143x y E +=左焦点F 左顶点C 经过F 的直线l 交椭圆于,A B 两点(点A 在第一象限) 则下列说法正确的是( )A .若2AF FB = 则l 的斜率6k =B .4AF BF +的最小值为274C .以AF 为直径的圆与圆224x y +=相切D .若直线,AC BC 的斜率为12,k k 则1294k k ⋅=-7.(23-24高三上·辽宁沈阳·期末)已知点A B 在双曲线C :221x y -=上 点()00,M x y 是线段AB 的中点 则( )A .当22001x y ->时 点A B 在双曲线的同一支上B .当22000x y -<时 点A B 分别在双曲线的两支上C .存在点A B 使得22000x y -=成立D .存在点A B 使得220001x y <-<成立三 填空题8.(23-24高三上·辽宁葫芦岛·期末)已知F 为拋物线21:4C y x =的焦点 过点F 的直线l 与拋物线C 交于不同的两点A B 拋物线在点,A B 处的切线分别为1l 和2l 若1l 和2l 交于点P 则225||PF AB +的最小值为 .9.(23-24高三上·辽宁大连·期末)如图所示 在圆锥内放入两个球12,O O 它们都与圆锥相切(即与圆锥的每条母线相切 切点圆分别为12,C C .这两个球都与平面α相切 切点分别为12,F F 丹德林(G .Dandelin )利用这个模型证明了平面α与圆锥侧面的交线为椭圆 12,F F 为此椭圆的两个焦点 这两个球也称为G .Dandelin 双球.若圆锥的母线与它的轴的夹角为3012,C C 的半径分别为2 5 点M 为2C 上的一个定点 点P 为椭圆上的一个动点 则从点P 沿圆锥表面到达M 的路线长与线段1PF 的长之和的最小值是 .10.(23-24高三上·辽宁沈阳·期末)点A 在圆()2232x y -+=上 点B 在抛物线24y x =上 则线段AB 长度的最小值为 . 四 解答题11.(23-24高三上·辽宁葫芦岛·期末)已知椭圆2222:1(0)x y G a b a b+=>>经过31,,(2,0)2D E ⎛⎫ ⎪⎝⎭两点.作斜率为12的直线与椭圆G 交于,A B 两点(A 点在B 的左侧) 且点D 在直线l 上方. (1)求椭圆G 的标准方程(2)证明:DAB 的内切圆的圆心在一条定直线上.12.(23-24高三上·辽宁大连·期末)已知抛物线2:2(0)G x py p =>经过点()2,1 经过点()0,2的直线l 与抛物线G 交,A B 两点 过,A B 两点作抛物线G 的切线相交于点P Q 为线段AB (,A B 两点除外)上一动点 直线PQ 与抛物线G 交,C D 两点.(1)若PAB 的的面积为123 求直线l 方程(2)求证:PC PD CQDQ=.13.(23-24高三上·辽宁抚顺·期末)已知椭圆2222:1(0)x y C a b a b +=>>的左 右焦点分别为1F 2F 过点1F 作x 轴的垂线 并与C 交于A B 两点 过点2F 作一条斜率存在且不为0的直线与C 交于M N 两点||3AB = 1F MN △的周长为8.(1)求C 的方程.(2)记1A 2A 分别为C 的左 右顶点 直线1A M 与直线AB 相交于点P 直线2A N 与直线AB 相交于点Q 12PA A △和12QA A △的面积分别为1S 2S 试问12S S 是否为定值?若是 求出该定值 若不是 请说明理由.14.(23-24高三上·辽宁辽阳·期末)在平面直角坐标系xOy 内 已知定点()2,0F 定直线3:2l x = 动点P 到点F 和直线l 的距离的比值为233记动点P 的轨迹为曲线E . (1)求曲线E 的方程.(2)以曲线E 上一动点M 为切点作E 的切线l ' 若直线l '与直线l 交于点N 试探究以线段MN 为直径的圆是否过x 轴上的定点.若过定点.求出该定点坐标 若不过 请说明理由.15.(23-24高三上·辽宁沈阳·期末)在平面直角坐标系中 已知点()12,0F - ()22,0F 点P 满足1226PF PF +=. 记P 的轨迹为C . (1)求C 的方程 (2)已知点()3,1A 设点M N 在C 上 且直线MN 不与x 轴垂直 记1k 2k 分别为直线AM AN 的斜率.(ⅰ)对于给定的数值λ(R λ∈且13λ≠) 若12k k λ= 证明:直线MN 经过定点 (ⅱ)记(ⅰ)中的定点为Q 求点Q 的轨迹方程.参考答案:1.B【分析】设右焦点为G 根据双曲线的定义可得2PF PQ PG PQ +=++ 再根据三角形性质结合点到线的距离求解即可. 【详解】设右焦点为()10,0G又由对称性 不妨设Q 在渐近线30x y -=上.根据双曲线的定义可得22PF PQ PG PQ GQ +=++≥+ 当且仅当,,P G Q 三点共线时取等号.又当GQ 与渐近线垂直时取最小值 为22310331GQ ==+ 故PF PQ +最小值为5.故选:B 2.C【分析】若()()22:log 2024log 20241a b C x y +=表示焦点在y 轴上的椭圆 得出对应a b 关系 结合充分条件与必要条件的性质即可得.【详解】若()()22:log 2024log 20241a b C x y +=表示焦点在y 轴上的椭圆则有log 20240log 20240log 2024log 2024a b a b >⎧⎪>⎨⎪>⎩ 即11a b a b>⎧⎪>⎨⎪<⎩ 即1a b << 故A D 选项为既不充分也不必要条件 B 选项为充要条件 C 选项为充分非必要条件 故C 选项符合要求. 故选:C. 3.B 【分析】根据余弦定理即可求解. 【详解】双曲线的渐近线方程为0ay bx ±= 其中2,2a b == 所以()2,0F c 到0ay bx ±=的距离为22bc b a b=+ 因此2PF b =2OF c = 22PF b == 则()()2222OP F O PF a =-=由222222112212||||022OP OF PF OP OF PF OP OF OP OF +-+-+=⋅⋅得()22221212||2(26)16PF PF OP OF +=+=⨯+= 解得123PF =.故选:B4.B【分析】根据条件 确定椭圆的长轴长和椭圆上一点 求出b 再求c 可得椭圆的离心率.【详解】如图:(图一)为空间几何体的直观图 (图二)为平面POB 截空间几何体的剖面图 (图三)为以椭圆长轴所在直线为x 轴 长轴中垂线为y 轴的平面图形.易得(图二)中线段AD 的长为椭圆长轴长 不妨设圆锥底面半径为2 则4PB =由题意可知PBE △为正三角形 30AOB ︒∠= 60PBO ︒∠=所以PB AD ⊥ 所以1,3AB AO == 所以3AP = 所以332AD a == 所以在(图三)中32N ⎛⎫ ⎪ ⎪⎝⎭ 将32N ⎛⎫ ⎪ ⎪⎝⎭代入22221x y a b +=中解得32b = 所以222793422c a b =-- 所以332e 33c a ===. 故选:B 5.BD【分析】先根据题意及直线3x ty =+过定点(3,0)即可判断A B 再根据抛物线的性质知直线垂直于x 轴MN 取得最小值 进而即可判断C D .【详解】对于A B 由直线3x ty =+与x 轴的交点坐标为(3,0) 则32p 即6p 故A 错误 B 正确对于C D 当直线垂直于x 轴 即0=t 时 MN 取得最小值 且最小值为212p =.故C 错误 D 正确.故选:BD . 6.BCD【分析】对于A 联立直线l 的方程与椭圆方程 结合韦达定理以及2AF FB =即可验算 对于B 由弦长公式 韦达定理可得1111AF BF +为定值 结合基本不等式之“乘1法”即可判断 对于C 结合椭圆定义以及两点间距离公式即可判断C 对于D 由韦达定理以及斜率公式即可判断 D.【详解】易知:()()121,0,1,0F F - 对于A 若112AF F B = 显然直线1l 的斜率存在且大于0设直线()()11122:1,,,,l x my A x y B x y =- 联立椭圆方程221143x my x y =-⎧⎪⎨+=⎪⎩ 化简整理得()2234690m y my +--= 显然12122269Δ0,,,3434m y y y y m m ->+==++ 又()()1111221,,1,AF x y F B x y =---=+ 故122y y =-由122122126349342m y y m y y m y y ⎧+=⎪+⎪-⎪=⎨+⎪=-⎪⎪⎩解得245m = 又0k > 故5k = A 错误 对于B 由点A 在x 轴的上方 显然120,0y y ><又2211121,1AF m y BF m y =+=-+2122211121211111AF BF m y m y m y y +=+⋅+⋅+⋅⋅()()()2221122221221214434391134m y y y y m m m y y m +⎡⎤-+-⋅⎣⎦+===++⋅⋅+ 故()111111311444AF BF AF BF AF BF ⎛⎫+=++ ⎪ ⎪⎝⎭11111111443327552444BF AF BF AF AF BF AF BF ⎛⎛⎫ =++≥+⋅= ⎪ ⎪ ⎝⎭⎝当且仅当11114BF AF AF BF = 即112AF BF =时取等 B 正确对于C 设()11,A x y 1AF 的中点为P 则111,22x y P -⎛⎫⎪⎝⎭又()221211442x AF y OP -=+=由椭圆定义知:21||||222AF AF += 即1||||22AF OP =-又224x y +=的圆心为(0,0)O 半径为2 故以1AF (AF )为直径的圆与圆224x y +=相切 C 正确对于D 2121212122222698124,,,34343434m m y y y y x x x x m m m m ---++==+==++++ ()()()212122*********934124822244243434AC BCy y y y m k k m x x x x x x m m -+⋅====--+-++++++⋅+++ D 正确.故选:BCD.【点睛】关键点睛:判断B 选项的关键是首先得出1111AF BF +为定值 判断C 选项的关键是结合椭圆定义以及圆相切的条件 从而即可顺利得解. 7.ABC【分析】分类谈论 对直线AB 是否存在斜率的时候 讨论弦的中点问题.【详解】若直线AB 不存在斜率 设直线方程为:0x x = 代入221x y -=得:2201y x =-当01x >或01x <-时 ()0,0M x 是弦AB 的中线 此时A B 关于x 轴对称 且在双曲线的同一支上22001x y ->若直线AB 存在斜率 设直线方程:()00y y k x x -=-⇒()00y kx y kx =+-代入221x y -=得:()220010x kx y kx ⎡⎤-+--=⎣⎦整理得:()()()22200001210k x k y kx x y kx ------=. 因为直线AB 与双曲线有两个不同的交点 所以:210k -≠且()()()222000024110k y kx k y kx ⎡⎤⎡⎤∆=----+>⎣⎦⎣⎦所以:22220000120k k x kx y y --+-<设()11,A x y ()22,B x y 则()0012221k y kx x x k -+=-由1202x x x +=⇒()0002221k y kx x k -=-⇒00x k y = 所以: 222200000000001?2?·0x x x x x y y y y y ⎛⎫⎛⎫--+-< ⎪ ⎪⎝⎭⎝⎭⇒()()2222000010x y x y ⎡⎤--->⎣⎦ ⇒2200x y -<或22001x y ->.故D 不成立 又()2012211y kx x x k -+=-()22000220y x y x y-+=-当22000x y -<时 120x x < A B 两点分别在双曲线的两支上当22001x y ->时 120x x > A B 两点在双曲线的同一支上.故AB 成立当000x y ==时 ()1,0A - ()1,0B 可使命题成立 故C 正确. 故选:ABC 8.10 【分析】设直线AB 方程为1y kx =+ ()()1122,,,A x y B x y 联立抛物线方程得出韦达定理 再利用导数的几何意义求解,AP BP 方程 联立,AP BP 可得()2,1P k - 再代入225||PF AB+根据基本不等式求解最小值即可. 【详解】2:4C x y =的焦点为()0,1 设直线AB 方程为1y kx =+ ()()1122,,,A x y B x y .联立直线与抛物线方程有2440x kx --= 则()212122444AB y y k x x k =++=++=+.又214y x =求导可得12y x '= 故直线AP 方程为()11112y y x x x -=-.又21114y x =故21111:24AP y x x x =- 同理22211:24BP y x x x =-.联立21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩可得()()2212121124x x x x x -=- 解得122x x x += 代入可得1212,24x x x x P +⎛⎫⎪⎝⎭代入韦达定理可得()2,1P k - 故244PF k +故()22222252525||44244104444PF k kAB k k +=++≥+⨯=++ 当且仅当22254444k k +=+ 即12k =±时取等号.故答案为:10 【点睛】方法点睛:如图 假设抛物线方程为22(0)x py p => 过抛物线准线2p y =-上一点00(,)P x y 向抛物线引两条切线 切点分别记为,A B 其坐标为1122(,),(,)x y x y . 则以点P 和两切点,A B 围成的三角形PAB 中 有如下的常见结论:结论1.直线AB 过抛物线的焦点F . 结论2.直线AB 的方程为0002()2y yx x pp y y +==+. 结论 3.过F 的直线与抛物线交于,A B 两点 以,A B 分别为切点做两条切线 则这两条切线的交点00(,)P x y 的轨迹即为抛物线的准线. 结论4.PF AB ⊥. 结论5.AP PB ⊥.结论6.直线AB 的中点为M 则PM 平行于抛物线的对称轴. 结论7.2PF AF BF =⋅.9.6【分析】在椭圆上任取一点P 连接VP 交球1O 于Q 交球2O 2C 于点R 根据111O PF O PQ ≌可知1PF PQ = 则1PF d PQ d PQ PR QR +=+≥+= 由此可求得最小值.【详解】解:在椭圆上任取一点P 连接VP 交球1O 于点Q 交球2O 于点R连接111112,,,,O Q O F PO PF O R 在11ΔO PF 与1ΔO PQ 中有: 111O Q O F = (1r 为圆1C 的半径 2r 为圆2C 的半径 )11190O QP O F P ∠=∠=1O P 为公共边 所以111O PF O PQ ≅ 所以1PF PQ =设点P 沿圆锥表面到达M 的路线长为d 则1PF d PQ d PQ PR QR +=+≥+= 当且仅当P 为直线VM 与椭圆交点时取等号 125261sin302r r QR --=== 所以最小值为6. 故答案为:6.【点睛】关键点点睛:本题解题的关键是证明111O PF O PQ ≅得出 1=PF PQ 从而1PF d PQ d PQ PR QR +=+≥+= 转化为 ,,V P M 三点共线时求QR .102【分析】先求出圆心和半径 再由两点间距离公式和配方法求出即可. 【详解】圆()2232x y -+=的圆心()3,0C 2r =设(,2,0B m m m ≥ 则()()()222min 3221822AB BC r m mm =-=-+=-+211.(1)22143x y +=(2)解析见详解【分析】(1)根据E 点坐标 可知2a = 再将D 点坐标代入椭圆方程 可求b 的值 从而得到椭圆的标准方程.(2)分析出AD BD k k =- 得到ADB ∠的平分线就是过D 点且与x 轴垂直的直线 也就是所求三角形内切圆圆心所在的直线.【详解】(1)因为椭圆焦点在x 轴上 且过点()2,0E 所以2a = 有椭圆过点31,2D ⎛⎫⎪⎝⎭所以219144b+=⇒23b =.故椭圆G :22143x y +=. (2)如图:设直线AB 的方程为12y x t =+ 联立方程组:2212143y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩ 消去y 得: 22134122x x t ⎛⎫++= ⎪⎝⎭整理得:2230x tx t ++-=.由0∆>得:()22430t t -->⇒24t <.设()11,A x y ()22,B x y 则:12x x t +=- 212·3x x t =-. 又111111313231222·1121ADy x t x t kx x x -+-+-===--- 22231·21BD x t k x +-=-. 因为:AD BD k k +=1212232311··2121x t x t x x +-+-+--()()()()()()1221122312311·211x t x x t x x x +--++--=--()()()()()1212122242231·211x x t x x t x x +-+--=--()()()()2123223011t t t t x x -----==-- 所以:ADB ∠的角平分线为:1x =. 故DAB 的内切圆圆心一定在直线1x =上.【点睛】关键点点睛:把问题转化为证明0AD BD k k += 从而得到ADB ∠的角平分线是定直线 进而说明DAB 的内切圆圆心在直线上.这个转化是关键.12.(1)2y x =±+ (2)证明见解析【分析】(1)由题意设直线AB 方程为2y kx =+ 将该直线的方程与抛物线的方程联立 列出韦达定理 得弦长AB 利用导数求得切线AP 与BP 的方程 得出P 点坐标 计算点P 到直线AB 距离d 由11232PAB S AB d =⨯=△k 的值 可得解 (2)方法一:设()()()003344,,,,,Q x y C x y D x y 设(),,1,1PC CQ PD DQ λμλμ==≠-≠- 可得33,x y 的表达式 代入抛物线方程化简 结合点()00,Q x y 在直线AB 上 求得0λμ+= 即可证得结论.方法二:设()()()3344,,,,,Q Q Q x y C x y D x y 设直线PQ 方程为()()22,y m x k m k +=-≠ 与抛物线方程联立方程组 根据根与系数的关系 结合||,||,||,||PC DQ PD CQ 的表达式 计算可证得出结论. 【详解】(1)已知抛物线2:2(0)G x py p =>经过点()2,1 所以抛物线2:4G x y = 设()()1122,,,A x y B x y 由题意可知直线AB 斜率存在 设直线AB 方程为2y kx =+联立方程组242x yy kx ⎧=⎨=+⎩ 可得2480x kx --= 所以21212Δ16320,4,8k x x k x x =+>+==-所以弦长22212111632AB k x k k +-=++ 12y x '=所以切线AP 方程:()11112y y x x x -=- 即2111124y x x x =-①同理可得切线BP 方程:2221124y x x x =-② 联立①和②方程组21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩解得:122,22x x x k y +===- 所以()2,2P k - 又因为点P 到直线AB 距离22421k d k+=+所以()232222242111163242123221PABk S AB d k k k k +=⨯=++⨯=+=+△可得21k = 即1k =± 所以直线AB 方程为2y x =±+.(2)方法一:设()()()003344,,,,,Q x y C x y D x y 设(),,1,1PC CQ PD DQ λμλμ==≠-≠-所以()()3303032,2,x k y x x y y λ-+=-- 所以03032121k x x y y λλλλ+⎧=⎪⎪+⎨-+⎪=⎪+⎩代入抛物线方程得:()()()2002412k x y λλλ+=+-+化简得()()22200004448480,x y kx y k λλ-+-+++= 同理()()22200004448480x y kx y k μμ-+-+++=即,λμ是方程()()22200004448480x y x kx y x k -+-+++=的两根因为点()00,Q x y 在直线AB 上 即004480kx y -+=所以方程化为()222004480x y x k -++= 可得0λμ+=即PC PD CQDQ=成立.方法二:设()()()3344,,,,,Q Q Q x y C x y D x y由题意知直线PQ 的斜率存在 设直线PQ 方程为:()()22,y m x k m k +=-≠联立方程组()2422x yy m x k ⎧=⎪⎨+=-⎪⎩ 可得24880x mx km -++= ()23434Δ164880,4,88m km x x m x x km =-+>+==+因为22341,1Q PC m k x DQ m x +-=+- 22431,1Q PD m k x CQ m x +-=+-因为()()()()344320,20Q Q k x x x k x x x -->--> 所以||||||||PC DQ PD CQ -222234431111Q Q m k x m x m k x m x =+-+-+-+-()()()23434341422Q m k x x x k x x x x ⎡⎤=+---++⎣⎦()()()()221448164124Q Q m k m x km m k m x km ⎡⎤⎡⎤=+-++=+-++⎣⎦⎣⎦③由两条直线联立:()222y m x k y kx ⎧+=-⎨=+⎩可得24Q km x k m +=-+ 代入③可知()()22441240km PC DQ PD CQ m k m km k m +⎡⎤-=+-++=⎢⎥-+⎣⎦即PC PD CQDQ=成立.13.(1)22143x y +=(2)12S S 是定值 定值为19【分析】(1)根据通径以及焦点三角形的周长即可联立求解,,a b c(2)联立直线与椭圆方程 根据直线方程可得,P Q 坐标 即可由三角形的面积公式化简求解. 【详解】(1)将x c =-代入2222:1(0)x y C a b a b +=>>可得2b y a=± 所以223,48,b aa ⎧=⎪⎨⎪=⎩解得2a = 3b = 故C 的方程为22143x y += (2)12S S 为定值 定值为19.理由如下:依题可设直线MN 的方程为(1)y k x =- ()11,M x y ()22,N x y联立方程组221,43(1),x y y k x ⎧+=⎪⎨⎪=-⎩整理得()22223484120k x k x k +-+-= 则2122834k x x k +=+ 212241234k x x k -=+. 易知1(2,0)A - 2(2,0)A 直线AB 的方程为=1x - 则直线1A M 的方程为()1122y y x x =++ 令=1x - 得()1111122P k x y y x x -==++ 同理可得()222231322Q k x y y x x ---==--.()()()()()()1112111212212112122212122211312322312k x x x x PF S x x x x S QF x x x x x x k x x -+----+====-+-+----()()2121212121212112462111341218323239334k x x x x x x k k x x x x x x k ---+-++===-++---+. 故12S S 为定值 且该定值为19.14.(1)2213x y -=(2)定点(2,0)T 理由见解析【分析】(1)设点(,)P x y 是所求轨迹E 上的任意一点 根据题意 列出方程 即可求解 (2)设l '的方程为y mx n =+ 联立方程组 根据Δ0= 求得22130n m +-= 得到3mx n=- 求得31(,)m M n n -- 再联立两直线 求得33(,)22N m n + 设(,0)T t 结合0TM TN ⋅=恒成立 化简得到(2)(26)0t nt n m -++=恒成立 求得t 的值 即可求解.【详解】(1)解:设点(,)P x y 是所求轨迹E 上的任意一点 因为定点()2,0F 定直线l :32x =动点P 到点F 和直线l 2322(2)2332x y x -+=- 化简得2213x y -=所以曲线E 的方程为2213x y -=.(2)解:因为直线l '与l 相交 所以l '的斜率存在 可设l '的方程为y mx n =+ 联立方程组2213y mx n x y =+⎧⎪⎨-=⎪⎩ 整理得222(13)6330m x mnx n ----=则222(6)4(13)(33)0mn m n ∆=-----= 可得22130n m +-=即2213m n -=-且2213n m += 所以222690n x mnx m ---= 即2(3)0nx m += 所以3m x n =-则222331m n m y mx n n n n n-=+=-+==- 所以31(,)m M n n --联立方程组32y mx nx =+⎧⎪⎨=⎪⎩解得32y m n =+ 即33(,)22N m n + 假设以线段MN 为直径的圆过x 轴上一定点 设为(,0)T t 则TM TN ⊥ 所以0TM TN ⋅=恒成立 即3133,,022m t t m n n n ⎛⎫⎛⎫---⋅-+= ⎪ ⎪⎝⎭⎝⎭可得3313()()()()022m t t m n n n ---+-+= 即2933310222m m m t t t n n n-+-+--= 整理得29632320m mt nt nt m n -+-+--=即22326120nt nt n mt m --+-= 即(2)(26)0t nt n m -++=恒成立 要使得(2)(26)0t nt n m -++=恒成立 则2t = 所以恒过定点(2,0)T 即以线段MN 为直径的圆过x 轴上一定点(2,0)T .【点睛】方法总结:解答圆锥曲线的定点 定值问题的策略:1 参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量 即确定题目中核心变量(通常为变量k ) ②利用条件找到k 过定点的曲线0(),F x y =之间的关系 得到关于k 与,x y 的等式 再研究变化量与参数何时没有关系 得出定点的坐标2 由特殊到一般发:由特殊到一般法求解定点问题时 常根据动点或动直线的特殊情况探索出定点 再证明该定点与变量无关. 15.(1)22162x y +=(2)(ⅰ)证明见解析 (ⅱ)3y =(除去点(3,1)-)【分析】(1)根据椭圆的定义 写出点P 的轨迹方程(2)设直线MN 的方程 与椭圆方程联立 得2631M N km x x k +=-+ 223631M N m x x k -=+ 用k 表示m 可得直线所过定点 消去定点中的参数 得Q 点的轨迹方程.【详解】(1)因为121226PF PF F F +=>所以P 的轨迹是以1F 2F 为焦点的椭圆 设方程为22221x ya b+=(0)a b >>则226a = 2c = 222a c b -= 所以26a = 22b = C 的方程为22162x y +=.(2)设直线MN 的方程为:y kx m =+ 31k m +≠点M N 满足22162x y y kx m ⎧+=⎪⎨⎪=+⎩即M x N x 满足222(31)6360k x kmx m +++-= 则2222364(31)(36)0k m k m -+-> 且2631M N km x x k +=-+ 223631M N m x x k -=+. (ⅰ3133(3)(3)3(31)N M N M M N M N k m x x x x k m -+==----++所以12313(31)k m k k k m λ-+==++ 得31(31)31m k λλ+=-+- 直线MN 的方程为:313131(31)(3)313131y kx k k x λλλλλλ+++=-+=---- 所以直线过定点3131(3)3131λλλλ++---. (ⅱ)由313313131Q Q x y λλλλ+⎧=⎪⎪-⎨+⎪=-⎪-⎩得3Q Q y x =(其中3Q x ≠ 所以点Q 的轨迹方程为直线3y x =(除去点(3,1)-). 【点睛】关键点睛:设直线MN 的方程为:y kx m =+ 因为要证明过定点 所以需要建立m 和k 之间的关系式 在方程中消去一个 可得直线所过定点.。
圆锥曲线--高考真题汇编第一节椭圆1.(2023全国甲卷理科12)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则OP =()A.25 C.35【解析】解法一(利用焦点三角形面积公式):设122F PF θ∠=,π02θ<<.22212222cos sin 1tan 3cos cos 2cos sin 1tan 5F PF θθθθθθθ--∠====++,解得1tan 2θ=.由椭圆焦点三角形面积公式得1222121tantan 6322F PF F PF S b b θ∠===⨯=△.121211322F PF P P S F F y ===△,解得23P y =.则代入椭圆方程得292P x =,因此302OP ==.故选B.解法二(几何性质+定义):因为1226PF PF a +==①,22212121122cos PF PF PF PF F PF F F +-⋅∠=,即2212126125PF PF PF PF +-⋅=②,联立①②,解得12152PF PF ⋅=,221221PF PF +=.由中线定理可知,()()222212122242OP F F PF PF +=+=,而12F F =,解得302OP =.故选B.解法三(向量法):由解法二知12152PF PF ⋅=,221221PF PF +=.而()1212PO PF PF =+,所以1213022PO PF PF =+===.故选B.2.(2023全国甲卷文科7)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.5【分析】解法一:根据焦点三角形面积公式求出12PF F △的面积,即可解出;解法二:根据椭圆的定义以及勾股定理即可解出.【解析】解法一:因为120PF PF ⋅=,所以1290F PF ∠= ,从而122121tan 4512F PF S b PF PF ===⨯⋅ △,所以122PF PF ⋅=.故选B.解法二:因为120PF PF ⋅=,所以1290F PF ∠= ,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选B.3.(2023新高考I 卷5)设椭圆()2212:11x C y a a +=>,222:14x C y +=的离心率分别为1e ,2e .若21e =,则a =()A.233B.【解析】11a e a =,232e =,由21e =可得32=,解得233a =.故选A.4.(2023新高考II 卷5)已知椭圆22:13x C y +=的左、右焦点分别为12,F F ,直线y x m =+与C 交于,A B 两点,若1F AB △的面积是2F AB △面积的2倍,则m =()A.23B.3C.3-D.23-【解析】设AB 与x 轴相交于点(),0D m -,由122F AB F AB S S =△△,得122F DF D=.又12F F =23F D =,则有()3m --=,解得3m =.故选C.第二节双曲线1.(2023新高考I 卷16)已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为12,F F ,点A 在C 上,点B 在y 轴上,11F A F B ⊥ ,2223F A F B =- ,则C 的离心率为.【解析】解法一:建立如图所示的平面直角坐标系,设()()()12,0,,0,0,F c F c B n -,由2223F A F B =- 可得52,33A c n ⎛⎫- ⎪⎝⎭,又11F A F B ⊥ 且182,33F A c n ⎛⎫=- ⎪⎝⎭ ,()1,F B c n = ,则()22118282,,03333F A F B c n c n c n ⎛⎫⋅=-⋅=-= ⎪⎝⎭ ,所以224n c =,又点A 在C 上,则2222254991c n a b -=,整理可得2222254199c n a b-=,代入224n c =,可得222225169c c a b -=,即222162591e e e -=-,解得295e =或()215e =舍.故355e =.解法二:由2223F A F B =-可得2223F A F B =,设222,3F A x F B x ==,由对称性可得,13F B x =,由定义可得,122AF x a =+,5AB x =,设12F AF θ∠=,则33sin 55x x θ==,所以422cos 55x a xθ+==,解得x a =,所以1224AF x a a =+=,222F A x a ==,在12AF F △中,由余弦定理可得222216444cos 165a a c a θ+-==,2295a c =,所以355e =.2.(2023全国甲卷理科8)已知双曲线()222210,0x y a b a b-=>>的离心率为5,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15B.55C.255 D.455【解析】由5e =,则222222215c a b b a a a +==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离22235521d ⨯-==+,所以弦长221452155AB r d =--.故选D.3.(2023全国甲卷文科9)已知双曲线()222210,0x y a b a b-=>>的离心率为5,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15B.55C.255D.455【解析】由e =,则222222215c a b b a a a+==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离55d ==,所以弦长5AB =.故选D.4.(2023北京卷12)已知双曲线C 的焦点为()2,0-和()2,0,离心率为,则C 的方程为.【分析】根据给定条件,求出双曲线C 的实半轴、虚半轴长,再写出C 的方程作答.【解析】令双曲线C 的实半轴、虚半轴长分别为,a b ,显然双曲线C 的中心为原点,焦点在x 轴上,其半焦距2c =,由双曲线C ,得ca,解得a =,则b =所以双曲线C 的方程为22122x y -=.故答案为:22122x y -=.因为()2,0F c ,不妨设渐近线方程为所以222bc bcPF c a b ==+设2POF θ∠=,则tan θ=第三节抛物线2.(2023全国乙卷理科13,文科13)已知点A 在抛物线2:2C y px =上,则A 到C 的准线的距离为.【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【解析】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.3.(2023新高考II 卷10)设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于,M N 两点,l 为C 的准线,则()A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN △为等腰三角形【解析】由题意可得焦点为()1,0F ,所以12p=,2p =,A 正确;联立)214y x y x⎧=-⎪⎨=⎪⎩,消y 得231030x x -+=.设()()1122,,,M x y N x y ,由韦达定理得12103x x +=,所以12163MN MF NF x x p =+=++=,B 错误;设MN 的中点为Q ,分别过,,M N Q 向l 作垂线,垂足分别为111,,M N Q ,由梯形中位线性质及抛物线定义可得,()()111111222QQ MM NN MF NF MN r =+=+==,所以以MN 为直径的圆与准线l 相切,C 正确;由上述解题过程知,231030x x -+=,解得121,33x x ==,从而(1,3,3M N ⎛- ⎝⎭,易得OM ON MN ≠≠,OMN △不是等腰三角形,D 错误.综上,故选AC.第四节直线与圆锥曲线的位置关系1.(2023全国乙卷理科11,文科12)已知,A B 是双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--【分析】设直线AB 的斜率为AB k ,OM 的斜率为k ,根据点差法分析可得9AB k k ⋅=,对于A ,B ,D 通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【解析】设()11,A x y ,()22,B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,设直线AB 的斜率为AB k ,OM 的斜率为k ,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y y x x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1k =,9AB k =,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得2k =-,92AB k =-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()()22454456144545610∆=⨯-⨯⨯=⨯⨯-<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3k =,3AB k =,则:3AB y x =.由双曲线方程可得1a =,3b =,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :4k =,94AB k =,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确.故选D.2.(2023新高考I 卷22)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【解析】(1)设(,)P x y ,则22212x y y ⎛⎫+-= ⎪⎝⎭,故21:4W y x =+.(2)解法一:不妨设三个顶点,,A B C 在抛物线214y x =+上,且AB BC ⊥,显然,AB BC 的斜率存在且不为0,令222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,AB BC k a b k b c =+=+,1AB BC k k =-,即()()1a b b c ++=-,即1a b b c-+=+,本题等价于证明332AB BC +>,令||||AB BC b c m +=--=,则m b c =-+-,(未知数有,,a b c ,通过转化(放缩),将变量归一)由221ABBC kk =⋅,即()()22221AB BC k k a b b c =++=⋅,不妨设()221AB k a b =+≤,则m b c=-+-b =-+b c ≥--c ≥-()b b c =+-+1b a b=+++()3221a b a b⎡⎤⎣⎦++=+.令a b t +=,则()()1232323323222211223411332t t a b ta b tt t⎡⎤⎢⎥⎛⎫⎢⎥++⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎛⎫⨯ ⎪⎝⎭+++==≥=+⎣⎦,当212t =时取等号,又()2321t m t+≥取等时必有21t =,因此取不到等号,所以332m >.解法二:如图所示,先将第一问中的曲线下移14个单位,其表达式为2x y =.不妨设,,A B D 三点在抛物线上,再设()2,A t t 及AB 的斜率为k .由题意知AD 的斜率为1k -,因为11k k ⎛⎫⋅-= ⎪⎝⎭,故而可再使01k <≤,直线AB 的方程()2y t k x t -=-,即2y kx kt t =-+,与曲线联立可得220x kx kt t -+-=,由此可知()222222221211414412AB k x x k k kt t k k kt t k k t=+-=+--=+-+=+-同理,21112AD t k k=++,由此可知矩形ABCD 的周长ρ满足2211122122k k t t k kρ+-++=+2211122212k k t k t k k=+-+++22t t≥-+①12+2k t tk⎫-+⎪⎭1+k≥②()323222112122=2kkk k⎛⎫++⎪+⎝⎭=322k⎛⎫⎝⎭≥⨯③22⨯==.当1k=时①处取等号,当12,2k t tk-+同号时②处取等号,当212k=时③处取等号,显然三处不能同时取等号,所以矩形ABCD的周长大于.由题意得31a c a c +=⎧⎨-=⎩,解得所以椭圆的方程为24x y +(2)由题意得,直线2A A P 的方程为y =第五节圆锥曲线综合探究型问题1.(2023全国甲卷理科20)设抛物线()2:20C y px p =>,直线210x y -+=与C 交于,A B 两点,且AB =.(1)求p ;(2)设C 的焦点为F ,,M N 为抛物线C 上的两点,0MF NF ⋅=,求MNF △面积的最小值.【解析】(1)设()11,A x y ,()22,B x y ,联立直线与抛物线的方程22102x y y px -+=⎧⎨=⎩,消x 得()2221y p y =-,即2420y py p -+=,()21212168821042p p p p y y p y y p ∆⎧=-=->⎪+=⎨⎪=⎩,12AB y y ==-=,解得2p =,32p =-(舍).所以2p =.(2)解法一(向量法):由(1)知,抛物线的方程为24y x =,()1,0F ,设()33,M x y ,()44,N x y ,()233331,1,4y FM x y y ⎛⎫=-=- ⎪⎝⎭,()244441,1,4y FN x y y ⎛⎫=-=- ⎪⎝⎭ ,又FM FN ⊥ 得22343411044y y y y ⎛⎫⎛⎫--+= ⎪⎪⎝⎭⎝⎭,即22223434341164y y y y y y +++=,又()()22222233434434111111111222442164MNFy y y y y y S FM FN x x ⎛⎫⎛⎫⎛⎫+=⋅=++=++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ △()2223434344122816y y y y y y +⎛⎫=++= ⎪⎝⎭,又22223434341164y y y y y y +++=,得()()22343444y y y y +=-,因此343442y y y y +=-,即()343442y y y y +=-或()3434420y y y y ++-=,得()434222y y y +=-或()343222y y y +=-(这一步至关重要),()24442214162MNFy S y y ⎡+⎤=⋅+⎢⎥-⎣⎦△或()23332214162y y y ⎡+⎤⋅+⎢⎥-⎣⎦.设()22214,162MNFt S t t t ⎡+⎤=⋅+∈⎢⎥-⎣⎦R△()()22222214148181822442424242t t t t t t t t ⎛⎫⎛⎫+-+⎡⎤⎡⎤===-++=-+- ⎪ ⎪⎢⎥⎢⎥----⎣⎦⎣⎦⎝⎭⎝⎭.又()822t t -+-()822t t-+--则()(214434MNF S =-△(当且仅当2t -=时,即32t y =-=时取最小值).解法二(极坐标法):如图所示,设MF 与x 轴正半轴的夹角为θ,则有21cos MF θ=-,21sin NF θ=+,从而有()()()221cos 1sin 1sin cos sin cos MNF S θθθθθθ==-++--△()()()(22224443111112t t t ===-++++-.其中sin cos 4t θθθπ⎛⎫=-=- ⎪⎝⎭,显然当且仅当4θ3π=,即4MFO π∠=时取等号.2.(2023全国甲卷文科21)设抛物线()2:20C y px p =>,直线210x y -+=与C 交于,A B两点,且AB =.(1)求p ;(2)设C 的焦点为F ,,M N 为抛物线C 上的两点,0MF NF ⋅=,求MNF △面积的最小值.【解析】设()11,A x y ,()22,B x y ,联立直线与抛物线的方程22102x y y px-+=⎧⎨=⎩,消x 得()2221y p y =-,即2420y py p -+=,()21212168821042p p p p y y p y y p ∆⎧=-=->⎪+=⎨⎪=⎩,12AB y ==-==,解得2p =,32p =-(舍).所以2p =.(2)解法一:由(1)知,抛物线的方程为24y x =,()1,0F ,设()33,M x y ,()44,N x y ,()233331,1,4y FM x y y ⎛⎫=-=- ⎪⎝⎭ ,()244441,1,4y FN x y y ⎛⎫=-=- ⎪⎝⎭ ,又FM FN ⊥ 得22343411044y y y y ⎛⎫⎛⎫--+= ⎪⎪⎝⎭⎝⎭,即22223434341164y y y y y y +++=.又()()22222233434434111111111222442164MNFy y y y y y S FM FN x x ⎛⎫⎛⎫⎛⎫+=⋅==++=++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ △()2223434344122816y y y y y y +⎛⎫=++= ⎪⎝⎭,又22223434341164y y y y y y +++=,得()()22343444y y y y +=-,因此343442y y y y +=-,即()343442y y y y +=-或()3434420y y y y ++-=,得()434222y y y +=-或()343222y y y +=-(这一步至关重要),()24442214162MNFy S y y ⎡+⎤=⋅+⎢⎥-⎣⎦△或()23332214162y y y ⎡+⎤⋅+⎢⎥-⎣⎦.设()22214,162MNFt S t t t ⎡+⎤=⋅+∈⎢⎥-⎣⎦R △()()22222214148181822442424242t t t t t t t t ⎛⎫⎛⎫+-+⎡⎤⎡⎤===-++=-+- ⎪ ⎪⎢⎥⎢⎥----⎣⎦⎣⎦⎝⎭⎝⎭.又()822t t -+-()822t t-+--则()(214434MNFS-=-△2t -=时,即32t y =-=时取最小值).解法二(极坐标):如图所示,设MF 与x 轴正半轴的夹角为θ,则有22,1cos 1sin MF NF θθ==-+,从而有()()()221cos 1sin 1sin cos sin cos MNF S θθθθθθ==-++--△()()()(22224443111112t t t ===-++++-.其中sin cos 4t θθθπ⎛⎫=-=- ⎪⎝⎭,显然当且仅当4MFO π∠=时取等号.3.(2023全国乙卷理科20,文科21)已知椭圆()2222:10y x C a b a b+=>>的离心率为3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,求证:线段MN 中点为定点.【解析】(1)依题意,2b =,3c e a ==,则2224b a c =-=,得3a =,c =,曲线C 的方程为22194y x +=.(2)设()11,P x y ,()22,Q x y ,直线():32PQ y k x -=+,()11:22y AP y x x =++,令0x =,得1122M yy x =+,()22:22y AQ y x x =++,令0x =,得2222N yy x =+.MN 的中点坐标为12120,22y y x x ⎛⎫+ ⎪++⎝⎭,联立直线PQ 的方程和椭圆方程得()22239436y k x x y ⎧=++⎪⎨+=⎪⎩,消y 建立关于x 的一元二次方程,()229423360x k x +⎡++⎤-=⎣⎦,即()()222249162416480k x k k x k k +++++=,21222122162449164849k kx x k k k x x k ⎧++=-⎪⎪+⎨+⎪=⎪+⎩,又()()121212121223231123222222k x k x y y k x x x x x x ++++⎛⎫+=+=++ ⎪++++++⎝⎭()2221222121222162416364492323164832482444949k k k x x k k k k k k k x x x x k k --+++++=+⋅=+⋅+++++-+++3=.所以线段MN 过定点()0,3.【评注】本题为2022全国乙卷的变式题,难度有所降低,考查仍为极点、极线的性质,定点()0,3为()2,3P -关于椭圆22194y x +=的极线123x y +=-与y 轴的交点.本题以椭圆中极点极线理论的射影不变性为命题背景,考查椭圆中对称式的计算方法,要求考生具有较强的计算能力.除此之外,如果考生具有先猜再证的解题意识,本题中的定点可以通过极限思想进行猜想.4.(2023新高考II 卷21)已知双曲线C的中心为坐标原点,左焦点为()-.(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,求证:点P 在定直线上.【解析】(1)设双曲线方程为()22221,0x y a b a b-=>,且22220c a b =+=.又c e a a===,得2a =,因为c =,所以4b =,因此双曲线的方程为221416x y -=.(2)(设点设线).设()()1122,,,M x y N x y ,:4MN x ty =-.由(1)可得,()()122,0,2,0A A -,则()111:22y MA y x x =++,()222:22yNA y x x =--.联立12,MA NA 的方程,消y 得()()12122222y yx x x x +=-+-,即2121122212112122222266y x y ty ty y y x x x y ty y ty y y +--+=⋅=⋅=----.联立MN 的方程与双曲线221416x y -=,得224416x ty x y =-⎧⎨-=⎩,消x 得()224416ty y --=,即()224132480t y ty --+=.由韦达定理()()221221223244148032414841t t t y y t y y t ∆⎧=---⨯>⎪⎪⎪+=⎨-⎪⎪=⎪-⎩(非对称结构处理).()12122483412t ty y y y t ==+-,则()()1221212112331221222393236222y y y y y x x y y yy y +--+===--+--+,得1x =-.因此点P 在定直线1x =-上.5.(2023北京卷19)已知椭圆()2222:10x y E a b a b +=>>的离心率为53,,A C 分别是E 的上、下顶点,,B D分别是E 的左、右顶点,4AC =.(1)求椭圆E 的方程;(2)点P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线AP 与直线2y =-交于点N .求证://MN CD .【分析】(1)结合题意得到c a =24b =,再结合222a c b -=,解之即可;(2)依题意求得直线BC 、PD 与PA 的方程,从而求得点,M N 的坐标,进而求得MN k ,再根据题意求得CD k ,得到MN CD k k =,由此得解.【解析】(1)依题意,得53c e a ==,则53c a =,又,A C 分别为椭圆上下顶点,4AC =,所以24b =,即2b =,所以2224a c b -==,即22254499a a a -==,则29a =,所以椭圆E 的方程为22194x y +=.(2)因为椭圆E 的方程为22194x y +=,所以()()()()0,2,0,2,3,0,3,0A C B D --,因为P 为第一象限E 上的动点,设()(),03,02P m n m n <<<<,则22194m n +=,易得022303BC k +==---,则直线BC 的方程为223y x =--,033PD n n k m m -==--,则直线PD 的方程为()33n y x m =--,联立()22333y x n y x m ⎧=--⎪⎪⎨⎪=-⎪-⎩,解得()332632612326n m x n m n y n m ⎧-+=⎪⎪+-⎨-⎪=⎪+-⎩,即()332612,326326n m n M n m n m ⎛-+⎫- ⎪+-+-⎝⎭,而220PA n n k m m --==-,则直线PA 的方程为22n y x m-=+,令=2y -,则222n x m --=+,解得42m x n -=-,即4,22m N n -⎛⎫- ⎪-⎝⎭,又22194m n +=,则22994n m =-,2287218m n =-,所以()()()()()()12264122326332696182432643262MN n n m n n m k n m n m n m n m m n m n -+-+--+-==-+-+-++---+--222222648246482498612369612367218n mn m n mn m n m mn m n m n n m -+-+-+-+==++---++--()()22222324126482429612363332412n mn m n mn m n mn m n mn m -+-+-+-+===-+-+-+-+,又022303CD k +==-,即MN CD k k =,显然,MN 与CD 不重合,所以//MN CD .第六节平面几何性质在圆锥曲线中的应用1.(2023全国甲卷理科12)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则OP =()A.25C.35【解析】因为1226PF PF a +==①,22212121122cos PF PF PF PF F PF F F +-⋅∠=,即2212126125PF PF PF PF +-⋅=②,联立①②,解得12152PF PF ⋅=,221221PF PF +=.由中线定理可知,()()222212122242OP F F PF PF +=+=,而12F F =,解得302OP =.故选B.2.(2023新高考II 卷10)设O为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于,M N 两点,l 为C 的准线,则()A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN △为等腰三角形【解析】由题意可得焦点为()1,0F ,所以12p =,2p =,A 正确;联立)214y x y x⎧=-⎪⎨=⎪⎩,消y 得231030x x -+=.设()()1122,,,M x y N x y ,由韦达定理得12103x x +=,所以12163MN MF NF x x p =+=++=,B 错误;设MN 的中点为Q ,分别过,,M N Q 向l 作垂线,垂足分别为111,,M N Q ,由梯形中位线性质及抛物线定义可得,()()111111222QQ MM NN MF NF MN r =+=+==,所以以MN 为直径的圆与准线l 相切,C 正确;由上述解题过程知,231030x x -+=,解得121,33x x ==,从而(1,3,3M N ⎛- ⎝⎭,易得OM ON MN ≠≠,OMN △不是等腰三角形,D 错误.综上,故选AC.。
历年高考数学圆锥曲线试题汇总(总20页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高考数学试题分类详解——圆锥曲线一、选择题1.设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C )(A )3 (B )2 (C )5 (D )62.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF =(A). 2 (B). 2 (C).3 (D). 33.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A .2B .3C .5D .104.已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( )A .32 B .22 C .13 D .125.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是( )A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”6.设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A. 45B. 5C. 25D.57.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24y x =±B.28y x =±C. 24y x =D. 28y x =8.双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r= (A )3 (B )2 (C )3 (D )69.已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。
1、(2012济南一中模拟)过双曲线2222x y a b -=1(a >0,b >0)的左焦点F ,作圆222
4
a x y +=的
切线,切点为E ,延长FE 交双曲线右支于点P ,若E 为PF 的中点,则双曲线的离心率为 .
2、(2012滨州二模)设抛物线y 2
=8x 的焦点为F ,准线为l ,P 为抛物线上一点PA⊥l ,A 为垂足,如果AF 的斜率为-3,那么|PF |=____
3、(2012德州二模)设双曲线22
221(0,0)x y a b a b
-=>>的右焦点为F ,过点F 作与x 轴垂直
的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若
(,)OP OA OB R λμλμ=+∈,3
16
λμ=
,则该双曲线的离心率为
A .
322 B .355 C .233 D .9
8
答案:C
解析:双曲线的渐近线为:y =b
x a
±
,设焦点F (c ,0),则
A (c ,bc a ),
B (c ,-bc
a ),P (c ,2
b a ),因为OP OA OB λμ=+
所以,(c ,2b a )=(()c λμ+,()bc
a
λμ-),所以,
λμ+=1,λμ-=b c ,解得:,22c b c b c c λμ+-==
,又由3
16
λμ=,得: 3
2216
c b c b c c +-⨯=,解得:2234a c =,所以,e =233,选C 。
4、(2012德州二模)设斜率为1的直线l 过抛物线2
(0)y ax a =>的焦点F ,且和y 轴交于点A ,若△OAF(O 为坐标原点)的面积为8,则a 的值为 。
5
、(2012德州一模)已知抛物线2
40y px(p )=>与双曲线22
22100x y (a ,b )a b
-=>>有相同
的焦点F ,点A 是两曲线的交点,且AF x ⊥轴,则双曲线的离心率为( )
A .
51
2
B 21
C 31
D .2212
答案:B
解析:依题意,得F (p ,0),因为AF x ⊥轴,设A (p ,y ),
2
2
4y p =,所以y =2p ,所以,A (p ,2p ),又A 点在双曲线上,所以,22
224p p a b
-=1,
又因为c =p ,所以,22222
4c c a c a
--=1,化简,得:4224
6c a c a -+=0,即:42
610c c a a ⎛⎫⎛⎫-+= ⎪ ⎪
⎝⎭⎝⎭
,所以2
322e =+e 21,选B 。
6、(2012济南三模)若双曲线22
221(0,0)x y a b a b -=>>与直线3y x =无交点,则离心率e
的取值范围
A .(1,2)
B .(1,2]
C .(1,5)
D . (1,5]
答案:C
解析:因为双曲线的渐近线为x a
b
y ±
=,要使直线x y 3=与双曲线无交点,则直线x y 3=,应在两渐近线之间,所以有
3≤a
b ,
即a b 3≤,所以223a b ≤,2
223a a c ≤-,即224a c ≤,42≤e ,所以21≤<e ,选B.
7、(2012济南三模)过抛物线2
2y px =焦点F 作直线l 交抛物线于A,B 两点,O 为坐标原点,则△AOB 为
A .锐角三角形
B .直角三角形
C .不确定
D .钝角三角形
8、(2012莱芜3月模拟)已知F 1、F 2分别是双曲线22221(0,0)x y a b a b
-=>>的左、右焦
点,P 为双曲线上的一点,若1290F PF ∠=︒,且12F PF ∆的三边长成等差数列,则双曲线的离心率是 .
【答案】5
【解析】
设x PF =2,)(1y x y PF <=,则
a x y 2=-,又c y x 2,,为等差数列,所以y c x 22=+,整理得⎩
⎨
⎧-=-=a c y a
c x 2242,代入2224c y x =+整理得,06522=+-c ac a ,解得a c 5=,所以双曲线的离心率为5==
a
c
e 。
9、(2012临沂3月模拟)设椭圆
122
2=+m
y x 和双曲线1322=-x y 的公共焦点分别为21F F 、,P 为这两条曲线的一个交点,则21·PF PF 的值为
(A )3 (B )32 (C )23 (D )62
10、(2012临沂二模)已知抛物线x y 42
=的准线与双曲线22
21x y a
-=交于A B 、两点,
点F 是抛物线的焦点,若FAB ∆为直角三角形,则该双曲线的离心率为
(A 2(B 3(C )2 (D 6
11、(2012青岛二模)已知直线()1y k x =+与抛物线2
:4C y x =相交于A 、B 两点,F
为抛物线C 的焦点,若2FA FB =,则k =
A .223±
B .23±
C .13±
D .2
3
11、(2012青岛3月模拟)已知双曲线22
221x y a b
-=的渐近线方程为3y x =,则它的离
心率为 .
答案:2
【解析】22
3,3,1 2.b b b e a a a ⎛⎫⎛⎫
===+= ⎪ ⎪⎝⎭⎝⎭
12、(2012日照5月模拟)过双曲线的左焦点1F 且与双曲线的实轴垂直的直线交双曲线于A ,B 两点,若在双曲线虚轴所在直线上存在一点C ,使AC BC 0⋅=,则双曲线离心率e 的取值
范围是 。
13、(2012泰安一模)F 1、F 2为双曲线C :12222=-b
y a x (a >0,b >0)的焦点,A 、B 分
别为双曲线的左、右顶点,以F 1F 2为直径的圆与双曲线的渐近线在第一象限的交点为M ,且满足
∠MAB=30°,则该双曲线的离心率为 .
【答案】
【解析】由⎪⎩
⎪⎨⎧
=+=2
22c y x x
a
b y ,解得⎩⎨⎧==b y a x ,即交点M 的坐标),(b a ,连结MB ,则AB MB ⊥,即ABM ∆为直角三角形,由∠MAB=30°得3
3
230tan 0
===
a b AB MB ,即2234,332a b a b ==
,所以222223
7
,34a c a a c ==-,所以321,372==e e ,所以双曲线的离心率3
21
=
e .
14、(2012威海二模)椭圆2222+1(0)x y a b a b
=>>3
,若直线kx y =与其
一个交点的横坐标为b ,则k 的值为
A.1±
B.2±3
±
3
15、(2012烟台二模)已知F 1,F 2是椭圆22
22x y 1a b
+=(a >b >0)的左、右焦点,点P 在
椭圆上,且12F PF .2
π
∠=
记线段PF 1与y 轴的交点为Q ,
O 为坐标原点,若△F 1OQ 与四边形OF 2PQ 的面积之比为1:2,则该椭圆的离心率等于
A.23-
B.233-
C.423-
D.31-
16、(2012滨州二模) 已知F 1(-1,0),F 2(1,0)为平面内的两个定点,该平面内的动点P 满足
|PF 1|+|PF 2|=2,记点P 的轨迹为曲线E 。
(I )求曲线E 的方程;
(II )设点O 为坐标原点,A ,B ,C 是曲线E 上的不同三点,且OA OB OC ++=0, (i )证明:直线AB 与OC 的斜率之积为定值;
(i i )当直线AB 过点F 1时,求直线AB 、OC 与x 轴所围成的三角形的面积。